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Abstract 

In this paper we use concepts from graph theory and cellular biology represented as ontologies, 

to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper 

describes the semantic enrichment of signaling pathway networks. A cell signaling network 

describes the basic cellular activities and their interactions. The main contribution of this paper is 

in the signaling pathway research area, it proposes a new technique to analyze and understand 

how changes in these networks may affect the transmission and flow of information, which 

produce diseases such as cancer and diabetes. Our approach is based on three concepts from 

graph theory (modularity, clustering and centrality) frequently used on social networks analysis. 

Our approach consists into two phases: the first uses the graph theory concepts to determine the 

cellular groups in the network, which we will call them communities; the second uses ontologies 

for the semantic enrichment of the cellular communities. The measures used from the graph 

theory allow us to determine the set of cells that are close (for example, in a disease), and the 

main cells in each community. We analyze our approach in two cases: TGF-β and the Alzheimer 

Disease. 
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1. Introduction 

Nowadays, there is a lot of biological knowledge embodied in information technology in different ways: in databases, 

ontologies, among others. A major challenge is to gather the scattered information from different sources, in order to 

help biologists to understand the behavior, for example, of the human body. An example of biological knowledge in 

information technology is the Gene Ontology (GO) [1], which is an ontological framework in biology that describes 

genes in terms of their molecular functions, associated biological processes, and cellular components, in an independent 

manner.  

On the other hand, currently lot of biological networks are being extensively studied, such as the protein-protein 

interaction networks [2], the gene regulatory networks [3] and the metabolic networks [4]. Recent studies show that 

biological networks are dynamic; they reconfigure (appearance or disappearance of links) in response to different 
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external signals. There are many examples showing the same list of genes with different forms of interactions in 

different conditions, which leads to different meanings or biological functions.  

A cell signaling network is a type of biological network that describes the cellular activities and coordination among 

them, as response to their microenvironment. Particularly, the nodes describe the genes and the arcs the interaction 

among them. The genes have specific interactions according to their temporary functions, and can change their 

functions according to their interactions with different neighbors [5]. This implies that the functional analysis of genes 

regardless of their interactions, is not correct. Therefore, the cell signaling networks describe the genes considering at 

the same time their molecular functions and their interactions [6, 7, 8].  

Cell signaling networks are studied in the context of human diseases, because they can help to treat them 

effectively. A signaling pathway describes a group of molecules in a cell. When the first molecule on a pathway 

receives a signal, it activates another molecule. This process is repeated until the last molecule is activated, and the cell 

function is performed. The abnormal activation of signaling pathways can lead to diseases such as cancer. 

In general, gene networks in healthy people have the same list of genes that in sick people, but the connections are 

different, and therefore have different phenotypes. The functional analysis of these networks goes beyond from the 

capacities of current analysis tools, which consider only the genes individually, without the study of the link 

information. Thus, there is a great need to develop new methods of analysis for biological networks, which fully exploit 

the network topological information. In such networks, it is crucial to discover communities of genes (dense clusters) 

present at a given time. This problem is typical in the context of a large number of applications, such as social networks 

[9]. A number of techniques have been designed in the literature for the determination of dense clusters [10, 11, 12, 

13]. 

In this paper is proposed the detection of gene clusters, taking into account the topological structure of the network 

in the signaling pathway. The gene clusters are characterized using measures of graph theory, such as centrality and 

modularity. When this characterization of the clusters is carried out, our approach continues with a semantically 

enrichment using the GO. The main contribution of this paper is the application of graph theory and ontology mining 

into traditional biology, which normally is focused on studying individual parts of cell signaling pathways. 

Our proposal is tested in two signaling pathway networks: in the TGF-β and in Alzheimer's disease. TGF-β is a 

protein that controls cell proliferation and differentiation, which is also substantially involved in immunity and cancer. 

