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Montevideo, Uruguay, 11300,
gustun@fing.edu.uy

and

Carlos Luna
Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República,

Montevideo, Uruguay, 11300,
cluna@fing.edu.uy

Abstract

In this work we investigate the security of security-critical applications, i.e. applications
in which a failure may produce consequences that are unacceptable. We consider three
areas: mobile devices, virtualization platforms, and domain name systems.
The Java Micro Edition platform defines the Mobile Information Device Profile (MIDP)
to facilitate the development of applications for mobile devices, like cell phones and PDAs.
We first study and compare formally several variants of the security model specified by
MIDP to access sensitive resources of a mobile device.
Hypervisors allow multiple guest operating systems to run on shared hardware, and offer
a compelling means of improving the security and the flexibility of software systems.
In this work we present a formalization of an idealized model of a hypervisor. We
establish (formally) that the hypervisor ensures strong isolation properties between the
different operating systems, and guarantees that requests from guest operating systems
are eventually attended. We show also that virtualized platforms are transparent, i.e.
a guest operating system cannot distinguish whether it executes alone or together with
other guest operating systems on the platform.
The Domain Name System Security Extensions (DNSSEC) is a suite of specifications
that provides origin authentication and integrity assurance services for DNS data. We
finally introduce a minimalistic specification of a DNSSEC model which provides the
grounds needed to formally state and verify security properties concerning the chain of
trust of the DNSSEC tree.
We develop all our formalizations in the Calculus of Inductive Constructions —formal
language that combines a higher-order logic and a richly-typed functional programming
language— using the Coq proof assistant.
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1 Introduction

There are multiple definitions of the term safety-critical system. In particular, if a system failure could lead
to consequences that are determined to be unacceptable, then the system is safety-critical. In essence, a
system is safety-critical when we depend on it for our welfare. In this paper we provide a detailed account of
the work presented in [1], where we have investigated the security of three areas of safety-critical applications:

1. mobile devices: with increasing capabilities in mobile devices (like cell phones and PDAs) and pos-
terior consumer adoption, these devices have become an integral part of how people perform tasks
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in their works and personal lives. Unfortunately, the benefits of using mobile devices are sometimes
counteracted by security risks;

2. virtualization platforms: hypervisors allow multiple operating systems to run in parallel on the same
hardware, by ensuring isolation between their guest operating systems. In effect, hypervisors are
increasingly used as a means to improve system flexibility and security; unfortunately, they are often
vulnerable to attacks;

3. domain name systems: the domain name systems constitute distributed databases that provide support
to a wide variety of network applications such as electronic mail, WWW, and remote login. The
important and critical role of these systems in software systems and networks makes them a prime
target for (formal) verification.

1.1 Security policies

In general, security (mainly) involves the combination of confidentiality, integrity and availability [2]. Con-
fidentiality can be understood as the prevention of unauthorized disclosure of information; integrity, as the
prevention of unauthorized modification of information; and availability, as the prevention of unauthorized
withholding of information or resources [3]. However, this list is incomplete.

We distinguish between security models and security policies. The security model term could be inter-
preted as the representation of security systems confidentiality, integrity and availability requirements [4].
The more general usage of the term specifies a particular mechanism, such as access control, for enforcing
(in particular) confidentiality, which has been adopted for computer security. Security issues arise in many
different contexts; so many security models have been developed.

A security policy is a specification of the protection goals of a system. This specification determines the
security properties that the system should possess. A security policy defines executions of a system that, for
some reason, are considered unacceptable [5]. For instance, a security policy may affect:

• access control, and restrict the operations that can be performed on elements;

• availability, and restrict processes from denying others the use of a resource;

• information flow, and restrict what can be inferred about objects from observing system behavior.

To formulate a policy is necessary to describe the entities governed by the policy and set the rules that
constitute the policy. This could be done informally in a natural language document. However, approaches
based on natural languages fall short of providing the required security guarantees. Because of the ambiguity
and imprecision of informal specification, it is difficult to verify the correctness of the system. To avoid these
problems, formal security models are considered.

1.2 Security models

Security models play an important role in the design and evaluation of high assurance security systems.
Their importance was already pointed out in the Anderson report [6]. The first model to appear was Bell-
LaPadula [7], in 1973, in response to US Air Force concerns over the confidentiality of data in time-sharing
mainframe systems.

In the last decades, some countries developed specific security evaluation standards [8]. This initiative
opened the path to worldwide mutual recognition of security evaluation results. In this direction, new
Common Criteria (CC) [9] was developed. CC defines seven levels of assurance for security systems (EAL
1–7). In order to obtain a higher assurance than EAL 4, developers require specification of a security model
for security systems and verify security using formal methods. For example, the Gemalto and Trusted Logic
companies obtained the highest level of certification (EAL 7) for their formalization of the security properties
of the JavaCard platform [10, 11, 12], using the Coq proof assistant [13, 14].

State machines are a powerful tool used for modeling many aspects of computing systems. In particular,
they can be employed to specify security models. The basic features of a state machine model are the concepts
of state and state change. A state is a representation of the system under study at a given time, which should
capture those system aspects relevant to our problem. Possible state transitions can be specified by a state
transition function that defines the next state based on the current state and input. An output can also be
produced.

If we want to analize a specific safety property of a system, like security, using a state machine model, we
must first identify all the states that satisfy the property, then we can check if all transitions preserve this
property. If this is the case and if the system starts in an initial state that has this property, then we can
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prove by induction that the property will always be fulfilled. Thus, state machines can be used to enforce a
collection of security policies on a system.

1.3 Reasoning about implementations and models

The increasingly important role of critical components in software systems (as hypervisors in virtual platforms
or access control mechanisms in mobile devices) make them a prime target for formal verification. Indeed,
several projects have set out to formally verify the correctness of critical system implementations, e.g.
[15, 16, 17].

Reasoning about implementations provides the ultimate guarantee that deployed critical systems provide
the expected properties. There are however significant hurdles with this approach, especially if one focuses
on proving security properties rather than functional correctness.

First, the complexity of formally proving non-trivial properties of implementations might be overwhelming
in terms of the effort it requires. Worse, the technology for verifying some classes of security properties may
be underdeveloped. Specifically, liveness properties are generally hard to prove, and there is currently no
established method for verifying, using tools, security properties involving two system executions, a.k.a. 2-
properties, for implementations, making their formal verification on large and complex programs exceedingly
challenging. For instance, operating system isolation property is a 2-safety property [18, 19] that requires
reasoning about two program executions.

Second, many implementation details are orthogonal to the security properties to be established, and
may complicate reasoning without improving the understanding of the essential features for guaranteeing
important properties. Thus, there is a need for complementary approaches where verification is performed
on idealized models that abstract away from the specifics of any particular implementation, and yet provide
a realistic setting in which to explore the security issues that pertain to the realm of those critical systems.

1.4 Formal analysis of security models for critical systems

In this section we introduce the research lines —in the three domains of safety-critical applications listed
above— and contributions of the thesis [1], summarized in this paper.

1.4.1 Mobile devices

Today, even entry-level mobile devices (e.g. cell phones) have access to sensitive personal data, are subscribed
to paid services and can establish connections with external entities. Users of such devices may, in addition,
download and install applications from untrusted sites at their will. This flexibility comes at a cost, since
any security breach may expose sensitive data, prevent the use of the device, or allow applications to perform
actions that incur a charge for the user. It is therefore essential to provide an application security model
that can be relied upon—the slightest vulnerability may imply huge losses due to the scale the technology
has been deployed.

Java Micro Edition (JME) [20] is a version of the Java platform targeted at resource-constrained devices
which comprises two kinds of components: configurations and profiles. A configuration is composed of a
virtual machine and a set of APIs that provide the basic functionality for a particular category of devices.
Profiles further determine the target technology by defining a set of higher level APIs built on top of an
underlying configuration. This two-level architecture enhances portability and enables developers to deliver
applications that run on a wide range of devices with similar capabilities. This work concerns the topmost
level of the architecture which corresponds to the profile that defines the security model we formalize.

The Connected Limited Device Configuration (CLDC) [21] is a JME configuration designed for devices
with slow processors, limited memory and intermittent connectivity. CLDC together with the Mobile Infor-
mation Device Profile (MIDP) provides a complete JME runtime environment tailored for devices like cell
phones and personal data assistants. MIDP defines an application life cycle, a security model and APIs that
offer the functionality required by mobile applications, including networking, user interface, push activation
and persistent local storage. Many mobile device manufacturers have adopted MIDP since the specification
was made available. Nowadays, literally billions of MIDP enabled devices are deployed worldwide and the
market acceptance of the specification is expected to continue to grow steadily.

The security model of MIDP has evolved since it was first introduced. In MIDP 1.0 [22] and MIDP
2.0 [23] the main goal is the protection of sensitive functions provided by the device. In MIDP 3.0 [24] the
protection is extended to the resources of an application, which can be shared with other applications. Some
of these features are incorporated in the Android security model [25, 26, 27] for mobile devices, as we will
see in Section 2.5.
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Contributions

The contributions of the work in this domain are manyfold:

• We describe a formal specification of the MIDP 2.0 security model that provides an abstraction of the
state of a device and security-related events that allows us to reason about the security properties of
the platform where the model is deployed;

• The security of the desktop edition of the Java platform (JSE) relies on two main modules: a Security
Manager and an Access Controller. The Security Manager is responsible for enforcing a security policy
declared to protect sensitive resources; it intercepts sensitive API calls and delivers permission and
access requests to the Access Controller. The Access Controller determines whether the caller has the
necessary rights to access resources. While in the case of the JSE platform, there exists a high-level
specification of the Access Controller module (the basic mechamism is based on stack inspection [28]),
no equivalent formal specification exists for JME. We illustrate the pertinence of the specification of
the MIDP 2.0 security model that has been developed by specifying and proving the correctness of an
access control module for the JME platform;

• The latest version of MIDP, MIDP 3.0, introduces a new dimension in the security model at the appli-
cation level based on the concept of authorizations, allowing delegation of rights between applications.
We extend the formal specification developed for MIDP 2.0 to incorporate the changes introduced in
MIDP 3.0, and show that this extension is conservative, in the sense that it preserves the security
properties we proved for the previous model;

• Besson, Duffay and Jensen [29] put forward an alternative access control model for mobile devices
that generalizes the MIDP model by introducing permissions with multiplicites, extending the way
permissions are granted by users and consumed by applications. One of the main outcomes of the work
we report here is a general framework that sets up the basis for defining, analyzing and comparing
access control models for mobile devices. In particular, this framework subsumes the security model
of MIDP and several variations, including the model defined in [29].

