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Abstract

The development of complex event-driven systems requires studies and analysis prior to
deployment with the goal of detecting unwanted behavior. UML is a language widely
used by the software engineering community for modeling these systems through state
machines, among other mechanisms. Currently, these models do not have appropriate
execution and simulation tools to analyze the real behavior of systems. Existing tools
do not provide appropriate libraries (sampling from a probability distribution, plotting,
etc.) both to build and to analyze models. Modeling and simulation for design and pro-
totyping of systems are widely used techniques to predict, investigate and compare the
performance of systems. In particular, the Discrete Event System Specification (DEVS)
formalism separates the modeling and simulation; there are several tools available on
the market that run and collect information from DEVS models. This paper proposes
a model transformation mechanism from UML state machines to DEVS models in the
Model-Driven Development (MDD) context, through the declarative QVT Relations lan-
guage, in order to perform simulations using tools, such as PowerDEVS. A mechanism
to validate the transformation is proposed. Moreover, examples of application to analyze
the behavior of an automatic banking machine and a control system of an elevator are
presented.

Keywords: Statecharts, DEVS, UML, MDA, QVT Relations.

1 Introduction

Model-Driven Development (MDD) [1, 2, 3] is a methodology that advocates the use of models as the primary
artifacts that drive the development of software, in order to increase productivity, quality and reduce costs
[4, 5]. One of its main objectives is to organize abstraction levels and development methodologies, promoting
the use of models as the main artifacs to be constructed and maintained. A model consist of a set of elements
that provide a synthetic and asbtract description of a system, specific or hypothetical. Thus, the development
process becomes a refinement process and transformation between models, increasingly generating lower-level
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abstraction models until, in the last step, specific platform code is generated. There is a growing interest
in this field. In particular, the Model-Driven Architecture (MDA) [6] is the approach defined by the Object
Managment Group (OMG) [7].

For the MDD, the Unified Modeling Language (UML) [7, 8] has become the standard for modeling the
different aspects of software systems, both in the academic environment and industrial developments. UML
follows the Object Oriented paradigm and allows the description of both static and dyanimc aspects of
software systems. More than a language, it is a set of languages, mostly graphic notations, supported by
a significant number of proprietary and open source tools [9]. While UML is one of the preferred means of
communication between modeling experts, due to powerful grapical representation, this capacity is bounded
in term of model execution, that is, the execution of a simulation.

In the simulation area, the Discrete Event System Specification (DEVS) [10] is a modular and hierarchical
formalism modeling and analyzing systems of various types; in particular, discrete event systems, systems
of differential equations (continuous systems), and hybrid systems (continuous and discrete) [11, 12]. DEVS
provides a theoretical basis for a system to run models using the DEVS simulation protocol [10, 13, 14]. The
DEVS models are hierarchical in nature and consist of atomic models and coupled models in order to build
designs at different levels of asbtraction.

There is currently a major need of simulation tools for dynamic UML models to analyze the actual
behavior of complex systems. Moreover, it is recommended to apply modeling and simulation techniques
in early stages of software development, as these help to detect inconspicuous problems before deployment.
UML is powerful in terms of its graphical representation, but weak regarding the execution of their dynamic
models. In the software engineering community, state machines are one of the most used UML modeling
languages [9, 15]. The present work aims to enhance the simulation of these using the DEVS formalism.
Currently, DEVS is widely used by engineers within the academic world, who understand the modeling of
discrete event systems and are capable of translating system requirements to DEVS model code.

The main objective of this work is the proposal of a mechanism to execute and analyze UML state
machines through DEVS, a modeling and simulation formalism (M&S). A formal relationship is defined
between elements of the state machines (State Charts - SCs), proposed by Harel [16], and the elements
of the DEVS formalism [10]. Furthermore, a DEVS representation (metamodel) is defined and a mapping
from UML statecharts to DEVS models is presented, through transformation rules implemented in QVT
Relations language (QVT-R) [17]. Finally, the implementation of a DEVS model is built and can then be
imported by the PowerDEVS Simulation Tool [18] for the execution and analysis of the model. Even though
the development and analysis of simulations (on models obtained from the transformation) are not the focus
of this work, we include examples of analysis of applications. Figure 1 shows the described process.

Even though the transformation of UML models for simulation purposes is not a new idea, and there
also exist other similar approaches that can be used as reference, this paper provides a sound process for
achieving this objective, from both the conceptual perspective and the technical implementation perspective.
This is the main contribution of this work.

Transformation in
QVT-Relations
(PIM-PIM)

UML State Machine

DEVS Model

Transformation in
Saxon XSLT and

XQuery Processor
(PIM-PSM)

PowerDEVS Model

Figure 1: Execution and analysis of UML state machines through DEVS
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The rest of the paper is organized as follows. In Section 2 we describe the motivations that give rise to
the current proposal, along with other related works that are directly linked to this one. Section 3 introduces
the theoretical components that form the basis of the main issues, such as MDA, the SC’s, and the DEVS
formalism. In Section 4 we present the formal transformation process of SC’s to DEVS models. Then, in
Section 5 we define, first, the relations in QVT-R that implement the process, and then the C++ code
generation to be imported by PowerDEVS. Section 6 describes a proposal to validate the transformation. In
Section 7 includes two application examples: the analysis of the behavior of an automatic banking machine
and a control system of an elevator. Finally, in Section 8 detailed conclusions and future work discussions
are presented.

The full development is available at https://www.dropbox.com/sh/4e0zorfyvgdmdg3/dnfW0_ija9.

A preliminary version of this paper appeared in XL CLEI [19].

2 Motivation and Related Work

Mapping UML components to DEVS models (and vice versa) is not a new idea, nor an isolated initiative.
There are many research projects that aim to integrate developments in modeling and simulation, generating
different methodologies, processes and specific frameworks. However, our proposal differs from previous
works on issues that we discuss in this section.

There are different tools that support UML (UML Computer Aided Software Engineering - UML CASE)
providing simulation capabilities, such as IBM Rational Rose [20, 21] and Poseidon [22]. These tools have
proprietary simulation engines which are not extensible and can not be tailored to meet specific requirements.
For the current proposal a specific simulation engine is required to support simulation processes in detail
(time event management, probability distributions, etc.), such as PowerDevs.

For the representation of DEVS models there are different approaches. One of such approaches is the
Structure Entity Modeler Scalable with Complexity Measures (SESM/CM) [23] which is adequate for: de-
veloping component-based hierarchical models, modeling behavioral aspects of atomic models, providing
structural specifications, and storing the models using XML. However, this approach is closer to the sim-
ulation experts than domain experts and it needs further development to represent atomic models using
XML.

In [24] and [25] another metamodel is defined to represent DEVS systems through XML. In both cases,
JavaML [26] is used to describe the behavior of an atomic model. This solution is suitable for transforming
platform specific models to platform independent models, but it does not provide a graphical solution for
modeling such systems. One of the goals of our research project is to incorporate in the future a tool for
viewing and editing models. Another tool that is available is ATOM3 [27] which is a good solution since
it has a layer of metamodeling that allows describing domain specific modeling languages, and a layer that
supports construction, modification and transformation of domain models.

In the field of modeling and simulation based on UML, several authors have approached the subject from
different perspectives. Choi [28] uses UML sequence diagrams to define the behavior of a system. In [29]
eight steps to build DEVS models using UML are introduced, but in this case many human decisions are
needed to transform the model.

In [30], Zinoviev presents a formal mapping from DEVS to UML. In this technique, input and output
ports are mapped to UML events. Not continuous DEVS state variables are mapped to UML states and
those that are continuous are mapped to attributes of an UML state. The mapping presented is elegant, yet
their representation in UML does not tend to provide a unified representation for the modeling formalism.