TGF-β signaling pathway modulates processes such as cell invasion, immune regulation, and microenvironment 

modification that cancer cells may exploit to their advantage. Alzheimer's disease (AD) is a chronic disorder that 

slowly destroys brain cells and causes severe cognitive disabilities. The study of the AD signaling pathway allows, 

among other things, analyze how the disease affects the cell functions. 

This article has five sections. The first section is the introduction; the second section shows related works; the third 

section presents the theoretical basis of our proposal; the next section explains our approach. The fifth section presents 

two cases studies. Finally, the last section presents the conclusions.  

 

2. Related Work 

Some work related to semantic enrichment area of genes networks are described below. In recent years, have been 

designed experimental techniques to detect cellular molecules, such as microarray, RNA-Seq and mass spectrometry. 

To make biological interpretation of them, is used commonly genes grouping based on their similarities [14]. In 

particular, to determine the shared functions (functional similarity) between genes, one way is to incorporate biological 

knowledge, using knowledge bases as Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

[1, 15]. In this way, we can determine the prevailing biological subjects into a collection of genes, and compare 

biological themes among groups of genes. Basically, that is what is proposed in [14], with the "ClusterProfiler" tool, a 

tool to compare and visualize the functional profiles between groups of genes. 

Moreover, [16] proposes a method for analyzing protein-protein interactions (PPI). The purpose of this method is to 

detect molecular interactions that might be common manifestations of Colorectal Cancer (CRC). The method described 

in [16], consists in the construction of a network using a set of databases publicly available of proteins, based on the 

utilization of mining applications. The network is characterized by its centrality values, to determine the regions of 

interest containing the main similarities between proteins. They find similar regions in the networks of CRC, to help to 

understand the molecular mechanisms of the disease [17]. 

On the other hand, NOA (Network Ontology Analysis) has been proposed as a resource for semantic enrichment of 

signaling pathway networks [18]. NOA is an ontology of biological links, which assigns functions to the interactions 
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based on the annotation of known genes. NOA can capture the changes of the biological functions, by the change in the 

links of the networks of interactions of the proteins, something not possible with other techniques of analysis [18]. 

CePa is a R package in order to find important pathways through the network topology [19]. The package has 

several advantages. First, it defines the node pathway rather than defining only the gene, this is taken as the basic unit 

of a more complex system of genes. Second, multiple network centrality measures are applied simultaneously, to 

calculate the importance of the nodes based on different aspects, to have a complete view of the biological system [19]. 

Cytoscape and PSIQUIC are two tools for analyzing the interactome (protein-protein interactions taking place in a 

cell) [20]. These tools use multiple repositories of protein interactions at the same time, and find topological groups 

within them. In addition, these groups are semantically enriched using GO [1, 20]. 

With respect to the previous works, our proposal differs in that it is based on the structure of the generated graph of 

the signaling pathway, uses techniques of Social Network Analysis (SNA), specifically techniques based on graph 

theory for the detection of clusters (known as SNA communities) and genes more significant, and ontological mining 

techniques for the semantic enrichment of the clusters.  

 

3. Theory 

3.1. Signaling Pathway Networks 

Signaling networks are a type of biological network, which describe the system of communication that defines the 

cellular activities and the interactions among them. The signaling pathway networks are complex systems, and may 

exhibit a number of emergent properties. The signaling networks normally integrate protein-protein interaction 

networks with the cellular functions. 

3.1.1. General characteristics 

The activation of a pathway is a response to an external stimulus. For example, a cell A can activate a cell surface 

receptor that is part of a channel to get to B. The binding between A and B may contain other cells, and the stimulus 

that activates A opens a series of chain of activations until B. The activated receptor must first interact with other 

proteins inside the cell, before the ultimate physiological effect on the cell's behavior is produced. Often, the behavior 

of a chain of several interacting cell proteins is altered after a receptor activation. The entire set of cell changes induced 

by the receptor activation is called a signal transduction mechanism or pathway [21, 22]. 