1.4.2 Virtualization platforms

Hypervisors allow several operating systems to coexist on commodity hardware, and provide support for
multiple applications to run seamlessly on the guest operating systems they manage. Moreover, hypervisors
provide a means to guarantee that applications with different security policies can execute securely in parallel,
by ensuring isolation between their guest operating systems. In effect, hypervisors are increasingly used as
a means to improve system flexibility and security, and authors such as [30] already in 2007 predicted that
their use would become ubiquitous in enterprise data centers and cloud computing.

The increasingly important role of hypervisors in software systems makes them a prime target for formal
verification. Indeed, several projects have set out to formally verify the correctness of hypervisor implemen-
tations. One of the most prominent initiatives is the Microsoft Hyper-V verification project [15, 16, 31],
which has made a number of impressive achievements towards the functional verification of the legacy imple-
mentation of the Hyper-V hypervisor, a large software component that combines C and assembly code (about
100 kLOC of C and 5kLOC of assembly). The overarching objective of the formal verification is to establish
that a guest operating system cannot observe any difference between executing through the hypervisor or
directly on the hardware. The other prominent initiative is the L4.verified project [17], which completed the
formal verification of the seL4 microkernel, a general purpose operating system of the L4 family. The main
thrust of the formal verification is to show that an implementation of the microkernel correctly refines an ab-
stract specification. Subsequent machine-checked developments prove that seL4 enforces integrity, authority
confinement [32] and intransitive non-interference [33]. The formalization does not model cache.

Reasoning about implementations provides the final guarantee that deployed hypervisors fulfill the ex-
pected properties. There are however, as mentioned previously, serious difficulties with this approach. For
example, many implementation details are orthogonal to the security properties to be established, and may
complicate reasoning without improving the understanding of the essential features for guaranteeing isolation
among guest operating systems. Therefore, there is a need for complementary approaches where verification
is performed on idealized models that abstract away from the specifics of any particular hypervisor, and yet
provide a realistic environment in which to investigate the security problems that pertain to the realm of
hypervisors.
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Contributions

The work presented here initiates such an approach by developing a minimalistic model of a hypervisor,
and by formally proving that the hypervisor correctly enforces isolation between guest operating systems,
and under mild hypotheses guarantees basic availability properties to guest operating systems. In order to
achieve some reasonable level of tractability, our model is significantly simpler than the setting considered in
the Microsoft Hyper-V verification project, it abstracts away many specifics of memory management such as
shadow page tables (SPTs) and of the underlying hardware and runtime environment such as I/O devices.
Instead, our model focuses on the aspects that are most relevant for isolation properties, namely read and
write resources on machine addresses, and is sufficiently complete to allow us to reason about isolation
properties. Specifically, we show that an operating system can only read and modify memory it owns, and
a non-influence property [34] stating that the behavior of an operating system is not influenced by other
operating systems. In addition, our model allows reasoning about availability; we prove, under reasonable
conditions, that all requests of a guest operating system to the hypervisor are eventually attended, so that
no guest operating system waits indefinitely for a pending request. Overall, our verification effort shows that
the model is adequate to reason about safety properties (read and write isolation), 2-safety properties (OS
isolation), and liveness properties (availability).

Additionally, in this work we present an implementation of a hypervisor in the programming language of
Coq, and a proof that it realizes the axiomatic semantics, on an extended memory model with a formalization
of the cache and Translation Lookaside Buffer (TLB). Although it remains idealized and far from a realistic
hypervisor, the implementation arguably provides a useful mechanism for validating the axiomatic semantics.
The implementation is total, in the sense that it computes for every state and action a new state or an error.
Thus, soundness is proved with respect to an extended axiomatic semantics in which transitions may lead
to errors. An important contribution in this part of the work is a proof that OS isolation remains valid for
executions that may trigger errors.

Finally, we show that virtualized platforms are transparent, i.e. a guest operating system cannot distin-
guish whether it executes alone or together with other guest operating systems on the platform.

1.4.3 Domain name systems

The Domain Name System (DNS) [35, 36] constitutes a distributed database that provides support to a
wide variety of network applications such as electronic mail, WWW, and remote login. The database is
indexed by domain names. A domain name represents a path in a hierarchical tree structure, which in turn
constitutes a domain name space. Each node of this tree is assigned a label, thus, a domain name is built as
a sequence of labels separated by a dot, from a particular node up to the root of the tree.

A distinguishing feature of the design of DNS is that the administration of the system can be distributed
among several (authoritative) name servers. A zone is a contiguous part of the domain name space that
is managed by a set of authoritative name servers. Then, distribution is achieved by delegating part of a
zone administration to a set of delegated sub-zones. DNS is a widely used scalable system, but it was not
conceived with security concerns in mind, as it was designed to be a public database with no intentions to
restrict access to information. Nowadays, a large amount of distributed applications make use of domain
names. Confidence on the working of those aplications depends critically on the use of trusted data: fake
information inside the system has been shown to lead to unexpected and potentially dangerous problems.

Already in the early 90’s serious security flaws were discovered by Bellovin and eventually reported in
[37]. Different types of security issues concerning the working of DNS have been discussed in the literature,
see, for instance, [38, 37, 39, 40, 41, 42]. Identified vulnerabilities of DNS make it possible to launch different
kinds of attacks, namely: cache poisoning, client flooding, dynamic update vulnerability, information leakage
and compromise of the DNS servers authoritative database [43, 37, 44, 45, 46].

Domain Name System Security Extensions (DNSSEC) [47, 48, 49] is a suite of Internet Engineering Task
Force (IETF) specifications for securing information provided by DNS. More specifically, this suite specifies a
set of extensions to DNS which are oriented to provide mechanisms that support authentication and integrity
of DNS data but not its availability or confidentiality. In particular, the security extensions were designed
to protect resolvers from forged DNS data, such as the one generated by DNS cache poisoning [45, 45, 46],
by digitally signing DNS data using public-key cryptography. The keys used to sign the information are
authenticated via a chain of trust, starting with a set of verified public keys that belong to the DNS root
zone, which is the trusted third party.

The DNSSEC standards were finally released in 2005 and a number of testbeds, pilot deployments, and
services have been rolled out in the last few years [50, 51, 52, 53, 54, 55, 56]. In particular, the main objective
of the OpenDNSSEC project [55] is to develop an open source software that manages the security of domain
names on the Internet.
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Contributions

The important and critical role of DNSSEC in software systems and networks makes it a prime target for
formal analysis. This work presents the development of a minimalistic specification of a DNSSEC model,
and yet provides a realistic setting in which to explore the security issues that pertain to the realm of DNS.
The specification puts forward an abstract formulation of the behavior of the protocol and the corresponding
security-related events, where security goals, such as the prevention of cache poisoning attacks, can be given
a formal treatment. In particular, the formal model provides the grounds needed to formally state and verify
security properties concerning the chain of trust generated along the DNSSEC tree.

1.5 Formal language used

The Coq proof assistant [13, 14] is a free open source software that provides a (dependently typed) func-
tional programming language and a reasoning framework based on higher order logic to perform proofs of
programs. Coq allows developing mathematical facts. This includes defining objects (sets, lists, functions,
programs); making statements (using basic predicates, logical connectives and quantifiers); and finally writ-
ing proofs. The Coq environment supports advanced notations, proof search and automation, and modular
developments. It also provides program extraction towards languages like Ocaml and Haskell for execu-
tion of (certified) algorithms [57]. These features are very useful to formalize and reason about complex
specifications and programs.

As examples of its applicability, Coq has been used as a framework for formalizing programming envi-
ronments and designing special platforms for software verification: Leroy and others developed in Coq a
certified optimizing compiler for a large subset of the C programming language [58]; Barthe and others used
Coq to develop Certicrypt, an environment of formal proofs for computational cryptography [59]. Also, as
mentioned previously, the Gemalto and Trusted Logic companies obtained the level CC EAL 7 of certification
for their formalization, developed in Coq, of the security properties of the JavaCard platform.

We developed our specifications in the Calculus of Inductive Constructions (CIC) [60, 61] using Coq.
The CIC is a type theory, in brief, a higher order logic in which the individuals are classified into a hierarchy
of types. The types work very much as in strongly typed functional programming languages which means
that there are basic elementary types, types defined by induction, like sequences and trees, and function
types. An inductive type is defined by its constructors and its elements are obtained as finite combinations
of these constructors. Data types are called “Sets” in the CIC (in Coq). When the requirement of finiteness
is removed we obtain the possibility of defining infinite structures, called coinductive types, like infinite
sequences. On top of this, a higher-order logic is available which serves to predicate on the various data
types. The interpretation of the propositions is constructive, i.e. a proposition is defined by specifying what
a proof of it is and a proposition is true if and only if a proof of it has been constructed. The type of
propositions is called Prop.