Huang and Sarjoughian define in [31] a mapping for coupled models in UML-RT structure diagrams [32,
33], but the use of UML profiles for planning, performance and time specification (OMG2005) is unnecessary
for mapping DEVS to UML. They conclude that UML-RT is not suitable for a simulation environment, and
argue that the software design and simulation are inherently different.

In [34] an informal mapping from DEVS to a STATEMATE statechart is introduced. Shulz indicates that
DEVS has greater expressive power than the statechart [35], and that any DEVS model can be represented
by a StateMate activity diagram, together with an appropiate indentifier convention for events.

In the MDA context, Tolk and Muguira [36] show how complementary ideas and methods of High Level
Architecture (HLA) and DEVS can be integrated into a well-defined M&S application domain, within the
MDS framework. HLA has a distributed simulation architecture, independent of the computing platform. It
provides an interface in which each simulation engine must conform to participate in a distributed simulation
exercise. While it is widely used in the defense industry, its adoption in commercial industry has been
restricted. The HLA interface specification does not include a network protocol for Run-Time Infrastructure
(RTT). Tt is up to the developers of an RTI to create a specification. Due to this, interoperability between
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RTI products and often, RTI versions, should not be assumed, therefore, this limits their use in commercial
industry.

Transformations between UML and DEVS models are presented in [37] and [38]. In [37], the authors
transform sequence diagrams to Finite and Deterministic DEVS to verify by means of space state exploration
and to validate a set of traces by means of a simulation. The extension of the modeling language based
on DEVS (E-DEVSML) proposed in [38] can help modelers to simulate systematically the systems. Also,
an approach to make UML diagrams executable through an automated model transformation process using
E-DEVSM is described. However, it does not specify the types of UML diagrams that are transformed
and presents a proposal based on scarce bibliography. Neither [37] or [38] analyze the validation of the
transformation or discuss possible mechanisms.

In [39], the authors present a new extension to the DEVS formalism, called Rational Time-Advance
DEVS (RTA-DEVS) which can be fomally checked with standard model-checking algorithms and tools.
This is done by means of a procedure that creates Timed Automata models that are behaviorally equivalent
to the original RTA-DEVS models via a transformation models. This paper also presents a validation
mechanism of transformation using the technique known as Correctness-by-Construction.

In [40], Mittal and Risco-Martin present eUDEVS (Executable UML with DEVS Theory of Modeling
and Simulation) where the authors analyze not only the specification of the structure and the behavior of
DEVS models in UML, but also a method for modeling general purpose DEVS models, which supports the
specification, analysis, design, verification and validation of a wide variety of systems based on DEVS. In
[40] an M&S methodology consisting of three steps is proposed. First, the static structure of the UML state
machine is synthesized and its corresponding representation in State Chart XML (SCXML) [41] is gener-
ated. Second, the SCXML file is converted to a DEVS finite and deterministic state machine model (Finte
Deterministic DEVS - FD-DEVS), defined by Mittal in [42], which specifies its behavior. At this stage the
model is totally platform independent. Finally, from the XML FD-DEVS, a simulation model is generated
using a series of XML-based transformations, to be executed later by the DEVSJAVA [43] simulation engine.
The proposed method is interesting and ambitious, but the employment of XSL transformations (eXtensible
Stylesheet Language Transformations - XSLT) makes it unclear. Additionally, the work is based on a rep-
resentation of the SCXML state machine defined by the World Wide Web Consortium (W3C), which does
not consider all elements of UML state machines. SCXML is a general-purpose event-based state machine
language that can be used in many ways and is currently a working draft specification. Also, it provides a
generic state-machine based execution environment based on Harel state tables, Commons SCXML. Com-
mons SCXML is an implementation that creates and maintains a Java SCXML engine capable of executing
a state machine defined using a SCXML document, however, it does not provide libraries for analysis of the
models.

This work differs from the above, and especially from [40], in the following aspects:
e A proposal in the context of the MDA is made;
e A formal mapping between the SC’s, defined by Harel, and DEVS models is performed;

e A QVT-R transformation, model-to-model (M2M), implementing the mapping from UML state ma-
chines to DEVS models is defined. It employes a declarative language standardized by the OMG
instead of using imperative languages or XML transformation tools. The instrumentation of transfor-
mation rules through XML definitions leads, in general, to unclear and difficult developments. XSL
transformations are very different from a programming language since they are based on the use of
templates which often are difficult to maintain when they become large. In contrast, transformation
languages such as QVT and ATL have similar styles to programming languages. In particular, QVT-R
follows the style of the logical-relational paradigm. This feature allows us to define transformations as
declarative, modular, easier to extend and modify specifications.

e A C++ code of DEVS models is generated to be imported by the PowerDEVS (open source) simulation
tool.

e Mechanisms to validate transformations are discussed, while this is not done in [40].

e Our proposal focuses on discrete dynamical systems, where time constraints occur in many places and
drive the evolution of these systems. For example, elevator systems and assembly machines.

Even though the transformation of UML models for simulation purposes is not a new idea, and there also
exist other similar approaches that can be used as reference, we propose a model transformation mechanism
from UML SC’s to DEVS models in the MDD context, through the declarative QVT-R language, in order
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to perform simulations using tools, such as PowerDEVS. Further research will develop a unified tool that
contains a specific modeling environment that allows the representation of systems with UML elements
considered in this work, along with the transformation to DEVS models. We also propose to integrate
PowerDEVS for the implementation and analysis of the models.

3 Preliminary Notions

3.1 Model-Driven Architecture (MDA)

MDA is an OMG initiative that proposes a set of standards which specify interoperable technologies to
implement the principles of MDD, incorporating automated transformations. MDA defines a process of
software construction based on the production and processing of models. The principles on which MDA
is based are: abstraction, automation and standardization. The MDA central process consist in model
transformation. The main underlying idea is to use models, so that the properties and characteristics of the
systems remain contained in an abstract model, independent of the changes in technology. MDA provides a
set of guidelines or standards expressed as models and establishes four levels of abstraction: Computation
Independent Model (CIM), Platform Independent Model (PIM), Platform Specific Model (PSM), and the
final application. The CIM models describe the environment in which the system is used, without direct
reference to its implementation. The PIM models describe the functionality and structure of an information
system without considering technological details of the platform on which the system is implemented. The
PSM models describe the specific platform where the system is executed. MDA proposes the following
development process: from requirements we get a PIM, then this model is transformed with the help of one
or more tools in PSM, and finally each PSM is transformed into code. Therefore, MDA incorporates the idea
of models transformation (CIM to PIM, PIM to PSM, PSM to code), making use of tools for the automation
of these activities. Figure 2 shows the process and the roles defined by MDA.

The principle of abstraction used by MDA focuses its attention on the problem domain rather than on
the technology. Different models aim at the definition of a semantic that separates relevant aspects of the
problem from those related to the technology. Regarding automation, MDA favors the emergence of new
CASE tools with specific functionalities for the exchange of models, consistency verification, processing and
handling of meta models, among others.