Cell signaling research involves studying the spatial and temporal dynamics of both, receptors and components of 

signaling pathways that are activated by receptors [21]. Cell signaling networks have been extensively studied in the 

context of human diseases. They help to understand the transmission and flow of cellular information. Errors in cellular 

information processing are responsible for diseases such as auto-immunity, diabetes and cancer. 

3.1.2. Components 

The signaling components are: stimulus, receptor and the response, as is shown in fig 1.A. In some cases, between the 

receptor and the response, there are proteins and the information transmitted through the protein–protein interactions 

(see fig.1.B). In some protein–protein interactions, there is a variety of scaffolds functional to hold together the 

individual components of signaling pathways, in order to create macromolecular signaling complexes (see Fig. 1.C) 

[23].  
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Figure 1. Components of a Signaling Pathway (Image extracted from [23]).  

3.2 Graph Theory  

One of the major problems of modern biology is the discovery of knowledge in large databases. The pathway networks 

and metabolic networks usually can be modelled as directed graphs. In a Signaling Pathway Network, the nodes 

represent cells, with arcs denoting the interactions between them. This is a directed graph because, if cell A regulates 

cell B, then there is a natural direction in the arc between the corresponding nodes, starting at A and finishing at B [24]. 

The interest of the graph theory in this work is because it allows describing graphs from two points of view: What are 

the communities of nodes in the graph? and, What are the basic characteristic of each community?. 

   At the following, we present the main concepts used in this work, in order to extract information from the Signaling 

Pathway Networks.  

 3.2.1 Modularity 

Modularity is a measure of the network structure. It is designed to measure the strength of the division of a network 

into modules (also called groups or communities). Networks with high modularity have strong connections between 

nodes within modules, but few connections between nodes in different modules. Modularity is used to detect the 

communities’ structure in networks. The modularity measure used in our work is [25]: 

 

 

(1) 

 

   Where, L is the number of links in the network, Aij is the adjacency matrix, ki is the degree of node i, and δ(ci,cj)  

equals 1 if the two nodes belong to the same community.  

   This measure is interesting in our work, because the concept of modularity in cell signaling pathways assumes that 

cellular functionality can be seamlessly partitioned into a collection of modules. Each module is a discrete entity of 

several elementary components, and performs an identifiable task, different from the functions of the other modules. 

The identification of this task is very important for the biologist. For example, the detection of the modules or groups, 

and their semantic enrichment, allows defining the function of this group, for instance, in a disease [26]. 

3.2.2 Centrality 

In graph theory and SNA, the centrality refers to a measure of a node in a graph that determines its relative importance 

within the graph [27]. The centrality of a node can help determining, for example, the impact of a gene involved in a 

series of reactions in a signaling pathway network. Several metrics of centrality are used in this work:  
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 The degree centrality: it is the simplest measure of centrality. It is the number of links of a node [28]. This can be 

divided into the centrality of the input degree and the centrality of the output degree, for directed graphs. This can 

be divided into the centrality of the input degree and the centrality of the output degree, for directed graphs. An 

example of this measure, for a given directed graph G=(V,E), of the centrality of the output degree of  a node Vi is: 

 

 
 

(2)  

Where, n is the number of nodes in the network.  

 
 

 The betweenness centrality: it is a measure that quantifies the frequency or number of times a node acts as a bridge 

along the shortest path between two nodes [28]. It is important because it determines the critical nodes in the 

spread of a disease or opinion in SNA. The betweenness of a vertex ci in a graph G:=(V,E) is:: 

 

 

(3) 

  

Where,  is the number of short paths connecting nodes j and k, and  is the number of short paths 

connecting nodes j and k in which i
th

 node is. 