1.6 Document outline

The remainder of this document is organized as follows. In Section 2 we study and compare several variants
of the security model specified by MIDP to access sensitive resources of a device. In Section 3 we present
the formalization of an idealized model of a hypervisor. We establish (formally) that the hypervisor ensures
strong isolation properties between the different operating systems, and guarantees that requests from guest
operating systems are eventually attended. We then develop a certified implementation of a hypervisor —in
the programming language of Coq— on an extended memory model with a formalization of the cache and
TLB, and we analyze also security properties for the extended model with execution errors. In Section 4 we
present a minimalistic specification of a DNSSEC model which provides the grounds needed to formally state
and verify security properties concerning the chain of trust of the DNSSEC tree. Finally, the conclusions of
the research are formulated in Section 5.

2 Formal analysis of security models for mobile devices

JME technology provides integral mechanisms that guarantee security properties for mobile devices, defin-
ing a security model which restricts access to sensitive functions for badly written or maliciously written
applications. The architecture of JME is based upon two layers above the virtual machine: the configu-
ration layer and the profile layer. The Connected Limited Device Configuration (CLDC) is a minimum
set of class libraries to be used in devices with low processors, limited working memory and capacity to
establish low broad band communications. This configuration is complemented with the Mobile Information
Device Profile (MIDP) to obtain a run-time environment suitable to mobile devices such as mobile phones,
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personal digital assistants and pagers. The profile also defines an application life cycle, a security model
and APIs that provide the functionality required by mobile applications, such as networking, user interface,
push activation, and local persistent storage.

This section builds upon a number of previously published papers [62, 63, 64, 65]. The rest of the
section is organized as follows: Section 2.1 presents the MIDP security model; Section 2.2 overviews the
formalization of the MIDP 2.0 security model, presents some of its verified properties, and proposes a
methodology to refine the specification and obtain an executable prototype. Furthermore, briefly describes
a high level formal specification of an access controller for JME-MIDP 2.0 and an algorithm that has been
proved correct with respect to that specification. Section 2.3 develops extensions of the formal specification
presented in Section 2.2 concerning the changes introduced by MIDP 3.0, and puts forward some weaknesses
of the security mechanisms introduced in that (latest) version of the profile. Section 2.4 introduces a
framework suitable for defining, analyzing, and comparing the access control policies that can be enforced
by (variants of) the security models considered in this work. Finally, Section 2.5 discusses related work
and Section 2.6 presents conclusions and future work. The full development is available for download at
http://www.fing.edu.uy/inco/grupos/gsi/sources/midp.

2.1 MIDP security model

A security model at the platform level, based on sets of permissions to access the functions of the device,
is defined in the first version of MIDP (version 1.0) and refined in the second version (version 2.0). In the
third version (version 3.0) a new dimension to the model is introduced: the security at the application level.
The security model at the application level is based on authorizations, so that an application can access the
resources shared by another application.

In this section we describe the two security levels considered by MIDP in its different versions.

2.1.1 Security at the platform level

In the original MIDP 1.0 specification, any application not installed by the device manufacturer or a service
provider runs in a sandbox that prohibits access to security sensitive APIs or functions of the device (e.g.
push activation). Although this sandbox security model effectively prevents any rogue application from
jeopardizing the security of the device, it is excessively restrictive and does not allow many useful applications
to be deployed after issuance.

In contrast, MIDP 2.0 introduces a new security model at the platform level based on the concept
of protection domain. A protection domain specifies a set of permissions and the modes in which those
permissions can be granted to applications bound to the domain. Each API or function on the device may
define permissions in order to prevent it from being used without authorization.

Permissions can be either granted in an unconditional way, and used without requiring any intervention
from the user, or in a conditional way, specifying the frequency with which user interaction will be required
to renew the permission. More concretely, for each permission a protection domain specifies one of three
possible modes; blanket : permission is granted for the whole application life cycle; session: permission is
granted until the application is closed; and oneshot : permission is granted for one single use.

The set of permissions effectively granted to an application is determined by the permissions declared
in its descriptor, the protection domain it is bound to, and the answers received from the user to previous
requests. A permission is granted to an application if it is declared in its application descriptor and either
its protection domain unconditionally grants the permission, or the user was previously asked to grant the
permission and its authorization remains valid.

The MIDP 2.0 model distinguishes between untrusted and trusted applications. An untrusted application
is one whose origin and integrity can not be determined. These applications, also called unsigned, are bound
to a protection domain with permissions equivalent to those in a MIDP 1.0 sandbox. On the other hand,
a trusted application is identified and verified by means of cryptographic signatures and certificates based
on the X.509 Public Key Infrastructure [66]. These signed applications can be bound to more specific and
permissive protection domains. Thus, this model enables applications developed by trusted third parties to
be downloaded and installed after issuance of the device without compromising its security.

2.1.2 Security at the application level

In MIDP 3.0 applications which are bound to different protection domains may share data, components,
and events. The Record Management System (RMS) API specifies methods that make it possible for record
stores from one application to be shared with other applications. With the Inter-MIDlet Communication
(IMC) protocol an application can access a shareable component from another one running in a different
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MIDlet-Jar-URL: http://www.foo.com/foo.jar

MIDlet-Jar-Size: 90210

MIDlet-Name: Organizer

MIDlet-Vendor: Foo Software

MIDlet-Version: 2.1

MIDlet-1: Alarm, alarm.png, organizer.Alarm

MIDlet-2: Agenda, agenda.png, organizer.Agenda

MIDlet-Permissions: javax.microedition.io.Connector.

socket, javax.microedition.io.PushRegistry

MIDlet-Permissions-Opt: javax.microedition.io.

Connector.http

MicroEdition-Configuration: CLDC-1.1

MicroEdition-Profile: MIDP-2.0

MIDlet-Certificate-1-1: MIICgDCCAekCBEH11wYwDQ...

MIDlet-Jar-RSA-SHA1: pYRJ8Qlu5ITBLxcAUzYXDKnmg...

Figure 1: A typical MIDlet descriptor, specifying the required and optional permission of suite for a suite
with two applications

execution environment. Applications that register listeners or register themselves will only be launched in
response to events triggered by authorized applications.

By restricting access to shareable resources of an application, such as data, runtime IMC communication
and events, the MIDP 3.0 security model introduces a new dimension at the application level. This new
dimension introduces the concept of access authorization, which enables an application to individually control
access requests from other applications.

An application that intends to restrict access to its shareable resources must declare access authorizations
in its application descriptor. There are four different types of access authorization declarations involving one
or more of the following application credentials: domain name, vendor name, and signing certificates. These
four types apply respectively to: applications bound to a specific domain; applications from a certain vendor
with a certified signature; applications from a certain vendor but whithout a certified signature; applications
signed under a given certificate.

When an application tries to access the shareable resources of another application, its credentials are
compared with those required by the access authorization declaration. If there is a mismatch the application
level access is denied.

2.2 Formally verifying security properties of MIDP 2.0

In this section we overview the formalization of the MIDP 2.0 security model presented in [62].

2.2.1 Applications

In MIDP, applications (usually called MIDlets) are packaged and distributed as suites. A suite may contain
one or more MIDlets and is distributed as two files, an application descriptor file and an archive file that
contains the actual Java classes and resources. A suite that uses protected APIs or functions should declare
the corresponding permissions in its descriptor either as required for its correct functioning or as optional.
The content of a typical MIDlet descriptor is shown in Figure 1.

2.2.2 Device state

To reason about the MIDP 2.0 security model most details of the device state may be abstracted; it is
sufficient to specify the set of installed suites, the permissions granted or revoked to them and the currently
active suite in case there is one. The active suite, and the permissions granted or revoked to it for the session
are grouped into a structure within the state.

We define a notion of valid state, through a predicate (V alid) on states, that captures essential properties
of the platform. For instance, a property states that a MIDlet suite can be installed and bound to a protection
domain only if the set of permissions declared as required in its descriptor are a subset of the permissions
the domain offers (with or without user authorization) [62].

2.2.3 Events

We define a set Event for those events that are relevant to our abstraction of the device state (Table 1). The
user may be presented with the choice between accepting or refusing an authorization request, specifying
the period of time their choice remains valid.
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Table 1: Security-related events

Name Description
start Start of session
terminate End of session
request Permission request
install MIDlet suite installation
remove MIDlet suite removal

The behaviour of the events is specified by their pre- and postconditions given by the predicates Pre and
Post respectively. Preconditions are defined in terms of the device state while postconditions are defined in
terms of the before and after states and an optional response which is only meaningful for the request event
and indicates whether the requested operation is authorized [62].

2.2.4 One-step execution

The behavioural specification of the execution of an event is given by the ↪→ relation with the following
introduction rules:

¬Pre s e

s ↪
e/None−−−−−→ s

npre Pre s e Post s s′ r e

s ↪
e/r−−→ s′

pre

Whenever an event occurs for which the precondition does not hold, the state must remain unchanged.
Otherwise, the state may change in such a way that the event postcondition is established. The notation

s ↪
e/r−−→ s′ may be read as “the execution of the event e in state s results in a new state s′ and produces a

response r”.

2.2.5 Sessions

A session is the period of time spanning from a successful start event to a terminate event, in which a
single suite remains active. A session for a suite with identifier id is determined by an initial state s0 and a
sequence of steps 〈ei, si, ri〉 (i = 1, . . . , n) such that the following conditions hold,

• e1 = start id ;

• Pre s0 e1 ;

• ∀ i ∈ {2, . . . , n− 1}, ei 6= terminate ;

• en = terminate ;

• ∀ i ∈ {1, . . . , n}, si−1 ↪ei/ri−−−→ si .

2.2.6 Verification of security properties

This section is devoted to mention some relevant security properties of the model [1].
We call one-step invariant a property that remains true after the execution of every event if it is true

before. We prove that the validity of the device state is a one-step invariant of our specification: for any

s s′ : State, r : Response and e : Event, if V alid s and s ↪
e/r−−→ s′ hold, then V alid s′ also holds.