T Mapping
Computation Independent CIM >> PIM
Business Analyst | Model (CIM)

Y
Mapping
Platform Independent PIM >> PSM

Model (PIM)

& !
Mapping

Platform Specific PSM >> Code

Developer /| Model (PSM)
Tester

Designer

Code

Figure 2: MDA processes and roles
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Mapping and Model Transformation

A set of mappings between models from different abstraction levels are established in Figure 2. These
mappings can also be defined between models belonging to the same level. Below are some of the possible
transformations:

e Mapping PIM to PIM. It is applied in order to optimize them for the duration of the development
process. This mapping does not require any information on the implementation platform.

e Mapping PIM to PSM. It is applied in cases where it has a PIM resulting from a series of refinements
of PIM to PIM. This mapping will be implemented in a dependent architecture of a specific platform.

e Mapping from PSM to PSM. It is applied during the encoding and component development. This
mapping is linked to the refinement of PSM own models.

e Mapping from PSM to PIM. This transformation may be required to generate abstract models from
existing implementations. It can be used in order to extract into generic models, desirable properties
of a system.

e Mapping from PSM to code. Enables the generation of specific source code to a particular platform
from a PSM.

The languages most commonly used to describe model-to-model transformations are QVT and ATL
(Atlas Transformation Language) [44]. In the present work we opted for QVT-R (QVT-Relations) for its
simplicity and clarity to define relationships between elements of the source and target metamodels.

Query/View/Transformation (QVT) The OMG defined the QVT standard [17] to work with software
models. QVT consists of three parts: query, view and transformation. In particular, a transformation
metamodel describes relationships between a source metamodel S, and a target metamodel T, specified in
MOF [45]. The QVT specification 1.1 has a declarative/imperative hybrid nature. In this work the Relations
declarative language is employed. The tool used for the definition of the transformations is called MediniQVT
[46]. This tool implements the OMG QVT-R specification into a powerful engine QVT. Its interface is based
on Eclipse, and use Eclipse Modeling Framework (EMF) [47] for representing models. MediniQVT requires
that metamodels (and models) be written in a simplified version of the MOF standard, called Ecore [48],
which is defined in the EMF. An Ecore metamodel is represented in XML; however has an EMF Ecore
models graphic editor which facilitates the creation thereof.

Ecore and Ecplispe Modeling Framework Characteristics The metamodels and EMF models used
are represented by XML documents; EMF has a graphical editor which facilitates the creation of Ecore
models. There are tools that automatically treat these metamodels and models, including the Eclipse plug-
in to transform these models, with the definition of QVT transformations. The features and elements of the
modeling language Ecore are: the unifying element (root) is the package EPackage, which physically contains
its elements (containment specification) and, in turn, these may be contained in other packages. There is
a factory (EFactory) per package that allows the creation of model elements. Constructs that describe
a set of elements (instances) are classifiers (EClassifiers): EClass and eDataType. Ecore specifies the
characteristics of the classes (EClass), their structural characteristics (EStructuralFeatures), attributes
(EAttributes), operations and relationships (inheritance, reference (EReference)). The EClass have a
superclass and is composed of structural features (EStructuralFeatures: EReference and EAttribute).
Both EAttributes and EReferences may be provided with multiplicity. The EDataTypes model basic
or indivisible data model types, and the EReferences may be contained or be references (pointers). The
Operations model the operations of the interface (although implementation is not provided for them). All
elements inherit from ENamedElement (nameless) and EModelElement (model element). Moreover, every
element of the model can have associated annotations (EAnnotation): name / value pairs for additional
specifications; eg, OCL constraints or documentation strings.

3.2 State Machines

A SC is a visual representation of a finite state automata with hierarchy of states. These machines were
introduced by Harel [16] and incorporated into the various versions of UML with some variations. The main
feature of the SCs is that their states can be refined, thus defining a hierarchy of states. The decomposition
of a state can be sequential or parallel, in the first, a state decomposes into an automaton, while in the
second it breaks down into two or more automata running concurrently. Although this hierarchy is allowed,
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a SC with composite states has its equivalent using only simple statements. In this paper, we will rely on the
definition and application of SCs containing only simple statements. There are many algorithms and tools
that convert a SC with composite states to an equivalent SC with simple states [16, 49, 50]. Transitions are
directed. A transition (¢) is formed by its name, origin state, the event that “triggers” it (e), the trigger
condition (c¢), the actions to be executed ([alpha]) and destination state. The graphical notation used is
t:e,c/a.

3.3 M&S and DEVS

A model is a representation of the construction and working of some system of interest. A model is similar
to but simpler than the system it represents. One purpose of a model is to enable the analyst to predict
the effect of changes to the system. On the one hand, a model should be a close approximation to the real
system and incorporate most of its salient features. On the other hand, it should not be so complex that it
is impossible to understand and experiment with it. Generally, a model intended for a simulation study is
a mathematical model developed with the help of simulation software. Mathematical model classifications
include deterministic (input and output variables are fixed values) or stochastic (at least one of the input or
output variables is probabilistic); static (time is not taken into account) or dynamic (time-varying interactions
among variables are taken into account). Typically, simulation models are stochastic and dynamic.

Simulation is a descriptive tool, allowing us to experiment with a model instead of the real system. The
propose of simulating, generally falls into one of three categories as follows:

e Comparison. A comparison of simulation runs can be used to assess the effect of changing a decision
variable. The results of the different runs can then be evaluated in terms of the objetives.

e Prediction. A simulation may be used for predictive proposes to determine the state of the system at
some future point in time, subject to assumptions about how it behaves now and how it will continue
to behave.

e Investigation. Some simulations are developed to provide an insight into the behavior of the system,
rather than to perform detailed experimentation. It is of interest to see how the simulation behaves
and reacts to normal and abnormal stimuli.

Simulation is used before an existing system is altered or a new system built, to reduce the chances of
failure to meet specifications, to eliminate unforeseen bottlenecks, to prevent under or over-utilization of
resources, and to optimize system performance.

During the last decades, the rapid evolution of technology has produced a proliferation of new dynami-
cal systems of great complexity. Examples include computer networks, automated production systems, air
traffic control, and general systems of command, control, communications and information. All the activ-
ities in these systems are due to the occurrence of asynchronous discrete events, some controlled (such as
pressing a key) and some not (like spontaneous equipment failure). This feature is what leads to define the
term: Discrete Event Systems (Discrete-Event Systems - DES) [51]. Among the most popular formalisms
for representation of DES are Petri Nets, the SC, Grafcet, Event Graphs, and many generalizations and
particularizations of them.

With the motivation of problem-oriented modeling and simulation of DES, in the decade of the 70
Bernard Zeigler proposed a theoretical framework and a methodology for M&S systems. It is here that
arises DEVS [10], a formalism for modeling with a solid semantic, based on a theoretical system basis. This
formalism, sometimes pointed as universal, allows to describe dynamic discrete event systems. Its universality
means that any formalism for these systems can be adjusted to DEVS. Because of its great adaptation for
modeling complex systems and the simplicity and efficiency of the implementation of simulations, DEVS is
currently one of the most used tools in modeling and simulation by mean of discrete events. In Section 4.2
the details of the formalism are presented.

4 From State Machines to DEVS Models

The main objective of this work is to provide a mechanism that achieves the execution of UML SCs, through
a process that transform them to DEVS atomic models, to later be able of carrying simulations on them.
To build this process of transformation is necessary to make a review of the elements of each formalisms.
Subsequently, a mapping between them through a set of rules that indicate how information from one domain
translates to another is defined. These rules are especially needed because although the domain elements of
a SC has similar aspects from the DEVS ones, the specification of DEVS elements is more stringent.
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4.1 Formal Definition of a SC

The UML SCs are based on the SCs defined by Harel. They are composed by a set of states, transitions and
events. Formally, following [52], a SC is defined as a tuple (S, %, T, A), where:

e S : is a finite (non-empty) set of states.
e Y : is a finite set of events.

e T is a finite set of transitions represented by the tuple t = (t', s,, €, ¢, a, sq4), where:

t' is the transition name;

— S, € S is the origin state;

— e € ¥ is the trigger event;

— cis a trigger condition;

— a € A A is an action to be executed when the transition occurs;

— 84 € S is the destination state.

e (ACYX): is a set of actions, where 7 € A represents the “null action” or “skip”.