 

 The closeness centrality: it is based on the idea “an important node is close to, and can communicate quickly with, 

the rest of nodes in the graph”. It is a distance metric between all pairs of nodes with the node studied, defined by 

the length of its shortest paths. It is defined by [29]: 

 

 

(4) 

  

       Where d(ci,cj) is the shortest path between nodes ci and cj.  

We use these measures of centrality to filter the most important nodes in each module/group/cluster. Other 

measures of centrality, which we do not use in this work, are [28]: eigenvector centrality, Katz centrality, PageRank, 

among others. Each one can be used to determine specific aspects of the nodes in a graph. 

3.3 Mining Techniques 

In this work we use several types of mining techniques, which are presented in the next sections. 

3.3.1 Semantic Mining and Ontological Mining 

The semantic mining is responsible for extracting semantic knowledge from different semantic sources, such as web 

pages, annotated graphs, and ontologies, among others. The semantic mining is divided into three groups [30, 31]: 

semantic data mining, web mining and ontological mining. The latter is the most interesting for this work. The 

Ontological Mining (OM) allows extracting knowledge from a set of ontologies [37]. Some of the OM techniques that 

have been developed are: 

 

 The alignment of ontologies analyses the correspondence between the concepts of two or more ontologies [30, 32]. 

The alignment process is defined by the tuple:  

A = (O1, O2, p, f) 
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Where O1 and O2 are the ontologies to be aligned, p is the set of requirements (ontology language (i.e. OWL), 

the concepts vocabulary, among others), and f is the function of alignment (f is normally a similarity function to 

correlate the concepts). The set A symbolizes all the semantic correspondences between O1 and O2. 

There are several algorithms of alignments, for example in [32] they proposed two algorithms of alignments: 

one called LMO (Linguistic Matching Ontology), based on linguistic similarity; and another based on the 

similarity of graphs (graph matching), called GMO (Graph Matching Ontology). In [30] is proposed an algorithm 

to automatically select the best alignment technique, given a set of ontologies to be aligned. 

3 The merging of ontologies is the process, where multiple ontologies in the same domain, are joined to standardize 

knowledge, grow the knowledge, or having full knowledge locally, among others. The merging of ontologies has 

different problems such as the handling of the same knowledge with different representations, the partial 

representation of the knowledge, among others. That requires the presence of experts during the process of 

merging to make decisions [33]. 

4 The linking of ontologies can be performed when have been identified the correspondences between concepts, in 

order to support the navigation between ontologies. 

 

Other concept in the semantic ontology domain is folksonomy, used to describe a system where users use public 

tags to redefine items, particularly online items, which allows building a social or collaborative classification. 

3.3.2 Hierarchical Clustering 

Hierarchical clustering is a data mining method of cluster analysis, which seeks to build a hierarchy of groups. The 

hierarchical clustering strategies generally fall into two types [13]: 

• Agglomerative: This is a bottom-up approach that starts with different groups, and pairs of groups are mixed when 

one moves up the hierarchy. 

• Divisive: This is a top-down approach that begins with a group, and divisions are performed while is descending in 

the hierarchy. 

 

   We use the agglomerative approach because its quality [13, 28]. Since the computing of the similarity of an 

individual to the centroid of a cluster using characteristics of the individual is really difficult, we stay with a simple 

way to generate the clusters, as is the agglomerative hierarchical. In order to calculate the similarity, we need to define 

the attributes for the comparison, and the similarity measures to use in each attribute, for each individual [38]. If we use 

simply a hierarchical agglomerative algorithm, the time complexity is O(m
2
). In the agglomerative case, initially an 

identifier is assigned to each node; and successively these nodes will be grouped, up to the point desired: either a 

number of nodes per cluster or a maximum number of clusters. The representation of the hierarchy of clusters obtained 

are usually an inverted tree, called dendrogram, with successive mergers of the groups into top-level groups (larger, 

less uniformity, see Fig. 2). 