We call session invariant a step property that holds for the rest of a session once it is established in a
step. We prove that state validity is a session invariant.

Perhaps a more interesting property is a guarantee of the proper enforcement of revocation. We prove
that once a permission is revoked by the user for the rest of a session, any further request for the same
permission in the same session is refused [62].

2.2.7 Executable specification

In the formalization described previously it has been specified the behaviour of events implicitly as a binary
relation on states instead of explicitly as a state transformer. Moreover, the described formalization is
higher-order because, for instance, predicates are used to represent part of the device state and the transition
semantics of events is given as a relation on states. The most evident consequence of this choice is that the
resulting specification is not executable. What is more, the program extraction mechanism provided by Coq
to extract programs from specifications cannot be used in this case. However, had we constructed a more
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concrete specification at first, we would have had to take arbitrary design decisions from the beginning,
unnecessarily restricting the allowable implementations and complicating the verification of properties of the
security model.

We show in [62] that it is feasible to obtain an executable specification from our abstract specification.
The methodology we propose produces also a proof that the former is a refinement of the latter, thus
guaranteeing soundness of the entire process. The methodology is inspired by the work of Spivey [67] on
operation and data refinement, and the more comprehensive works of Back and von Wright [68] and Morgan
[69] on refinement calculus.

In [63], we developed a high level formal specification of an Access Control module (AC) of JME - MIDP
2.0. In particular, a certified algorithm that satisfies the proposed specification of an AC is described. In this
algorithm, when a method invokes a protected function or API the access controller checks that the method
has the corresponding permission and that the response from the user, if required, permits the access. If
this checkup is successful, the access is granted; otherwise, the action is denied and a security exception is
launched.

2.3 Formally verifying security properties of MIDP 3.0

Two important enhancements in MIDP 3.0 (informal) specification are Inter-MIDlet Communication (IMC)
and Events. In particular, the IMC protocol enables MIDP 3.0 applications to communicate and collaborate
among themselves. MIDP 3.0 provides, in particular, the following capabilities: i) enable and specify proper
behavior for MIDlets, such as: allow multiple concurrent MIDlets, and allow inter-MIDlet communications
(direct communication, and indirect using events); ii) enable shared libraries for MIDlets; and iii) increase
functionality in all areas, including: secure RMS stores, removable/remote RMS stores, IPv6, and multiple
network interfaces per device.

In [64], the formalization described in Section 2.2 is extended so as to model security at the application
level, introduced in Section 2.1. The extended device state (with allowed and denied access authorizations),
a new condition for state validity, and the authorization event (that models the access authorization re-
quest from a MIDlet suite to the shared resources of the active suite) are presented. The validity of the
security properties already proved for MIDP 2.0, and the new properties related with MIDP 3.0 are exam-
ined. On the other hand, an algorithm for the access authorization of applications was developed and its
correctness proven. Additionally, certified algorithms have been developed for application installation and
communication between applications (IMC protocol) in MIDP 3.0 [70, 71].

Weaknesses of the security mechanisms of MIDP 3.0

MIDP 3.0 allows component-based programming. An application can access a shareable component running
in a different execution environment through thin client APIs, like the IMC protocol previously mentioned.
The shareable component handles requests from applications following the authorization-based security
policy. This policy considers authorization access declarations and the credentials shown by the potential
client applications, to grant or deny access.

The platform and application security levels were conceived as independent and complementary frame-
works, however the (unsafe) interplay of some of the defined security mechanisms may lead to provoke
(unexpected) violations to security policies. In what follows some potential weaknesses of MIDP 3.0 are put
forward and a plausible (unsecure) scenario is discussed [1].

In the first place, while at the platform level permissions are defined for each sensitive function of
the device, at the application level access authorization declarations do not distinguish between different
shareable components from the same MIDlet suite. In this way, once its credentials have been validated,
a client application may have access to all the components shared by another application. In the second
place, despite of the fact that permissions are granted in various modes (oneshot, session, blanket), access
authorization is allowed exclusively in a permanent manner. Finally, at the platform level the bounding of
an application to a protection domain is based on the X.509 Public Key Infrastructure. At the application
level the same infrastructure is used to verify the integrity and authenticity of applications, except for one
case (when the vendor name is used as the unique credential needed to grant access authorization).

Considering the previously established elements, the following scenario is feasible. Let A be an application
which is bound to a certain protection domain and having a shareable component. The shareable component
uses a sensitive function f of the device (granted by the protection domain) in order to implement its service.
This application A declares access authorizations for unsigned applications from certain vendor V . Let B be
an unsigned application which is bound to a different protection domain and that has been denied permission
to access the sensitive function f . Now, if the application B is capable of providing just the vendor name V
as credential, it would be granted permanent access to the shareable component. Thereby, B shall be able
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to access the sensitive function f of the device. This is a clear example of an unwanted behavior, where a
sensitive function is accessed by an application without its permission.

Two observations are drawn from the previous scenario. On the one hand, a stronger access authorization
declaration is necessary. If declarations based only on the vendor name are left aside, all the remaining ones
demand the integrity and authenticity of signatures and certificates. This will result in a more reliable
security model. On the other hand, to avoid circumventing the security at the platform level two aspects
should be considered. The first one is to declare the permissions of the protection domain exposed by a
shareable component. The second aspect is to extend the security policy by conceding those permissions to
sensitive functions when being accessed by applications through shareable resources.

2.4 A framework for defining and comparing access control policies

In [29], a security model for interactive mobile devices is put forward which can be grasped as an exten-
sion of that of MIDP. The work presented in this section, based on [65, 1], has focused on developing a
formal model for studying, in particular, interactive user querying mechanisms for permission granting for
application execution on mobile devices. Like in the MIDP case, the notion of permission is central to this
model. A generalisation of the one-shot permission described above is proposed that consists in associating
a multiplicity to a permission, which states how many times that permission can be used.

The proposed model has two basic constructs for manipulating permissions: grant and consume. The
grant construct models the interactive querying of the user, asking whether he grants a particular permission
with a certain multiplicity. The consume construct models the access to a sensitive function which is protected
by the security police, and therefore requires (consumes) permissions.

A semantics of the model constructs is proposed as well as a logic for reasoning on properties of the
execution flow of programs using those constructs. The basic security property the logic allows one to prove
is that a program will never attempt to access a resource for which it does not have a permission. The
authors also provide a static analysis that makes it possible to verify that a particular combination of the
grant-consume constructs does not violate that security property. For developing that kind of analysis the
constructs are integrated into a program model based on control-flow graphs. This model has also been used
in previous work on modelling access control for Java, see for instance [72, 73].

One of the objectives of the work reported in [65, 1], has been to build a framework which would provide
a formal setting to define the permission models defined by MIDP and the one presented in [29] (and variants
of it) in an uniform way and to perform a formal analysis and comparison of those models. This framework,
which is formally defined using the CIC, adopts, with variations, most of the security and programming
constructions defined in [29]. In particular it has been modified so as to be parameterized by permission
granting policies, while in the original work this relation is fixed.

2.5 Related work

Some effort has been put into the evaluation of the security model for MIDP 2.0; Kolsi and Virtanen [74] and
Debbabi et al. [75] analyze the application security model, spot vulnerabilities in various implementations
and suggest improvements to the specification. Although these works report on the detection of security
holes, they do not intend to prove their absence. The formalizations we overview in this article, however,
provide a formal basis for the verification of the model and the understanding of its intricacies.

Various articles analyze access control in Java and C], see for instance [73, 76, 72, 77]. All these works
have mainly focused on the stack inspection mechanism and the notion of granting permissions to code
through privileged method calls. The access control check procedures in MIDP do not involve a stack walk.
While in the case of the JSE platform there exists a high-level specification of the access controller module
(the basic mechanism is based on stack inspection [28]), no equivalent specification exists for JME. In this
work, we illustrate the pertinence of the specification of the MIDP (version 2.0) security model that has
been developed by specifying and proving the correctness of an access control module for the JME platform.

Besson, Duffay and Jensen [29, 78] have put forward an alternative access control model for mobile
devices that generalizes the MIDP model by introducing permissions with multiplicites, extending the way
permissions are granted by users and consumed by applications. One of the main outcomes of the work
we report in the present paper, based on [65, 1], is a general framework that sets up the basis for defining,
analyzing and comparing access control models for mobile devices. In particular, this framework subsumes
the security model of MIDP and several variations, including the model defined in [29, 78].

Android [25] is an open platform for mobile devices developed by the Open Handset Alliance led by
Google, Inc. Focusing on security, Android combines two levels, Linux system and application framework
level, of enforcement [26, 27]. At the Linux system level, Android is a multi-process system. The Android
security model resembles a multi-user server, rather than the sandbox model found on JME platform. At
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the application framework level, Android provides fine control through Inter-Component Communication
reference monitor, that provides Mandatory Access Control enforcement on how applications access the
components. There have been several analysis done on the security of the Android system, but few of them
pay attention to the formal aspect of the permission enforcing framework. In [79], the authors propose an
entity-relationship model for the Android permission scheme [80]. This work —the first formalization of
the permission scheme which is enforced by the Android framework— builds a state-based formal model
and provides a behavioral specification, based in turn on the specification developed in [62]. The abstract
operation set considered in [79] does not include permission request/revoke operations presents in MIDP. In
[81], Chaudhuri presents a core language to describe Android applications, and to reason about their dataflow
security properties. The paper introduces a type system for security in this language. The system exploits
the access control mechanisms already provided by Android. Furthermore, [26] reports a logic-based tool,
Kirin, for determining whether the permissions declared by an application satisfy a certain safety invariant.
A formal comparison between both JME-MIDP and Android security models is an interesting further work.
However, we develop a first informal analysis in the technical report [82], which also details the Android
security model and analyzes some of the more recent works that formalize different aspects of this model
[83].