For convenience, a life time (or residence time) can be associated to a state. These are used to describe a
new behavior, that defines for how long the system can remain in a state. When time has elapsed, a special
transition must be triggered. This behavior could also be implemented by associating a time event to a
transition, which fires when the origin state reaches that time. On one hand, the association of time to each
state is formalized, and secondly, a special event v € ¥ called time event to be used in transitions that are
triggered upon reaching the time in his origin state. We refer to these transitions as time transitions. Only
one time transition must be defined by each state, and the life time must be not equal to co.

The SC formal definition is extended with the following components: (S, %, T, A, II), where:

e IT: S x RT_is a set of pairs that associates with each state a value in 5)?31 oo+ that represents the life

0,00
time.
e v € X is the time event.
e SiTl(s) # oo then there must be a unique time transition (', s, true, a, sq) with origin s.

Figure 6 shows an example of a SC. Note that the transitions are triggered when the life time runs out
in their origin state (time transition) are drawn simply by associating the life time of their origin state and
action output; the event (event time 7) and condition (¢rue) are not drawn.

4.2 Definition of DEVS Formalism

A classic DEVS atomic model is defined as a tuple (X,Y] S, dcat, dint, A, ta), where:
e X is the set of input events (possibly co).
e Y is the set of output events (possibly o).
e S is the set of states (possibly o).

® Jert @ QX X — Sis the external transition function which defines how an input event changes a state of
the system, where: @ = {(s,¢e)|s € 5,0 < e <ta(s)} is the set of total states, and e theis the elapsed
time since the last event.

® Jint : S — S is the internal transition function which defines how a state of the system changes
internally (when the elapsed time reaches to the lifetime of the state).

e )\ : S — Yis the output function. This function defines how a state of the system generates an output
event (when the elapsed time reaches to the lifetime of the state).

o ta:S— 51%({ o 1s the time advance function which is used to determine the lifespan of a state.
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A system that is in a state s € S will remain in it for a ta(s) period of time, unless an input event with
value x € X occurs, after a time e lower or equal to ta(s) elapses. In this case, the system will experience
an external transition to the state s’ = deqt (s, €, z). However, if the elapsed time e is equal to ta(s) without
external events have taken place, an internal event will occur leading to an internal transition. This will
produce an output event with value y = A (s) and a transition to a new state s” = ;¢ (s). In both cases,
the system will remain in the new state, by the time ta determined or until an external event occurs again.

Note that in the definition of DEVS filed, the time advance function supports associating a time 0 or
0o to a state s € S. In the first case, the system may remain 0 units of time in s. Therefore, when s is
reached, an internal transition happen immediately generating an output event and a state change. Such a
state is called transitory state. Moreover, when the system reaches s whose associated time is oo, no internal
transitions will exist and will remain forever in this state unless an external event occurs. Such a state is
called passive.

4.3 Element Mapping

Model transformations are defined as programs that take a model (or more than one) as input and returns
another model (or more than one) as output.Consist of a set of rules describing how one or more source
model elements are transformed into one or more elements of the target model. Below is formally defined
the set of rules that describe how the elements of the source model are transformed into elements of the
target model by extracting the necessary information from a SC to build a DEVS atomic model.

Given ME = (Symi, X, T, A, II) a SC, and MA = (XY, Sqevs, dext, dint, A, ta) a DEVS atomic model, the
transformation rules are defined as follows:

1. Rule 1: states from S,,,; and their life time are transformed DEVS states, where: Sge,s = {(s,0)|s €
Sumi, II(s) = o}. On the other hand, the ta function is defined as: ta((s,0)) = o.

2. Rule 2: an event e € ¥ is transformed into a DEVS input event with the same name; X = 3 — .
3. Rule 3: an action a € A is transformed into a DEVS output event with the same name; Y = A.

4. Rule 4: to define the transitions mapping is necessary to distinguish particular cases, as in ME all the
information is contained in the tuple that defines the transition, while on a DEVS model it is specified
in various elements of the atomic model. This classification is to distinguish transitions according to
their trigger (event time and the rest), and according to a certain action or null action attached to it.

e Rule 4.1: a transition ¢ € T that is triggered by the occurrence of a time event (), is transformed
into an internal transition in MA.

Given t = (t/, 80,7, true, a, sq) € T
Oint ((80,0)) = (84,11(s4q)), and A((s,,0)) = a.
e Rule 4.2: a transition ¢ € T that is triggered by the occurrence of an event e # ~ and contains
the null action 7, it is transformed into an external transition in MA.
Given t = (¥, so,€,¢,7,8q4) € T, where e #£ :
if ¢ then Oept(((S0,0),te),€) = (8a,11(s4)) else Seat(((S0,0),te),€) = (80,0 — te)).
e Rule 4.3: a transition t € T that is triggered by the occurrence of an event e # ~ and contains a
non-null action a # 7, produce the following elements in MA.
Given t = (¥, so,¢,¢,a,84) € T, where e # v, and a # 7:
(a) it is defined an intermediate state s, — sq with life time 0, in order to produce as output of
the model MA, the action a: (s, — 84,0) € Sdevs;
(b) an external transition from s, t0 s, — $4: Sezt(((80,0),tc),€) = (8o — 84,0);
(c) an internal transition from s, — s4 t0 Sa: Jint(So — Sd,0) = (sS4, 11(s4));
(d) an element from the output function that maps s, — sq4 to the output event (action) a:
A(so — 84) = a.

5 Implementing the Transformation with QVT and Exporting to Power DEV'S

In this section an implementation of the transformation rules from UML statecharts to DEVS atomic models
based on the QVT-R language is proposed. Subsequently, the exporting method of the resulting model is
described, so that it can be interpreted by PowerDEVS.
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A set of QVT relations that implement the rules detailed in Section 4.3 is defined. We make use of the
UML 2.4.1 metamodel described in the official website of the OMG [8]. In function of this specification, the
UML elements that are used to support the formalism of the SCs defined in 4.1 are described. Later, the
DEVS formalism metamodel presented in Section 4.2, is defined in Ecore format.

An execution of rules in QVT receives a model (or instance) of a UML SC satisfies the UML metamodel
in Ecore [47], and builds a DEVS atomic model that satisfies the respective metamodel in Ecore format.

Table 1 reflects briefly which UML elements are used to model the SCs defined in Section 4.1.

Table 1: Mapping between SC elements (formal definition) and UML 2.4.1 elements

Definition Description  Ecore (EClass)

ME state machines StateMachine

S state State

by event SignalEvent

A action FunctionBehavior
T transition Transition

II life time Constraint

DEVS Metamodel

The DEVS metamodel definition is based on the specification described in Section 4.2 and is built with
the MediniQVT tool. Note that each element of the tuple that defines the DEVS models is defined by a
metaclass. Figure 3 shows graphically that metamodel. Briefly, Table 2 describes the relationship between
the elements from the formal definition of an DEVS atomic model and elements of the Ecore metamodel.