 

 

Figure 2: Hierarchical Clustering  
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The grouping is given by a function that defines the distance between clusters [28]. The choice of an appropriate 

metric will influence the shape of the clusters. Different to the classical distance metrics (Manhattan, Euclidean or 

maximum distance) used by the hierarchical clustering strategies, our hierarchical clustering is based on the modularity 

measure. Modularity is a scalar value between -1 and 1 that measures the density of arcs inside communities to arcs 

outside communities. Optimizing this value, results in the best possible grouping of the nodes of a given network. 

However, going through all possible iterations of the nodes into groups is impractical, so heuristic algorithms are used. 

In our hierarchical clustering, the first small communities (The first communities are the initial grouping of nodes) are 

found by optimizing modularity locally on all nodes in the leaves (for example, among clusters 2 and 3, and not among 

clusters 1 and 2 or 1 and 3), then each small community is grouped into one node, and this step is repeated to a desired 

point.   
The hierarchical clustering algorithm is presented in [39], and when we introduce the modularity measure we find 

high modularity partitions for large networks in short time. This algorithm is divided in two phases. The first phase is to 

assign a different community to each node of the network. Then, for each i
th

 node and its j
th

 neighbors is evaluated the 

gain of modularity (see eq. 1) that would take place by removing i from its community and by placing it in the 

community of j. The i
th

 node is placed in the community with more profit. This process is applied repeatedly to all 

nodes, until no further improvement can be achieved. Then, the first phase is completed. The second phase of the 

algorithm consists in building a new network whose nodes are now the communities found during the first phase. The 

weights of the links between the new nodes are given by the sum of weights of the links between nodes in the 

corresponding two communities [40]. Once this second phase is completed, then the first phase can be reapplied to the 

resulting weighted network, until there are not more changes, a maximum of modularity is attained, and a maximum 

number of clusters or nodes per cluster (this is the desired point). The hierarchical clustering used in this study has the 

following macro-algorithm: 

 

The macro-algorithm of Hierarchical clustering 
0. Start 

1. Make the initial partition, considering each individual as a cluster: 

P = { i1},{ i2 },...{ iN } 

2. Repeat  

2.1. Determine the two closest clusters (smaller distance) ii, ij, and group them into one. 

2.2. Update the partition: 

        P = { i1},{ i2 },...{ ii  ij },...,{ iN } 

3. Until to reach a desired point. This is the final partition Pr= {W} 

4. End 

 

   The macro-algorithm assigns initially a cluster to each node (step 1); then continues by grouping the nodes that are 

closer, using the maximum distance metric (step 2.1). Then, a new partition (cluster) is formed (step 2.2). Steps 2.1 and 

2.2 are repeated until reach the desired conditions (maximum number of clusters or number of nodes per cluster). 

 

3.4 Gene Ontology 

The Gene Ontology (GO) project [41] rovides structured, controlled, vocabularies and classifications, which cover 

several domains of molecular and cellular biology. They are freely available for community use [1]. Many biological 

databases and genome annotation groups use the GO and contribute to the GO project. The GO database integrates the 

vocabularies and provides full access to this information in several formats. The GO Web resource also provides access 

to extensive documentation about the GO project, and links to applications that use GO data for functional analyses. 

The GO ontology is a directed acyclic graph, where each term has relationships to one or more terms in the same 

domain, and sometimes to other domains. In this graph it can be found: 
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 Cellular Component: it is the parts of a cell or its extracellular environment. It describes a component of a cell 
that is part of a larger object, such as an anatomical structure. 

 Biological Process: It describes the operations of a set of molecular events, with a defined beginning and end, 
with respect where they are integrated: cells, tissues, organs, and organisms. Examples of biological process is 
"signal transduction". A biological process is not equivalent to a pathway.  

 Molecular Function: it is the elemental activity of a gene.  Molecular functions generally correspond to 
activities that can be performed by individual genes, but some activities are performed by assembling 
complexes of genes. 