Language-based access control has been investigated for some idealised program models, see e.g. [84, 85,
86]. These works make use of static analysis for verifying that resources are accessed according to access
control policies specified and that no security violations will occur at run-time. They do not study, though,
specific language primitives for implementing particular access control models.

2.6 Summary and future work

We have provided the first verifiable formalization of the MIDP 2.0 security model, according to [62], and have
also constructed the proofs of several important properties that should be satisfied by any implementation
that fulfills its specification. Our formalization is detailed enough to study how other mechanisms interact
with the security model, for instance, the interference between the security rules that control access to the
device resources, and mechanisms such as application installation. We have also proposed a refinement
methodology that might be used to obtain a sound executable prototype of the security model.

Moreover, a high-level formalization of the JME-MIDP 2.0 Access Control module also has been devel-
oped. This specification assumes that the security policy of the device is static, that there exists at most
one active suite in every state of the device, and that all the methods of a suite share the same protection
domain. The obtained model, however, can be easily extended so as to consider multiple active suites as
well as to specify a finer relation allowing to express that a method is bound to a protection domain, and
then that two different methods of the same suite may be bound to different protection domains. With the
objective of obtaining a certified executable algorithm of the access controller, the high-level specification
has been refined into a executable equivalent one, and an algorithm has been constructed that is proved to
satisfy that latter specification. The formal specification and the obtained derived code of the algorithm
contribute to the understanding of the working of such an important component of the security model of
that platform.

Additionally, it has also been presented an extension of the formalization of MIDP 2.0 security model
which considers the changes introduced in version 3.0 of MIDP. In particular, a new dimension of security
is represented: the security at the application level. This extended specification preserves the security
properties verified for MIDP 2.0 and enables the research of new security properties for MIDP 3.0. In this
way, the formalization is updated keeping its validity as a useful tool to analyze the security model of MIDP
at both, the platform and the application level. Some weaknesses introduced by the informal specification
of version of MIDP 3.0 are also discussed, in particular those regarding the interplaying of the mechanisms
for enforcing security at the application and at the platform level. They reflect potential weaknesses of
implementations which satisfy the informal specification [24].

Finally, we have also built a framework that provides a uniform setting to define and formally analyze
access control models which incorporate interactive permission requesting/granting mechanisms. In particu-
lar, the work presented here has focused on two distinguished permission models: the one defined by version
2.0 (and 3.0) of MIDP and the one defined by Besson et al. in [29]. A characterization of both models in
terms of a formal definition of grant policy has also been provided [1]. Another kind of permission policies
can also be expressed in the framework. In particular, it can be adapted to introduce a notion of permis-
sion revocation, a permission mode not considered in MIDP. A revoke can be modeled in the permission
overwriting approach, for instance, by assigning a zero multiplicity to a resource type. In the accumulative
approach, revocation might be modeled using negative multiplicities. To introduce revocations, in turn,
enables, without further changes to the framework, to model a notion of permission scope. One such scope
would be grasped as the session interval delimited by an activation and a revocation of that permission.
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The formal development is about 20kLOC of Coq.
Future work is the study and specification, using the formal setting provided by the framework, of

algorithms for enforcing the security policies derived from different sort of permission models to control the
access to sensitive resources of the devices. Moreover, one main objective is to extend the framework so
as to be able to construct certified prototypes from the formal definitions of those algorithms. Finally, an
exhaustive formal comparison between both JME-MIDP and Android security models is proposed as further
work. We have begun developing a formal specification of the Android security model in Coq, considering
[82, 87, 88, 89, 90, 91, 92], which focuses on the analysis of the permission system in general, and in the
scheme of permission re-delegation, in particular [93].

3 Formally verifying security properties in an idealized model of virtualization

3.1 Introduction

Virtualization is a prominent technology that allows high-integrity, safety-critical, systems and untrusted,
non-critical, systems to coexist securely on the same platform and efficiently share its resources. To achieve
the strong security guarantees requested by these application scenarios, virtualization platforms impose a
strict control on the interactions between their guest systems. While this control theoretically guarantees
isolation between guest systems, implementation errors and side-channels often lead to breaches of confi-
dentiality. This allows a malicious guest system to obtain secret information, such as a cryptographic key,
about another guest system.

Over the last few years, there have been significant efforts to prove that virtualization platforms deliver
the expected, strong, isolation properties between operating systems. The most prominent efforts in this
direction are within the Hyper-V [15, 16] and L4.verified [17] projects, which aim to derive strong guarantees
for concrete implementations: more specifically, Murray et al [33] recently presented a machine-checked
information flow security proof for the seL4 microkernel. In comparison with the Hyper-V and L4.verified
projects, our proofs are based on an axiomatization of the semantics of a hypervisor, and abstract away many
details from the implementation; on the other hand, our model integrates caches and Translation Lookaside
Buffers (TLBs), two security relevant components that are not considered in these works.

There are three important isolation properties for virtualization platforms. On the one hand, read and
write isolation respectively state that guest operating systems cannot read and write on memory that they
do not own. On the other hand, OS isolation states that the behavior of a guest operating system does
not depend on the previous behavior and does not affect the future behavior of other operating systems. In
contrast to read and write isolation, which are safety properties and can be proved with deductive verification
methods, OS isolation is a 2-safety property [18, 19] that requires reasoning about two program executions.
Unfortunately, the technology for verifying 2-safety properties is not fully mature, making their formal
verification on large and complex programs exceedingly challenging.

3.1.1 A primer on virtualization

This section provides a primer on virtualization, focusing on the elements that are most relevant for our
formal model.

Virtualization is a technique used to run on the same physical machine multiple operating systems, called
guest operating systems. The hypervisor, or Virtual Machine Monitor [94], is a thin layer of software that
manages the shared resources (e.g. CPU, system memory, I/O devices). It allows guest operating systems
to access these resources by providing them an abstraction of the physical machine on which they run. One
of the most important features of a virtualization platform is that its OSs run isolated from one another.
In order to guarantee isolation and to keep control of the platform, a hypervisor makes use of the different
execution modes of a modern CPU: the hypervisor itself and trusted guest OSs run in supervisor mode, in
which all CPU instructions are available; while untrusted guest operating systems will run in user mode in
which privileged instructions cannot be executed.

Historically there have been two different styles of virtualization: full virtualization and paravirtualization.
In the first one, each virtual machine is an exact duplicate of the underlying hardware, making it possible
to run unmodified operating systems on top of it. When an attempt to execute a privileged instruction by
the OS is detected the hardware raises a trap that is captured by the hypervisor and then it emulates the
instruction behavior. In the paravirtualization approach, each virtual machine is a simplified version of the
physical architecture. The guest (untrusted) operating systems must then be modified to run in user CPU
mode, changing privileged instructions to hypercalls, i.e. calls to the hypervisor. A hypercall interface allows
OSs to perform a synchronous software trap into the hypervisor to perform a privileged operation, analogous
to the use of system calls in conventional operating systems. An example use of a hypercall is to request a
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set of page table updates, in which the hypervisor validates and applies a list of updates, returning control
to the calling OS when this is completed.

In this work, we focus on the memory management policy of a paravirtualization style hypervisor, based
on the Xen virtualization platform [95]. Several features of the platform are not yet modeled (e.g. I/O
devices, interruption system, or the possibility to execute on multi-cores), and are left as future work.

3.1.2 Contents of the rest of the section

This section builds upon the previously published papers [96, 97]. In Section 3.2 we briefly present our formal
model. Isolation properties are considered in Section 3.3, whereas availability is discussed in Section 3.4.
Section 3.5 presents an extension of the memory model with cache and TLB. Section 3.6 describes the
executable semantics of the hypervisor. In Section 3.7 we discuss the isolation theorems for the extended
model with execution errors and a proof of transparency. Finally, Section 3.8 considers related work and
Section 3.9 summarizes the conclusions and future work. The formal development is available at http:

//www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php.

3.2 The model

In this section we briefly present and discuss some aspects of the formal specification of the idealized model.
We first introduce the set of states, and the set of actions; the latter include both operations of the hypervisor
and of the guest operating systems. The semantics of each action is specified by a precondition and a
postcondition. Then, we introduce a notion of valid state and show that state validity is preserved by
execution. Finally, we define execution traces.

3.2.1 Informal overview of the memory model

The most important component of the state is the memory model, which we proceed to describe. As illus-
trated in Figure 2, the memory model involves three types of addressing modes and two address mappings:
the machine address is the real machine memory; the physical memory is used by the guest OS, and the
virtual memory is used by the applications running on an operating system. The virtual memory is the one
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Figure 2: Memory model of the platform

used by applications running on OSs. Each OS stores a partial mapping of virtual addresses to machine ad-
dresses. This will allow us to represent the translation of the virtual addresses of the applications executing
in the OS into real hardware addresses. Moreover, each OS has a designated portion of its virtual address
space (usually abbreviated VAS) that is reserved for the hypervisor to attend hypercalls. We say that a
virtual address va is accessible by the OS if it belongs to the virtual address space of the OS which is not
reserved for the hypervisor. We denote the type of virtual addresses by vadd.

The physical memory is the one addressed by the kernel of the guest OS. In the Xen [95] platform, this
is the type of addresses that the hypervisor exposes to the domains (the untrusted guest OSs in our model).
The type of physical addresses is written padd.