NamedElement

- name : String

=<EClass>>
Transition

=<EClass==
AtomicModel

=<FClass==

State <<EClass=>

InternalTransition

- lifeTime : doubls
-incoming : Transition[0.*]
- outgoing : Transition[0. *]

1

<<EClass=>

1 ExternalTransition

=<FClass=> =<EClass==>
OutputFunction Event [
o
0.* !
<<EClass=>
<<EClass>> InputEvent
OutputEvent

Figure 3: DEVS metamodel
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Table 2: Mapping between DEVS atomic model elements (formal definition) and its representation in Ecore

Definition Description Ecore (EClass)
MA atomic model AtomicModel

S state State

X input event InputEvent

Y output event OutputEvent

Oint internal transition InternalTransition
Ot external transition ExternalTransition
A output function OutputFunction
ta time advance lifeTime(Double)

5.1 Transformation Rules in QTV-R

The definition of relationships (rules) in QVT-R implement the rules specified in 4.3. These transformation
rules are written declaratively and describe consistent relationships between the set of elements of each
model. This consistency can be verified by running the transformation in checkonly mode (read-only), with
a satisfactory result if both models are consistent according to the relations. Similarly, it can be executed
in enforce mode to modify or build one of the models, so that both satisfy the relations at the end of the
execution. In this paper, QVT relationships are built by checking the UML model, and enforcing the DEVS
one, thus the elements of first maps to elements of the second.

For space reasons, the relevant parts of the code relationships are shown. In particular, only the construc-
tion of states, input events and partly the construction of internal and external transitions from the DEVS
atomic model are shown. In https://www.dropbox.com/sh/4e0zorfyvgdmdg3/dnfW0_ija9 it is possible
to download the full definition of the rules. Note that a rule defined in Section 4.3 may be implemented by
more than one relationship in QVT-R.

The relationship state2state builds the DEVS model states according to the following mapping: the
name of the DEVS state corresponds to the name that has in the UML model and its lifetime specified on
the UML (Constraint) time constraint.

top relation state2state {
nameS: String;
checkonly domain smUml s_source :uml::State {
container = regionsource :uml::Region{
stateMachine = sm :uml::StateMachine{} },
stateInvariant = s_stateInvariant :uml::Constraint{
specification = spec :uml::ValueSpecification{} },
name = nameS
};
enforce domain smDevs s_target :devs::State {
atomicModel = am :devs::AtomicModel{},
lifeTime = spec.oclAsType(uml::LiteralDouble).value,
name = nameS
};
when {
statemachine2atomicmodel (sm,am) ;
3
X

The UML events SignalEvent are mapped to InputEvent elements of the DEVS metamodel. This is
defined by the relationship signalEvent2inputEvent.

top relation signalEvent2inputEvent {
nameT : String;
checkonly domain smUml s_source :uml::SignalEvent {
name = nameT
};
enforce domain smDevs s_target :devs::InputEvent {
name = nameT

};

11
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A UML transition that is triggered by the ocurrence of an external event and contains an action attached
to it, creates various elements of the resulting DEVS atomic model, according to the last rule defined in
Section 4.3.

-- Source Transition.
top relation transition2mediatorState {
nameT : String;
checkonly domain smUml s_source :uml::Transition {
container = regionsource :uml::Region{
stateMachine = sm :uml::StateMachine{} },
source = ss_uml :uml::State{},
target = st_uml :uml::State{},
trigger = t_uml :uml::Trigger{
event = se_uml :uml::SignalEvent{} },
effect = a_uml :uml::Activity{
classifierBehavior = fb_uml :uml::FunctionBehavior{} },
name = nameT

};

-— Middle Status
enforce domain smDevs s_target_MS :devs::State {
atomicModel = am :devs::AtomicModel{},
lifeTime = 0.0,
name = ss_uml.name + ’-’ + st_uml.name

};

-- External transition

enforce domain smDevs s_target_ET :devs::

ExternalTransition {
atomicModel = am :devs::AtomicModel{},
source = ss_devs :devs::State{},
target = s_target_MS,
inputEvent = ie_devs :devs::InputEvent{},
name = ss_uml.name + ’to’ + s_target_MS.name +’(7’ + t_uml.name+’)’

};

-— Internal Transition
enforce domain smDevs s_target_ITTarget :devs::
InternalTransition {
atomicModel = am :devs::AtomicModel{},
source = s_target_MS,
target = st_devs :devs::State{},
name = s_target_MS.name + ’to’ + st_uml.name

};

—-- QOutput Function
enforce domain smDevs s_target_OF :devs::OutputFunction {
atomicModel = am :devs::AtomicModel{},
state = s_target_MS,
outputEvent = oe_devs :devs::0OutputEvent{},
name = s_target_MS.name + ’ (!’ + fb_uml.name + ’)’

};

-— Preconditions
when {
state2state(ss_uml,ss_devs);
state2state(st_uml,st_devs);
signalEvent2inputEvent (se_uml, ie_devs);
function2outputEvent (fb_uml,oe_devs);
isUmlExternalTransition(s_source);

12
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statemachine2atomicmodel (sm,am) ;
}
}

5.2 Exporting to Power DEVS

The DEVS model resulting from the transformation can be exported to various tools to perform simulations;
among others, PowerDevs, DEVSJAVA [43], DEVS-C++ [53], DEVSim++ [54], CD++ [55], and JDEVS
[56]. These software tools provide different features, which include graphical interfaces and advanced simu-
lation functionalities for general purpose and domain-specific DEVS models. In this paper we have chosen
PowerDEVS, being an open source tool and easy to use to implement these models; moreover, it has versions
for both Windows and Linux and is widely used in academia for teaching M&S.

PowerDEVS is implemented in C++ (with QT graphics libraries) and DEVS models must also be defined
in C++4. It consists of several separate programs:

e Model Editor: contains the graphical interface that allows, among other high-level definitions, the
hierarchical construction of the structure of DEVS (files .pdm) models, which have a special syntax.

e Atomic Editor: allows to define in C ++ (.h and .cpp files) the behavior of the DEVS atomic models,
i.e. transition functions, the output function, lifetime, and other elements of these models.

e Preprocessor: translates files from the Model Editor in structures with information necessary to build
the simulation code, and links files created with the Atomic Editor compiling a stand-alone executable
file.

e Simulation Interface: runs the stand-alone executables, allowing to vary the parameters of the simu-
lation.

e An instance of a Scilab execution where the simulation parameters are read and the results can be
exported.

The export of a DEVS atomic model in Ecore produce, first, a file (.pdm) that defines the structure of
the model and can be opened by the Model Editor, and secondly, the files that define the behavior (.h and
.cpp) so that they can be interpreted by the Atomic Model. The algorithm that generates the code (XEP:
XML Ecore to PowerDEVS) was implemented by the authors of the current work and is based on the Sazon
XSLT library and the XQuery Processor [57], which is a collection of tools for processing XML documents.

The export process described is shown in Figure 4. In Section 7 two examples of application can be
observed.

PowerDevs

DEVS Atomic Model link!
in Ecore

Behavior

Figure 4: Exporting Ecore DEVS atomic models to PowerDEVS

6 Validation of the Transformation

To validate the application of existing theories and tools about the DEVS models, we need to construct
DEVS models from UML SCs models with equivalent behaviors.

In previous sections, we define the transformation by a systematic method and then develop their imple-
mentation, but these mechanisms need to be validated in order to increase the credibility of the results.

13
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The validation of a model transformation typically includes properties which involve the syntactic cor-
rection of the transformation with respect to its specification language and syntactic correction of models
produced by the transformation [58, 59], but few proposals focus on the semantic consistency of the trans-
formation, i.e. the preservation of the correction of the target model in relation to the origin model. In order
to do this we can apply both empirical and theoretical (formal) validation methods.

6.1 Empirical Validation

In the context of MDD, software development is based on the refinement of models until they become codes.
An example of this is the theory of refinement of Dijkstra [60], widely applied in the area of formal methods.
However, it is difficult to adapt the theory to the validation of the model transformation. [61] describes
an agile formal proposal for semantic validation specifying the structures of refinement with OCL which
are equivalent to those employed in the formal languages. This proposal has the support of the software
engineering community, due to the fact that it uses known languages. Generally, refinement is verified by
demonstrating that the actual system simulates the abstract system.