 
A variety of browsers that provide visualization and query capabilities for the GO are available [1]. For example, 

the AmiGO browser (developed by the GO software group at Berkeley; see http://www.godatabase.org/cgi-bin/go.cgi) 

provides a web interface for searching and displaying the ontologies, and organism databases, developed in the GO 

project. AmiGO easily allows users to browse and to search for terms, using a variety of different keys such as a name, 

synonyms, definitions, numerical identifiers, among others. The summary view presents the list of genes associated 

with each term. 

PANTHER (Protein ANalysis THrough Evolutionary Relationships) is a tool for the extracting knowledge from 

GO [1, 35]. PANTHER receives a gene identifier, and returns the semantic content of the gene.  It is a Library of 

Families and Subfamilies of Protein, Indexed by Function [35]. In this way, PANTHER is a classification system of 

proteins in order to facilitate high-throughput analysis. PANTHER has a method for relating protein sequences to 

functions, in a robust and accurate way. The Proteins have been classified according to:  

 Family and subfamily: groups of proteins that have the same function.  

 Molecular function. 

 Biological process.  

 Pathway.  

 4. OUR APPROACH 
 

The main component of our approach is the next macro-algorithm, which detects the clusters within a signaling 

pathway network by using one of the most successful solutions for the communities’ detection problem [40], based on 

the modularity measure [39], and enriched it using the GO. 

 

The proposal macro-algorithm 
0. Start 

1. Receive as input a signaling pathway  

2. Transform the network to a graph format (the proteins are treated as nodes and the reaction as links) to 

be treated by the respective tools 

3. Calculate the modularity for each node in the network 

4. Perform the hierarchical clustering, to obtain the dendrogram 

5. Calculate the centroids of each cluster, using centrality metrics. 

6. Enrich semantically each centroid with GO  

7. Return the clusters with the semantic content of their centroids  

 

   The macro-algorithm is described below: the first step is to bring the signaling pathway network to the desired 

format. Normally, it is received in OWL format (Ontology Web Language), and must be transformed to a network 

traditional format, in order to be analyzed by a SNA tool (in our case, Gephi [36], see step 2). Among the formats that 

the tool allows are: NET, DOT and CSV. Then, the modularity of all nodes is calculated using the equation 1 (step 3).  

   Each community is defined in step 4 by using our hierarchical clustering algorithm (see section 3.3.2 for more 

details). These three first steps are done for a given signaling pathway network, such as the TGF-β (see Figure 3). The 

hypothetical result is shown in Figure 4, where the clusters are represented by circles. They define the dendrogram, as 

is shown in Figure 2. 

 



CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 2, PAPER 6, AUGUST 2016 

 

Figure 3: The signaling pathway network of TGF-β 

 

 

Figure 4: Clusters for the signaling pathway network of TGF-β 

Then, the centroids are extracted for each cluster (step 5). For this study, the centroids will be taken as equivalent to 

the central nodes, taking into account the measures of centrality such as degree, closeness and betweenness. We are 

striving to merge the concepts of centroid of the cluster and central nodes of communities. A negative consequence is 

that we will not have a unique centroid, but the positive consequence is that we do not need just one, indeed more than 

one node that represents a cluster is helpful, in order to extract more knowledge from the GO to enrich the cluster. 

Initially, the central nodes are defined by the centrality measures of degree and closeness, because these are nodes that 

can be reached fast for the rest of the nodes in the network. If these centralities are not enough to identify the central 

node in each cluster, the betweenness centrality is used as a second filter, this is done because there are some networks 

that using just the closeness centrality, it is not possible to detect a group of interesting nodes. 