The machine memory is the real machine memory. A mechanism of page classification was introduced
in order to cover concepts from certain virtualization platforms, in particular Xen. The model considers
that each machine address that appears in a memory mapping corresponds to a memory page. Each page
has at most one unique owner, a particular OS or the hypervisor, and is classified either as a data page
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read va A guest OS reads virtual address va.
write va val A guest OS writes value val in virtual address

va.
switch o The hypervisor sets o to be the active OS.
hcall c An untrusted OS requires privileged service c

to be executed by the hypervisor.
new o va pa The hypervisor adds (on behalf of the OS o)

a new ordered pair (mapping virtual address
va to the machine address ma) to the current
memory mapping of the OS o, where pa trans-
lates to ma for o.

chmod The hypervisor changes the execution mode
from supervisor to user mode, if the active OS
is untrusted, and gives to it the execution con-
trol.

pin o pa t The memory page that corresponds to physical
address pa (for untrusted OS o) is registered
and classified with type t.

Table 2: Platform actions

with read/write (RW) access or as a page table, where the mappings between virtual and machine addresses
reside. It is required to register (and classify) a page before being able to use or map it. The type of machine
addresses is written madd.

As to the mappings, each OS has an associated collection of page tables (one for each application executing
on the OS) that map virtual addresses into machine addresses. When executed, the applications use virtual
addresses, therefore on context switch the current page table of the OS must change so that the currently
executing application may be able to refer to its own address space. Neither applications nor untrusted OSs
have permission to read or write page tables, because these actions can only be performed in supervisor
mode. Every memory address accessed by an OS needs to be associated to a virtual address. The model
must guarantee the correctness of those mappings, namely, that every machine address mapped in a page
table of an OS is owned by it.

The mapping that associates, for each OS, machine addresses to physical ones is, in our model, maintained
by the hypervisor. This mapping might be treated differently by each specific virtualization platform. There
are platforms in which this mapping is public and the OS is allowed to manage machine addresses. The
physical-to-machine address mapping is modified by the actions pin and unpin [1].

3.2.2 Formalizing states

The states of the platform are modeled by a record (State) with six components: the component active os
indicates which is the active operating system, and the components aos exec mode and aos activity the
corresponding execution and processor mode. oss stores the information of the guest operating systems of
the platform. Finally, the components hypervisor and memory are the mappings used to formalize the
memory model described previously.

We define a notion of valid state (valid state) that captures essential properties of the platform. For
instance, two properties states that: all page tables of an OS o map accessible virtual addresses to pages
owned by o and not accessible ones to pages owned by the hypervisor; and any machine address ma which
is associated to a virtual address in a page table has a corresponding pre-image, which is a physical address,
in the hypervisor mapping.

3.2.3 Actions and executions

Table 2 summarises a small subset –due to space restrictions– of the actions specified in the model [1], and
their effects. Actions can be classified as follows:

• hypervisor calls new, delete, pin, unpin and lswitch;

• change of the active OS by the hypervisor (switch);

• access, from an OS or the hypervisor, to memory pages (read and write);

• update of page tables by the hypervisor on demand of an untrusted OS or by a trusted OS directly
(new and delete);
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• changes of the execution mode (chmod, ret ctrl);

• changes in the hypervisor memory mapping (pin and unpin), which are performed by the hypervisor
on demand of an untrusted OS or by a trusted OS directly. These actions model (de)allocation of
resources.

The behaviour of actions is specified by a precondition Pre and by a postcondition Post. The execution
of an action is specified by the ↪→ relation:

valid state(s) Pre s a Post s a s′

s ↪
a−→ s′

Whenever an action occurs for which the precondition holds, the (valid) state may change in such a way
that the action postcondition is established. The notation s ↪

a−→ s′ may be read as the execution of the action
a in a valid state s results in a new state s′.

One-step execution preserves valid states. Platform state invariants, such as state validity, are useful to
analyze other relevant properties of the model. In particular, the results presented in this work are obtained
from valid states of the platform.

Isolation properties are eventually expressed on execution traces, rather than execution steps; likewise,
availability properties are formalized as fairness properties stating that something good will eventually
happen in an execution traces. Thus, our formalization includes a definition of execution traces and proof
principles to reason about them. Informally, an execution trace is defined as a stream (an infinite list) of
states that are related by the transition relation ↪→, i.e. an object of the form

s0 ↪
a0−→ s1 ↪

a1−→ s2 ↪
a2−→ s3 . . .

such that every execution step si ↪
ai−→ si+1 is valid.

3.3 Isolation properties

We formally establish that the hypervisor enforces strong isolation properties: an operating system can
only read and modify memory that it owns, and its behavior is independent of the state of other operating
systems. The properties are established for a single step of execution, and then extended to traces.

3.3.1 Read isolation

Read isolation captures the intuition that no OS can read memory that does not belong to it. Formally,
read isolation states that the execution of a read va action requires that va is mapped to a machine address
ma that belongs to the active OS current memory mapping, and that is owned by the active OS.

3.3.2 Write Isolation

Write isolation captures the intuition that an OS cannot modify memory that it does not own. Formally,
write isolation states that, unless the hypervisor is running, the execution of any action will at most modify
memory pages owned by the active OS or it will allocate a new page for that OS.

3.3.3 OS Isolation

OS isolation is a 2-safety property [18, 19], cast in terms of two executions of the system, and is closely
related to the non-influence property studied by Oheimb and co-workers [34, 98]. OS isolation captures the
intuition that the behavior of any OS does not depend on other OSs states, and is expressed using the notion
of equivalence between states w.r.t. an operating system osi (≡osi). For instance, two conditions which are
part of this relation of equivalence are: all page table mappings of osi that maps a virtual address to a RW
page in one state, must map that address to a page with the same content in the other; and the hypervisor
mappings of osi in both states are such that if a given physical address maps to some RW page, it must map
to a page with the same content on the other state. Formally, OS isolation states that osi-equivalence is
preserved under execution of any action, and is formalized as a “step-consistent” unwinding lemma, see [99].

∀ (s1 s′1 s2 s′2 : State) (a : Action) (osi : os ident),
s1 ≡osi s2 → s1 ↪

a−→ s′1 → s2 ↪
a−→ s′2 → s′1 ≡osi s

′
2

All isolation properties extend to traces, using coinductive reasoning principles [1]. In particular, the
extension of OS isolation to traces establishes a non-influence property [34].
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3.4 Availability

An essential property of virtualization platforms is that all guest operating systems are given access to the
resources they need to proceed with their execution. In this section, we establish a strong fairness property,
showing that if the hypervisor only performs chmod actions whenever no hypercall is pending, then no OS
blocks indefinitely waiting for its hypercalls to be attended. The assumption on the hypervisor is satisfied
by all reasonable implementations of the hypervisor; one possible implementation that would satisfy this
restriction is an eager hypervisor which attends hypercalls as soon as it receives them and then chooses an
operating system to run next. If this is the case, then when the chmod action is executed, no hypercalls are
pending on the whole platform.

Formally, the assumption on the hypervisor is modelled by considering a restricted set of execution traces
in which the initial state has no hypercall pending, and in chmod actions can only be performed whenever
no hypercall is pending. Then, the strong fairness property states that: if the hypervisor returns control to
guest operating systems infinitely often, then infinitely often there is no pending hypervisor call.

3.5 Extension of the model with cache and TLB

In order to reduce the overhead necessary to access memory values, CPUs use faster storage devices called
caches to store a copy of the data from main memory. When the processor needs to read a memory value,
it fetches the value from the cache if it is present (cache hit), or from memory if it is not (cache miss).
In systems with virtual memory, the TLB is analogously used to speed up the translation from virtual to
physical memory addresses. In the event of a TLB hit, the physical address corresponding to a given virtual
address is obtained directly, instead of searching for it in the process page table (which resides in main
memory). The cache may potentially be accessed either with a physical address (physically indexed cache)
or a virtual address (virtually indexed cache). There are, in turn, two variants of virtually indexed caches:
those where the entries are tagged with the virtual address (virtually indexed, virtually tagged or VIVT
cache) and those which are tagged with the corresponding physical address (virtually indexed, physically
tagged or VIPT cache).

There exist several alternatives policies for implementing cache content management, in particular con-
cerning the update and replacement of cache information. A replacement policy is one that specifies the
criteria used to remove a value when the cache is full and a new value needs to be stored. Among the most
common policies we find those that specify that the value to be removed is either the least recently used
value (LRU), the most recently used (MRU) or the least frequently used (LFU). In our model we specify an
abstract replacement policy which can be refined to any of the three policies just described. A write policy
specifies how the modification of a cache entry impacts the memory structures: a write-through policy, for
instance, requires that values are written both in the cache and in the main memory. A write-back policy,
on the other side, requires that values are only modified in the cache and marked dirty, and updates to main
memory are performed when a dirty entry is removed from the cache.

In [1, 100], we present an extension of the idealized model of virtualization, introduced in Section 3.2,
that features cache and TLB. We provide a model of a VIVT cache and TLB (as in Xen on ARM [101]),
for a write-through policy. Figure 3 shows a diagram of the extended memory model of the platform. The
cache is indexed with virtual addresses and holds a (partial) copy of the memory pages. The TLB is used
in conjunction with the current page table of the active OS to map virtual to machine addresses.

3.6 Verified implementation

In [97], we present an extension of the model with execution errors. We describe the executable specification
and show that it constitutes a correct implementation of the behavior specified by the idealized model, with
cache and TLB. The executable specification constitutes a first step towards a more realistic implementation
of a hypervisor, and provides a useful tool for validating the axiomatic semantics developed.