This paper does not specifically propose a refinement, it aims to obtain an equivalent or more general
model in the context of simulation systems, in order to take advantage of existing analysis tools. The model
validation mechanisms in the field of M&S are clearly suited to our proposal. The model validation methods
try to show that the models actually represent the actual system which is one of the most important and
difficult tasks faced by a modeler. Therefore, assuming that the validation of the state machine was made,
in our proposal, empirical validation of the transformation is limited to the validation of the DEVS model,
that is, to determine that the new model resulting from the transformation also models the real system.
This is represented in Figure 5.

Real System
l' ‘\
’ A
’ A}
’ A}
. - N .
Validation  * Validation  °*,
’ A}
’ A
’ A}
’ A}
1 A}
\)
| 4 A |
Transformation
UML SC model > DEVS model

Figure 5: Empirical validation of the transformation

The modeler should work closely with end users during periods of model development and validation in
order to increase the credibility of the model. We can find various model validation strategies in the current
literature [62] [63] but the main goals of the validation process are common to all:

e To produce a model that represents a real system behavior, real enough to use it instead of the original
system in experimentation and analysis.

e To raise the credibility of the model to an acceptable level so that it is used by those responsible for
making decisions.

In the validation process it is important:

e To examine at the model outputs and determine its acceptability, under a variety of configurations of
the input parameters. To make this model present a wide variety of statistical results, which should
be examined carefully.

e To make the model print the input parameters while analyzing the simulation and verify that their
values have not been changed.

e To document the model as much as possible.

e If the operational model is animated, to verify by means of the observation of the simulation that the
model imitates the real system.

14
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To monitor the simulation: tracking specific entities, monitoring of the component values, etc.

e To review the acceptability of the model outputs in detail.

To calculate certain measures of long-term performance analytically, if possible, and then compare
these results with the values that the system provides. his is very important in validating models.

To use both the real system and the model, the same sets of input data to compare the outputs.

6.2 Proposal for Theoretical Validation

Recent studies describe validation and verification techniques of model transformations. In [64], the idea is
to convert a model transformation system into a relational logic specification. The Alloy model analyzer
is used to check if any invalid target model is created by the transformation. Other strategies achieve the
correction of the transformation by means of the correct-by-construction using transformation patterns [65]
or using ontologies [66].

In the context of state transition systems there are simulation and/or bisimulation techniques [67, 39]
that could be applied in this work. These techniques attempt to formally prove that a state transition system
includes the behavior of another, and vice versa. In our proposal we must demonstrate, in particular, that
the behavior of the resulting DEVS model preserves the behavior of the SC, in other words, that the DEVS
models behave like the SCs.

A simulation is a binary relation between two systems associated state transition systems where the
behavior of one includes the other. A bisimulation is a binary relation between two systems of state transition,
which combines systems that behave in the same way. This means, a system simulates another system and
vicerversa.

In this work the SCs and DEVS models are state transition systems including time constraints (TLTS).
Considering [67], a timed simulation is a binary relation R over a set of states of a TLTS defined as follows:

R is a timed simulation iff V(p,q) € R, if p % p/ then 3¢',¢ = ¢ A(v',¢') € R

Where a is an external event or permanence time associated with a state.

Two TLTSs are said to be bisimilar iff there exists a bisimulation between their state spaces.

In a TLTS the eventual transition relation defines a transition from state s to state ¢ that may contain
one or more direct transitions labeled. The eventual transition relation (=) between s and t on « (s == t)
is defined as follows:

s == t iff there is an eventual transition relation from s to ¢ (with a = d(delay) or a = e(event)),
which is composed of one or more direct transitions. This represents the following sequence of transitions:

s (g)*t, proved that the only transition output s’ is an even transition time with delay zero, where *

.. 0
defines zero or more occurrences of transition —.

Weak timed bisimulation

A weak timed simulation [67] is a binary relation R over a set of states of a TLTS. If we have states s1, s}, s2
and s5, R is a weak timed simulation s Rss iff: if sq 25 s/, then there is a transition s, == 8.

We choose the weak bisimulation relation to validate the transformation from SCs to DEVS, as this
relation allows two models to be in simulation relation even with if one of them has some different transitions
from the other, provided that these extra transitions are time transition with delay zero.

Preservation of semantics

Given ME = (Symi, %, T, A, II) a UML SC, and MA = (XY, Sqevs, Ocxt, Oint, A, ta) the DEVS atomic model

resulting of the transformation. If we define R as: s;R(s;,0) where s; € Sy and (8;,0) € Sgeys according

to rule 1 defined in section 4.3, then R is a weak timed bisimulation, which means that MA simulates ME.
Demonstration and a more detailed analysis of the proposal will be considered in the future.

7 Aplication Examples

Two examples are presented in this paper. The first case study shows the simplified operation of an Automatic
Banking Machine (ABM). The purpose of this one is to give a general view of the mapping from a UML SC to
a DEVS model, showing formal and graphical representations. The second example models the behavior of
a control system of an elevator, in order to estimate certain performance variables, such as the average time
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Figure 6: UML SC of an automatic banking machine

of movement of each order, utilization factor, etc., or even plot the trajectory. Current available simulation
tools for UML SCs do not provide adequate libraries to estimate these variables. This fact has motivated
the development of the current work.

Simulations are developed to analyze complex systems. In this first version, the case studies allow the
reader to understand the approach proposed in this paper to analyze dynamic systems from a UML diagram
state machines. In future extensions contemplate complex systems in order to discover improvements in
systems based on analysis by the DEVS simulation models. In Section 7.2, which corresponds to the example
of elevator, we describe possible extensions to the case study.

7.1 Automatic Banking Machine (ABM)

The example shows the simplified operation of an ABM, a machine that allow a user to select different
types of banking transactions by exchanging data through a magnetic card. In addition, the machine has
mechanisms to diagnose failures and provide information to maintenance personnel to perform repairs. Due
to space limitations, described below are only the most relevant ABM behaviors. It is considered that the
ABM starts off and, once connected to the electrical power supply, a pre-launch automatic test begins, which
lasts about 10 seconds. In case of failure the machine goes out of service, otherwise it will be ready for online
banking (idle). When the user enters their card, he must authenticate his login with a password or PIN.
If the authentication fails, after 30 seconds the ABM goes idle again, ejecting the card entered; otherwise
presents an options menu to start a transaction. After the transaction the user decides to make, the user
can return to the menu or exit the system. In case of failure, the ABM has a process of diagnosis and repair
that maintenance staff is responsible for configuring and executing. This procedure can be performed when
the ABM is idle or out of service.

Figure 6 ilustrates the SC of the ABM using the graphical representation of UML 2.4.1.