Next, the central nodes are passed to a semantic enrichment (step 6). This is done by using the PANTHER tool from 

the GO consortium. In this work, the nodes that are passed to PANTHER are the highly central nodes of each cluster 

that were filtered using the degree, closeness and betweenness centralities, and the semantic information returned will 

be extrapolated to each cluster where each central node belongs (step 7). The query using the PANTHER tool is an OM 

task (alignment and linking of the central nodes of the clusters with GO), for the semantic enrichment of the clusters. 
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The step 6 is based in the alignment of the Gene Ontology with the most central nodes inside each cluster, for a 

further enrich of each cluster within the pathway with the knowledge that can be incorporated from the Gene Ontology 

to the clusters. Then, the Gene Ontology is merged with these central nodes of each cluster. For some authors, this can 

be understanding as folksonomy, because our system uses public tags to enrich its clusters. 

 

5. Case Studies 

5.1. TGF-β 

TGF-β is a protein that controls cell proliferation implicated in cancer. This study allows biologists to detect biological 

functions specific to the cancer cell proliferation. The network used is shown in Fig. 5 in the network format that 

supports Gephi. The network has 1534 nodes or genes, and 3029 reactions or relations between them. 

 

Figure 5: Gephi Clusters  

 

Once calculated the modularity, 16 communities were found, which for this work represent 16 clusters of genes. In 

the calculation of centrality for all genes in the network, the Closeness Centrality was highly interesting, because for 

this type of network, the critical nodes are the ones that may be causing a disease, in this case carcinogenic. These 

nodes with high closeness centrality will spread a disease faster, or they are responsible for triggering a series of 

reactions that lead to the disease. The central nodes are shown in Fig. 6, which have a larger size than those with lower 

centrality (the size is proportional to the measure of centrality). Our approach calculates the degree and closeness 

centralities as a first filter, and the betweenness centrality when the other centralities give too much central nodes, in 

order to reduce the number of central nodes.  
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Figure 6: Network view with larger size of central nodes  

 

As mentioned in the algorithm, the closeness centrality is calculated (Fig. 7 shows the closeness central nodes of 

Fig. 6). These nodes are potentially critical genes in the development of cancer diseases. This leads to a greater 

understanding for the biologists. 

 

Figure 7: Network view showing only central nodes  
 

Table 1 shows the output that provides Gephi, where label is the identifier of the gene, degree is the degree 

centrality of the node or gene in the network, closeness centrality is the value of proximity of the gene, and id of the 

cluster is the number of the community to which each node belongs. In this case, it does not need to use the 

betweenness centrality because with the degree centrality and the closeness centrality there are enough nodes from each 

cluster to enrich the clusters. 
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Table 1: Gephi TGF-Β output 

Label Degree Closeness 

Centrality 

Id of the 
cluster 

_:A615 4 5.69672131 7 

_:A617 

_:A1091 

4 

4 

5.69672131 

5.69672131 

7 

7 

_:A1092 4 5.69672131 4 

_:A664 4 5.68032787 4 

 

Table 1 is a small version of the real table, with only 5 of the most central nodes, belonging to two different 

clusters; the genes _:A615, _:A617  and _:A1091 belong to cluster 7, and have the highest closeness centrality from the 

entire network. Furthermore, the genes _:A1092, and _:A664 belong to cluster 4, the most central nodes from cluster 4 

(using the Closeness Centrality). We have used the Silhouette Coefficient like the performance metric, to measure the 

quality of the clustering process. The Silhouette Coefficient of a i node is [13]: 

 

S(i)= (b(i)-a(i))/max (a(i), b(i)) (6) 

 

   Where a(i) is the mean distance between the i
th

 node and all other nodes in the same cluster, and b(i) the mean 

distance between the i
th

 node and all other nodes in any cluster not containing the node. We compute the average of the 

Silhouette Coefficient of all nodes as an overall measure of the goodness of the clustering process. The result is 0.9214, 

it is a very good result (closer to 1 is the best value). This is done in order to check and verify that our approach is 

giving good results. 

The next step is the semantic enrichment of the data in Table 1, which is performed with the PANTHER tool. The 

list of genes identifiers is given as input to PANTHER, and the output that gives the tool can be seen in Fig. 8, where 

all terms are referenced to a concept GO. 