The executable specification of the hypervisor has been written using the Coq proof assistant and it
ultimately amounts to the definition of functions that implement action execution. The functions have been
defined so as to conform to the axiomatic specification of action execution as provided by the idealized model.
The implementation of the hypervisor consists of a set of Coq functions, such that for every predicate involved
in the axiomatic specification of action execution there exists a function which stands for the functional
counterpart of that predicate. An important characteristics of our formalization is that the definition of
state that is used for defining the executable semantics of the hypervisor is exactly the same as the one
introduced in the idealized model. This simplifies the formal proof of soundness between the inductive
and the functional semantics of the hypervisor. The execution of the virtualization platform consists of a
(potentially infinite) sequence of action executions starting in an (initial) platform state. The output of the
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Figure 3: Memory model of the platform with cache and TLB

execution is the corresponding sequence of memory states (the trace of execution) obtained while executing
the sequence of actions.

In [102], we derive two certified hypervisor implementations, using the extraction mechanism of Coq, in
functional languages Haskell and OCaml.

3.7 Isolation and transparency in the extended model

Isolation theorems ensure that the virtualization platform protects guest operating systems against each
other, in the sense that a malicious operating system cannot gain information about another victim operating
system executing on the same platform. In [97], we extend the proof of OS isolation from Section 3.3.3,
yielding modifications in some key technical definitions and lemmas, so that it accounts for errors in execution
traces for the model extended with cache and TLB. In particular, OS isolation states that starting from states
with the same information for an operating system osi, osi cannot distinguish between the two traces, as
long as it executes the same actions in both. This captures the idea that the execution of osi does not
depend on the state or behaviour of the other systems, even in the presence of erroneous executions. OS
isolation formally establishes that, two traces are equivalent w.r.t an OS osi, if they have the same set of
actions w.r.t. osi and if their initial states are osi-equivalent [1].

In addition, we present, in [97], a machine-checked proof of transparency. Transparency states that
the virtualization platform is a correct abstraction of the underlying hardware, in the sense that a guest
operating system cannot distinguish whether it executes alone or together with other systems. Transparency
is a 2-safety property; its formulation involves an erasure function which removes all the components of the
states that do not belong to some fixed operating system. We define an appropriate erasure, establish its
fundamental properties, and finally derive transparency. The transparency property can then be expressed
as: given an OS osi and any valid trace of the system, the erasure of the trace is another trace osi-equivalent
to the original one [1].

Finally, it is interesting to comment on the validity of isolation properties under other policies. On the
one hand, the replacement policy for the cache and the TLB is left abstract in our model, so any reasonable
algorithm will preserve these properties. On the other hand, we have fixed a write-through policy for the
main memory. However, we ensure that it remains possible to prove strong isolation properties under the
write-back policy, since page values, even if different in memory, will be equal if we consider the cache and
memory together [103].

3.8 Related work

Thanks to recent advances in verification technology, it is now becoming feasible to verify formally realistic
specifications and implementations of operating systems. A recent account of existing efforts can be found
in the surveys [104, 105].

The Microsoft Hyper-V verification project focuses on proving the functional correctness of the deployed
implementation of the Hyper-V hypervisor [15, 16] or of a simplified, baby, implementation [106]. Using
VCC, an automated verifier for annotated C code, these works aim to prove that the hypervisor correctly
simulates the execution of the guest operating systems, in the sense that the latter cannot observe any
difference from executing on their own on a standard platform. At a more specific level, these works provide
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a detailed account of many components that are not considered in our work, including page tables [107] and
devices [108].

The L4.verified project [17] focuses on proving that the functional correctness of an implementation of
seL4, a microkernel whose main application is as a hypervisor running paravirtualized Linux. The imple-
mentation consists of approximately 9kLOC of C and 600 lines of assembler, and has been shown to be a
valid refinement of a very detailed abstract model that considers for example page tables and I/O devices.
Subsequent machine-checked developments prove that seL4 enforces integrity, authority confinement [32] and
intransitive non-interference [109, 33]. The formalization does not model cache.

Recently, the Verve project [110] has initiated the development of a new operating system whose type
safety and memory safety has been verified using a combination of type systems and Hoare logic. Outside
these projects, several projects have implemented small hypervisors, to reduce the Trusted Computing Base,
or with formal verification in mind [111], but we are not aware of any completed proof of functional correctness
or security.

Our work is also related to formal verification of isolation properties for separation kernels. Earlier works
on separation kernels [112, 113, 114] formalize a simpler model where memory is partitioned a priori. In
contrast, our model allows the partition to evolve and comprises three types of addressing modes and is
close to those of virtualization platforms, where memory requested by the OSs is dynamicaly allocated from
a common memory pool. Dealing with this kind of memory management adds significant complications in
isolation proofs.

Our work is also inspired by earlier efforts to prove isolation for smartcard platforms. Andronick, Chetali
and Ly [115] use the Coq proof assistant to establish that the JavaCard firewall mechanism ensures isolation
properties between contexts—sets of applications that trust each other. Oheimb and co-workers [34, 98]
independently verify isolation properties for Infineon SLE 88 using the Isabelle proof assistant. In particular,
their work formalizes a notion of non-influence that is closely related to our isolation properties.

Moving away from OS verification, many works have addressed the problem of relating inductively defined
relations and executable functions, in particular in the context of programming language semantics. For
instance, Tollitte et al [116] show how to extract a functional implementation from an inductive specification
in the Coq proof assistant. Similar approaches exist for Isabelle, see e.g. [117]. Earlier, alternative approaches
such as [118, 119] aim to provide reasoning principles for executable specifications.

3.9 Summary and future work

We have presented a formalization of an idealized model of a hypervisor —initially introduced in [96]— and
established within this model important security properties that are expected from virtualization platforms.
In particular, our verification effort showed that the model is adequate to reason about safety properties
(read and write isolation), 2-safety properties (OS isolation), and liveness properties (availability). The basic
formal development is about 20kLOC of Coq, including proofs, and forms a suitable basis for reasoning about
hypervisors.

Additionally, we have enhanced the idealized model of virtualization considered in [96] with an explicit
treatment of errors, and showed that OS isolation is preserved in this setting. Moreover we have implemented
an executable specification that realizes the axiomatic semantics used in [96], for the model extended with
cache and TLB. Finally, we have proved that in our idealized model the virtualization platform is transparent
for guest operating systems in the sense that they cannot tell whether they execute alone or together with
other systems on the platform. The formal development for this extension is about 15 kLOC of Coq, where
8k correspond to the verified executable specification and 7k to the proofs on the extended model with errors.

There are several directions for future work: one immediate direction is to complete our formalization
with a proof of correctness of the hypervisor, as in the Hyper-V verification project. We also intend to
enrich our model with devices and interrupts, and to give sufficient conditions for isolation properties to
remain valid in this extended setting. Another immediate direction is to prove availability properties on an
implementation of the hypervisor. Additionally, we intend to implement and analyze alternative executable
semantics for different models of cache and policies. Finally, it is of interest to understand how to adapt
our models to other virtualization paradigms such as full virtualization and microvisors. Some advances in
these lines were published in [100, 103].

4 A formal specification of the DNSSEC model

4.1 DNS and DNSSEC

The Domain Name System (DNS) [35, 36] constitutes a distributed database that provides support to a wide
variety of network applications. The database is indexed by domain names. A domain name represents a
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path in a hierarchical tree structure, which in turn constitutes a domain name space. Each node of this tree
is assigned a label, thus, a domain name is built as a sequence of labels separated by a dot, from a particular
node up to the root of the tree. A distinguishing feature of the design of DNS is that the administration
of the system can be distributed among several (authoritative) name servers. A zone is a contiguous part
of the domain name space that is managed by a set of authoritative name servers. Then, distribution is
achieved by delegating part of a zone administration to a set of delegated sub-zones. DNS is a widely used
scalable system, but it was not conceived with security concerns in mind, as it was designed to be a public
database with no intentions to restrict access to information. Nowadays, a large amount of distributed
applications make use of domain names. Confidence on the working of those aplications depends critically
on the use of trusted data: fake information inside the system has been shown to lead to unexpected and
potentially dangerous problems. Already in the early 90’s serious security flaws were discovered by Bellovin
and eventually reported in [37]. Different types of security issues concerning the working of DNS have been
discussed in the literature [38, 37, 39, 40, 41, 42]. Identified vulnerabilities of DNS make it possible to launch
different kinds of attacks, such as cache poisoning [45, 46].

DNSSEC [47, 48, 49] is a suite of Internet Engineering Task Force (IETF) specifications for securing
information provided by DNS. More specifically, this suite specifies a set of extensions to DNS which are
oriented to provide mechanisms that support authentication and integrity of DNS data but not its availability
or confidentiality. In particular, the security extensions were designed to protect resolvers from forged DNS
data, such as the one generated by DNS cache poisoning, by digitally signing DNS data using public-key
cryptography. The keys used to sign the information are authenticated via a chain of trust, starting with a
set of verified public keys that belong to the DNS root zone, which is the trusted third party.

4.2 A primer on the vulnerabilities of DNS

In this section we provide some background on DNS, its vulnerabilities and the security extensions specified
in DNSSEC.

The administration of DNS can be distributed among several (authoritative) name servers. DNS defines
two types of server: Nameservers, which are authoritative servers that manage data of a contiguous part
of the domain name space and where the master files reside. For redundancy sake, primary and secondary
nameservers are provided for each zone; and Resolvers, which are standard programs used to interact with the
nameservers to extract information in response to client requests. The process of obtaining information from
DNS is called name resolution. Each server is initialized with the contact information of some authoritative
servers of the root zone. Moreover, the root servers know how to contact the authoritative name servers
of second level (e.g. the domains com, net, edu). Second level servers know the information of third level
servers, and so on. By these means, the requestor can proceed refining the sought response by walking the
tree structure, contacting different servers and getting “closer” to the answer after each referral. Servers
store the results of previous queries in their caches in order to speed up the resolution process, but as the
mapping of names evolves, cached data has a limited time of validity. Authoritative servers attach, for
instance, a Time To Live atribute (TTL) to this stored data, indicating when it should be removed from the
cache. For more details concerning the working of DNS we refer to [120, 35, 36].