The formal specification of the ABM SC is as follows: (Sc_Cab) = (S, %, T, A, II), where:

S:{Off, Try, Out of Service, Idle, Maintenance, Authentication, Menu, Transaction} ;

Y :{ButtonOn, ButtonOff, ButtonExit, Ok, ButtonMenu, InsertedCard, OptionSelect, Failure, Repair,
Mant-OK} U A;

T:{(Off=Try, Off, ButtonOn, true, TurnOn, Try), (Try—Out Of Service, Failure, true, 7, Out Of Ser-
vice), (Idle—Off, Idle, ButtonOff, true, TurnOff, Off), (Idle—Authentication, Idle, InsertedCard, true,
T, Authentication), (Authentication —Idle, Authentication, v, true, 7, Idle), (Try—Idle, Try, v, true,
7, Idle), (Idle—Maintenance, Idle, Repair, true, 7, Maintenance), (Maintenance—QOut of Service, Main-
tenance, Failure, true, 7, Out of Service), (Maintenance— Try, Maintenance, Mant-OK , true, 7, Try),
(Out of Service— Maintenance, Out of Service, Repair, true, 7, Maintenance), (Authentication — Menu,
Authentication, Ok, true, RegisterUser, Menu), (Menu—Idle, Menu, ButtonEXxit, true, EjectCard, Idle),
(Menu— Transaction, Menu, OptionSelected, true, T, Transaction), (Transaction—Menu, Transaction, But-
tonMenu, true,r, Menu), (Transaction —Out of Service, Transaction, Failure, true,r, Out of Service), (Trans-
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action —Idle, Transaction, ButtonExit, true, EjectCard, Idle) } ;
A:{TurnOff, TurnOn, EjectCard, RegisterUser} ;

IT:{ (Off, >0), (Try, 10), (Out of Service, ), (Idle, o), (Maintenance, cc), (Authentication, 30), (Menu,
00), (Transaction, co)} .

From UML ABM to DEVS ABM

The execution of the transformation rules in QVT-R takes as argument the ABM UML model in Ecore format
and creates a DEVS atomic model. Figure 7 shows a diagram of the resulting DEVS atomic model. Although
DEVS models do not have a standardized graphical notation, because the sets may have infinite cardinality,
in this case it is possible to plot the model because the number of processed elements is finite. By convention,
internal transitions are drawn with dotted lines and the output lambda function is represented implicitly on
internal transitions specifying the output as a function of the source state, for example, !EjectCard. The
other elements are intuitive in the diagram.

Note that the transformation of the transitions that are triggered by the occurrence of external events,
and that have actions as output, generate an intermediate state with life time 0(zero), to produce immediate
output action. For example, the transition going from state Off to state Try produces the intermediate state
Off-Try; when this is reached an internal transition is triggered immediately (because the lifetime is zero) that
changes the the ABM to the state Try, and also, launches out the action !TurnOn (A(Off-Try) = TurnOn).

Off- Try

? ButtonOn ! Turn\On
Try Out of Service
ITuanff

IdIe—Off -
e
e

? ButtonOff 4

? Repair

-~ ? Failure
| ~ TEjeetCard
\ b -

~ n
? Injserted I'EjectCard Transaction-ldle
Card ~ - 0

|
|
| BjectCard
|
l

onExit

? Butf

? OptlonSeIect

Transactlon

? ButtonMenu

Authentication
0
! Reg}stérUser
< Authentication-Menu >
0

Figure 7: DEVS model of a bank ABM

The formal specification of the resulting DEVS ABM atomic model (Devs_Cab) is as follows:
Devs_Cab = (X, Y, S, 0¢xt, dint, A, ta), where:

X {ButtonOff, ButtonExit, Ok, ButtonMenu, InsertedCard, OptionSelect, ButtonOn, Failure, Repair,
Off-Try, Idle-Off, Authentication-Menu, Menu-Idle, Transaction-Idle}
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Y :{{TurnOff, EjectCard, RegisterUser, TurnOn}

SH{(d, o) | d € {Off; Try, Out of Service, Idle, Maintenance, Authentication, Menu, Transformation}
NoeRS

The external transitions are:

em(((Oﬂr o), t.), ?ButtonOn) = (Off-Try, 0)

Oeat (((Tty, o), te), ?Failure) = (Out of Service, o)

mt({(Out of Service, c), t.), ?Repair) = (Maintenance, o)
dext (((Maintenance, o), t.), ’Failure) = (Out of Service, cc)
dext (((Idle, o), t.), ?Repair) = (Maintenance, o)

Oext (((Idle, o), te), ?ButtonOff) = (Idle-Off, 0)

ext(((Id]e o), te), ?InsertedCard) = (Authentication, 30)

mt (((Authentication, o), t.), 7Ok) = (Authentication-Menu, 0)
Oeat(((Menu, o), t.), ButtonExit) = (Menu-Idle, 0)

dext (((Menu, o), t.), ?OptionSelect) = (Transaction, o)
ewt(((”ﬁansacmon o), t.), ?ButtonMenu) = (Menu, co)

Oext (((Transaction, o), t.), ?Failure) = (Out of Service, cc)

Ozt (((Transaction, o), t.), ?ButtonExit) = (Transaction-Idle, 0)

The internal transition are:

znt (Tr% U) (Idle OO)

Oint (Idle-Off, o) = (Off, >0)
mt(Authenmcamon o) = (Idle, o0)

mt (Authentication-Menu, o) = (Menu, co)
Oint (Menu-Idle, o) = (Idle, c0)

0int (Transaction-Idle, o) = (Idle, )

The output function is defined as:
A(Off-Try, o) = ITurnOn

A(1dle-Off, o) = 'TurnOff
A(Authentication-Menu, o) = !RegisterUser
A(Menu-Idle, o) = !EjectCard
A(Transaction-Idle, o) = !EjectCard

From DEVS ABM in Ecore to PowerDEVS

The DEVS ABM atomic model in Ecore resulting from the transformation, it is translated into C++ code
by the XEP algorithm developed by the authors in order to be interpreted and simulated by PowerDEVS.
According to the description in Section 5.2, the files that define the structure (.pdm) and behavior (.h, .cpp)
of the model are generated. The following code shows the ABM.pdm generated file:

/* CAB.pdm */
Coupled {
Type = Root
Name = CAB
Ports = 0; O
Description =
Graphic {
Position = 0; O
Dimension = 600; 600
Direction = Right
Color = 15
Icon = Window = 5000; 5000; 5000; 5000
}
Parameters {
}
System {
Atomic {

18



CLEI ELECTRONIC JOURNAL VOLUME 18 NUMBER 2 PAPER 3 AUGUST 2015

Name = CAB
Ports =1 ; 1
Path = discrete\CAB.h
Description = Atomic DEVS model
Graphic {

Position = -6105 ; -2610

Dimension 675 ; 720

Direction = Right

Color = 15

Icon = None

}

Parameters {

}

The C++ code corresponding to the generated header file ABM.h is displayed below:

/* File: CAB.h x*/

#if !defined CAB
#define CAB

#include "simulator.h"
#include "event.h"
#include "stdarg.h"

class CAB: public Simulator {
// Declare the state,
// output variables
// and parameters

char x*s;

double sigma;
char *y;

#define INF 1e20

public:
CAB(const char *n): Simulator(n) {};
void init(double, ...);

double ta(double t);
void dint(double);
void dext(Event , double );
Event lambda(double);
void exit();
};
#endif

Finally, below are shown just the relevant parts of the generated C++ code corresponding to the behavior
of the DEVS ABM in Ecore (CAB.cpp):

/* File: CAB.cpp */
#include "CAB.h"
void CAB::init(double t,...) {
//The ’parameters’ variable contains the parameters
// transferred from the editor.
va_list parameters;
va_start (parameters,t);
//To get a parameter: %Name), = va_arg(parameters,’Type’)
//where:
// Namey, is the parameter name
// hType), is the parameter type
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s = "Off";
sigma = INF;
by

double CAB::ta(double t) {
//This function returns a double.
return sigma;

}

void CAB::dint(double t) {
if (strcmp(s,"Try")== 0) {
s = "Idle";
sigma = INF
};
if (strcmp(s,"Autentication")== 0) {
s = "Idle";
sigma = INF
};
if (strcmp(s,"0ff-Try")== 0) {
s = "Try";
sigma = 10.0;
};

}

void CAB::dext(Event x, double t) {
//The input event is in the ’x’ variable.

//where:

// ’x.value’ is the value (pointer to void)

// ’x.port’ is the port number

// ’e’ is the time elapsed since last transition

if ((strcemp(s,"Try")== 0) && (strcmp((char*)x.value,"Failure")== 0)) {
s = "QutofService";
sigma = INF;

};

if ( (strcmp(s,"Idle")== 0) && (strcmp((char*)x.value,"InsertedCard")== 0)) {
s = "Autentication";
sigma = 30.0;

I

}

Event CAB::lambda(double t) {
//This function returns an Event:
// Event(%Value%, %NroPort%)
//where:
//%Value), points to the variable which contains the value.
//¥%NroPorty, is the port number (from O to n-1)
if (strcmp(s,"0ff-Try")== 0) {
y = "TurnOn";
return Event(y,0);
};
if (strcmp(s,"Idle-0ff")== 0) {
y = "TurnOff";
return Event(y,0);
};
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void CAB::exit() {
//Code executed at the end of the simulation.

}

7.2 Control System of an Elevator

Consider a simple elevator that can be commanded by the events up and down. Each level of the building
has a sensor that indicates the presence of the elevator, so that the output of the “system elevator” are the
events produced by these sensors. The elevator goes up and down at constants speeds of 1 meter per second,
the distance between one level and another is 2 meters and the building has 4 levels.

The elevator is commanded by a controller that receives events indicating the current level of the elevator.
Whenever an event arrives, verifies if the elevator should continue going up or down. Upon reaching the
target level, it doesn’t send any other signal to the elevator, making it to remain at the current level.

A possible extension to the problem is to attach a generator to the controller which generates the elevator
destinations as Go to level i. Each time the controller sends a Free signal, the generator, after a short
time (delay), must determine the new level to which the elevator should be directed. Collected data indicates
that delays follows an exponential probability distribution with mean 4 seconds, and destination levels have
equal probability of being selected.

It is of interest in this problem to get, through simulations, graphics of the elevator trajectory and know
its utilization factor(usage time / total time). Future extensions may include the management of a queue
of orders to the elevator and assess, for example, the average waiting time of orders (time between the
occurrence of the order and the beginning of the movement towards the target); and even composing this
operations to form a system of several elevators.

For clarity, we model the problem by designing three UML state machines: i) SC UML for the elevator,
ii) SC UML for the controller, and iii) SC UML for the generator. Figure 8 and Figure 9 ilustrate the SCs
of the elevator and controller respectively, using the graphical representation of UML 2.4.1.

Figure 8: UML SC of an elevator

After applying the transformation rules presented in Section 5.1, the resulting DEVS models in Ecore
format are shown in Figure 10 and Figure 11. Then, through the algorithm XEP, C++ code is generated cor-
responding to PowerDEVS models (.pdm, .h and .cpp files) to be handled by this tool. We call PowerDEVS
models to models that satisfy the metamodel of Figure 3.

Simulation tools, particularly PowerDEVS, contain a lot of libraries that help enrich the models to be
analyzed and discover properties about them. In the present example, as an initial step, the generated models
of the generator, controller and elevator are connected, and later, PowerDEVS libraries (StochasticLibl.h)
are used to plot and generate samples of, an exponential distribution for the delays, and a uniform distribution
for the building leves, as can be seen in Figure 12. The StochasticLibl.h library implements the generation
of samples of a variety of probability distributions commonly used in discrete event simulation models.
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Figure 9: UML SC controller of an elevator
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Figure 10: DEVS model of an elevator

After several runs of the system and using the technique of confidence interval for the outputs it was
established that on average the utilization factor of the elevator is 0,34 (34%) and their confidence limits
are + — 0.027 . Likewise, analyzing the graphics and records (log files) determines that the elevator moves

22



CLEI ELECTRONIC JOURNAL VOLUME 18 NUMBER 2 PAPER 3 AUGUST 2015

Busy - Busy
0

Figure 11: DEVS model of an controller

L
ey “lllll_

GEH_LE‘VQ\ Controller Elevator Plot-
- Elevator

>4 uses library: !
I

L"StochasticLibl.h" ;

Figure 12: PowerDEVS model of an elevator

on average 1.32 levels for each order, this corresponds to 2.64 sec. This measurement makes more sense in a
possible extension of the case study, for example, considering waiting lines with different policies (disciplines)
and multiple elevators working together. In this case, if the discipline of the queues changes, the amount of
movement of the elevators will be modified. It is difficult to analyze this with current available execution
tools for UML SCs.

8 Conclusion and Future Work

MDD is an approach with the potential to make development more efficient and obtain more reliable results,
since, among other things, it enables the verification of systems in early stages of development offering greater
control. Many of MDD techniques use UML, incorporated as a de facto standard language in academic and
industrial areas, which allows the description of many aspects of a system. In particular, UML statecharts
provide a mechanism to specify the behavior of systems using a graphical representation. These diagrams
are compact, expressive and provide the ability to model not only simple but also complex reactive systems.
Multiple tools support the latest versions of UML, which generally provide graphical features that facilitate
the modeling of systems. However, they lack the ability to execute and simulate dynamic models. This
limits the analysis of the behavior of systems in real scenarios. DEVS is founded on the principles of systems
theory and its development through component-based engineering. With the advances of UML in recent
years, the community around DEVS has devoted efforts to define a mapping between UML and DEVS
elements. It is known that DEVS is more rigorous and expressive than UML, but due to the manipulation
of potentially infinite sets which a model can contain, it lacks a graphical notation which is required by
industry professionals. The combination of graphic virtues of UML with the powerful simulation tools of
DEVS models led to the current proposal. Some research groups have addressed various proposals for this
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important relation between DEVS and UML, but none has a formal solution or an implementation based
on the definition of metamodels using standards.

This work presents a mechanism for closing the gap between two formalisms with different tools and
technologies, different theoretical bases, but united by a common purpose, which is to provide solutions to
real problems through the creation and analysis of abstract models. A process of model transformation
that maps elements from UML SCs to elements of DEVS models is defined. This is achieved by exploiting
the graphic qualities of one, the specificity and rigor of the other, resulting in a simulation model that can
be executed and analyzed by a large number of specific tools. The transformation was defined as a set of
rules by cases and was implemented using QVT-R, a language standardized by the OMG. The UML 2.4.1
metamodel in Ecore format is used and the metamodel of the DEVS formalism, also in Ecore, is defined. The
result of the transformation is a DEVS model in Ecore format that satisfies its corresponding metamodel.
This model provides a sufficient set of information that can be exported and executed by different existing
DEVS simulation tools and engines, in particular PowerDEVS. Furthermore, two examples of application
to analyze the behavior of an automatic banking machine and a control system of an elevator are presented
and analyzed. These case studies show the usefulness of the proposed approach.

This research is part of a comprehensive project that in the future will address the following extensions:
i) development of a direct transformation of UML statecharts with composite states to DEVS models;
ii) incorporation of more elements of UML to the SCs, including their transformations to elements of a
DEVS model; iii) extension of the DEVS formalism with conditional transitions, in order to enable adding
decision elements to the flow of the system; iv) exportation of the resulting Ecore DEVS models to other
simulation tools; v) process evaluation with complex cases studies; vi) construction of a tool that covers
the complete process of transformation, execution and analysis; vii) development of a deeper analysis of the
validation mechanism of transformation; viii) implementation of the model-to-text (M2T) transformation
using the OMG standards, in particular the MOF Model To Text Transformation Language (MOFM2T); and
ix) development of an editor that allows the use of only those elements of the UML SCs that are considered
in the transformation, preserving the semantics and design constraints defined in the latest version of UML.
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