In an early work, Cheung and Levitt [121] discuss security issues of DNS and provide formal basis to
model and prove security mechanisms that can be added to the system to prevent two specific problems:

• Failure to authenticate DNS responses: The message authentication mechanism used by DNS is weak.
DNS checks if a received response matches a previously asked query only by checking if the Id attached
in the query’s header matches with the Id of the pointed response. In this way, if an attacker can
predict the used query Id and his answer reaches before the real one does (as if a name server receives
multiple responses for its query, it uses the first one), it will be able to send a forged response.

• Cache poisoning attacks: An attacker can take advantage of the lack of authentication mechanisms to
intentionally formulating misleading information, injecting bogus information into some server DNS
cache. Having cached this information, the cheated DNS server is likely to get a Denial of Service
(DoS), if the attacker sends a negative response that could actually be resolved; or in the worst case,
the attacker can masquerade as a trusted entity, and then be able to intercept, analyze and intentionally
corrupt the communication.

Cache poisoning attacks exploits a flaw in DNS, namely, the weak mechanisms used to ensure the authen-
tication of data origin. As one of the goals of the DNS security extensions was to solve these vulnerabilities,
we have put special focus in developing a formal specification that allows us to reason on the effectiveness
of those extensions regarding impersonation and cache poisoning attacks.
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The extensions introduced by DNSSEC to improve the security of DNS require the combined application
of mechanisms that make it possible to: i) sign data, using public key cryptography, within zones; ii) generate
a chain of trust along the DNSSEC tree; and iii) perform key exchange within parent-child zones, and regular
key rollover routines. The security extensions provide origin authentication and integrity assurance services
for DNS data, including mechanisms for public key distribution and authenticated denial of existence of DNS
data. However, respecting the principle assumed in the design of DNS that all data in the system must be
visible, DNSSEC is not designed to provide confidentiality [47]. The specification of the security extensions
does not prevent the interaction of secure name servers and resolvers with non-secure ones. However, any
communication that involves an unsecure server results in the loss of all DNSSEC security related capabilities.
For this reason, in our model it is assumed that every server is security aware.

4.3 Formalization of the DNSSEC model

In [122, 1], we present a minimalistic specification of a DNSSEC model which provides the grounds needed
to formally state and verify security properties concerning the chain of trust of the DNSSEC tree. The
specification puts forward an abstract formulation of the behavior of the protocol and the corresponding
security-related events, where security goals, such as the prevention of cache poisoning attacks, can be given
a formal treatment. First, we define the set of states and a notion of valid state. Then we define the
security-related events as state transformers and provide a formal definition of their execution. Finally, we
present in the thesis [1] some of the verified properties. The full development is available for download at
http://www.fing.edu.uy/inco/grupos/gsi/sources/dnssec.

4.3.1 States

To reason about the DNSSEC security system most details of the state may be abstracted. In the formal
specification, states are modeled by a record type (State) with components to represent, in particular:

• the involved DNS servers;

• the set of publicly known trusted servers;

• the set of keys for every server;

• the delegations issued by each server;

• the fathers of a server;

• the authoritative view and the cache view of every server;

• the expected answers to the already performed queries and the corresponding pending submissions for
each server.

In [122, 1], we define also a notion of valid state (V alid) that captures essential security properties of the
system, and more particularly of the DNSSEC specification provided by the “DNSSEC protocol document
set”, which refers to the three documents that form the core of the DNS security extensions: “DNS Security
Introduction and Requirements” [47], “Resource Records for DNS Security Extensions” [48], and “Protocol
Modifications for the DNS Security Extensions” [49].

4.3.2 Events

The working of the system is modelled in terms of the execution of events. An event (of type Event) is
understood as an action that transforms the state of the system. We only show here a brief description of
three distinguished events:

• Server ZSK rollover performs a rollover of the zone key of a given server;

• Receive Response receives a response from a given server; and

• RR TimeOut indicates that the TTL of a given set of resource records that share the same domain
name, type and class has expired.
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The behavior of the events is specified by their pre- and postconditions. Executing an event e over a state

s produces a new state s′ and a corresponding answer r (denoted s ↪
e/ans−−−−→ s′), where the relation between

the former state and the new one is given by the postcondition relationship Post.

Pre s e Post s s′ e

s ↪
e/ok−−−→ s′

exec pre

¬ Pre s e ∃ ec :ErrorCode, ErrorMsg s e ec ∧ ans = error ec

s ↪
e/ans−−−−→ s

exec npre

If the precondition Pre s e is satisfied, then the resulting state s′ and the corresponding answer ans are
the ones described by the relation exec pre. However, if Pre s e is not satisfied, then the state s remains
unchanged and the system answer is the error message determined by a relation ErrorMsg, involving error
codes (of type ErrorCode) [122, 1].

4.3.3 Verification of security properties

In [1], we discuss two relevant properties of the model that have been formally stated and verified. We first
concentrate on the proof that one-step execution preserves the validity of states: for any s s′ : State, ans :

Answer and e : Event, if V alid s and s ↪
e/ans−−−−→ s′ hold, then V alid s′ also holds.

We show that the notion of valid state embodies necessary conditions to prove the objective security
properties. Then, we show formally that to have this invariance result is not enough to ensure consistency of
the chain of trust. In particular, the instantiation of proposition that states the invariance of valid state to
the case in which the executed event is Receive Response reflects the (informal) security requirement that
no man-in-the-middle can masquerade as a trusted entity in order to provide answers with fake resource
records. By proving the correct execution of this event, we are providing (formally verified) evidence that if
a classical DNS attacker sends a malicious resource record to a secure server that record shall be discarded
as it will not be verified by its corresponding signature, which, in turn, has been created by its father within
the chain of trust. This is clearly a security improvement regarding DNS, because the reception mechanism
of this system is what makes it a potential victim of cache poisoning attacks.

Compromising the chain of trust

It is important to notice that the conditions specified for a state of our model to be a valid one constitute
an almost straightforward interpretation of the (security) recommendations laid down in relevant DNSSEC
RFCs like, for instance, [47, 48, 49]. We can show, however, that despite the validity of states is preserved by
execution this does not necessarily guarantee that the chain of trust remains valid. In particular, analyzing
the conditions required for the rollover of a zone key, which in our model is specified as part of the semantics
of the event Server ZSK rollover, we have detected a small inconsistency concerning the data of the system.
Namely, for a resource record to be discarded from a view either authoritative or cache, it is only required
that its corresponding TTL is recached. Now, a rollover of a zone key might be needed to be executed,
for instance, in the case the server’s zone is compromised, even if the TTL of the key has not expired.
Consequently, every set of resource records that share the same domain name, type and class (RRset) within
the zone must be signed to generate the new RRSIG records (signatures over RRsets made using private
key). Therefore, every DNS server that contains these, just re-signed, records inside its cache view will
become inconsistent. This issue could not be detected during the verification of the invariance of the event
Server ZSK rollover because the specification of the DNSSEC protocol mandates for a resource record to
be discarded from the zone file only in if its TTL has expired [122, 1].

4.4 Summary and future work

We have developed an abstract model of DNS that incorporates the security extensions defined by the
DNSSEC specification suite. We have established and proved the security properties required to be satisfied
by the operational behaviour of an implementation of this version of DNS, which is specified in our model by
an abstract state and the events that represent the working of the system. In particular, this result provides
a formal means to assess the effectiveness of a (correct) deployment of the security requirements specified
by DNSSEC to prevent cache poisoning attacks.

In addition to that, we have identified an exploitable vulnerability that, according to our understanding,
emerges as a flaw of the specification in question. In particular, the conditions that must be verified in
the case a rollover of a zone key must be performed, as specified in the RFC 4033 [47], do not suffice to
ensure the validity of the chain of trust. We have sketched in [1] a formal proof that shows how the chain
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of trust can be compromised if only the expiration time of a key is considered as the cause to perform
the rollover procedure. This property is established as a lemma in the formalization available in http:

//www.fing.edu.uy/inco/grupos/gsi/sources/dnssec.
The formal development is about 5kLOC of Coq, and forms a suitable basis for reasoning about DNSSEC.
There are several directions for future work. One immediate direction is to extend our specification and

to establish results concerning the impact of introducing resource records of type NSEC. An NSEC record
points to the next valid name in the zone file and is used to provide proof of non-existence of names within
a zone. Through repeated queries that return NSEC records it is possible to retrieve all of the names in
the zone, a process commonly called walking the zone. This side effect of the NSEC architecture subverts
policies frequently implemented by zone owners which forbid zone transfers by arbitrary clients. We see as
an interesting and challenging task to specify ways of preventing zone walking by constructing NSEC records
that cover fewer names [123].

5 Conclusion

The increasingly important role of critical components in software systems make them a prime target for
formal verification. Indeed, several projects have set out to formally verify the correctness of critical system
implementations. Reasoning about implementations provides the ultimate guarantee that deployed critical
systems provide the expected properties. There are however significant hurdles with this approach, especially
if one focuses on proving security properties rather than functional correctness. Thus, there is a need for
complementary approaches where verification is performed on idealized models that abstract away from the
specifics of any particular implementation, and yet provide a realistic setting in which to explore the security
issues that pertain to the realm of those critical systems.

Our work shows that it is feasible to formally analyze models of safety-critical applications, using specifi-
cations based on state machines, and is part of a trend to build and analyze realistic models of mobile devices,
operating systems, hypervisors, and other kinds of complex critical systems. The Coq proof assistant is a
useful tool when sophisticated algorithms and specifications are involved and also as a general framework to
design special platforms for the verification of critical systems.

In this paper we present independent formalizations for the considered applications. Future work is to
develop a framework in Coq (a Coq library) to specify and reason about state machines, that allow represent
complex critical systems.
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