 

 

Figure 8: Semantic enrichment of the nodes, extracted from PANTHER 

In Fig. 8 can be seen the list of genes in Table 1, with the semantic content extraction from GO. Each GO term 

within the table has a unique alphanumeric identifier; which leads to a definition with cited sources; and a namespace 

indicating the domain to which it belongs. The terms may also have synonyms, references to equivalent concepts in 

other databases, and comments about the meaning or usage of the term. This can be used by the biologists in order to 

know exactly which genes, proteins or reactions are the critical nodes in a pathway. These cells are essential in the 

proliferation of the disease. 
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5.2. Alzheimer Disease 

This experiment shows the pathway of genes, and other processes associated with the Alzheimer's disease. An adaption 

from KEGG 2011 (see [15] and http://www.genome.jp/kegg/pathway/hsa/hsa05010.html for details) was used. This 

network has 2537 nodes or genes, and 5816 reactions or relationships between them. 

   As in the case of TGF-β, the closeness centrality is calculated. Fig. 9 shows the network using a filter that only allows 

highly central nodes using the closeness centrality, these nodes are the genes that can propagate a disease faster than 

other nodes. 

 

 

Figure 9: Alzheimer Network view, showing only central nodes  

 

A second filter is used to allow genes with a high degree of input and output, the resulting network is illustrated in 

Fig. 10. This is done to get the more representative nodes from each cluster, these genes are those that can propagate 

faster the disease (closeness centrality), and moreover, they are nodes that can spread the disease to a high number of 

nodes at the same time (degree centrality), for these two reasons, these nodes are critical nodes in the network. 

 

 

Figure 10: Alzheimer Network view, with the main central nodes 

Table 2 shows the output that provides Gephi. Table 2, like table 1, is a reduced version of the real data table with 

thousands of genes. In this case are shown only 5 of the central nodes, belonging to three different clusters, clusters 0, 3 



CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 2, PAPER 6, AUGUST 2016 

and 8. These genes have the highest closeness centrality of the graph. The Silhouette Coefficient value, using the eq. 6, 

in this case is 0.9067, that is, the quality of the clustering process is good. 

 
Table 2: Gephi Alzheimer output 

Label Degree Closeness 

Centrality 

Id of the 

cluster 
_:A2034 4 6,215 0 

_:A2095 4 6,145 8 

_:A1967 4 5,761 3 

_:A1943 

_:A1943 

4 

4 

5,717 

5,269 

3 

3 

The next step is the semantic enrichment of the data in Table 2. As mentioned in the previous case, it is performed 

with the PANTHER tool. The output of the tool can be seen in Fig. 11, where all terms are referenced to a concept in 

GO. In Fig. 11 can be seen the genes listed in Table 2, with the semantic content mapped from the GO. In this case, 

PANTHER gives links to their respective family in the ontology. This output type, besides giving semantic content to 

the nodes (genes and proteins); adds a macro-semantic content, which is the family and the kind of node. This will be 

used by the biologists to analyse the critical genes in a pathway (essential in the spread of diseases or other biological 

reactions), their family and the protein class. 
 

 

Figure 11: Alzheimer nodes, with semantic content extracted from PANTHER 
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5.3. Comparison with similar approaches 

The criteria used for comparison with other approaches are: Theoretical bases used for the study, the type of problem 

which is resolved, and the output given to the user.  

Table 3: Comparison with previous work 

Work Bases Problem Type Output 

Our Approach Graph theory (modularity, centrality, communities detection) 
and Ontology Mining (Enrichment based on an ontology) 

Semantic 
enrichment of 

signaling pathway 

List of the main central 
nodes (genes and proteins), 

semantically enriched 

NOA [18] Ontology Mining (Enrichment based on an ontology) Semantic 
enrichment of 

biological networks 

Generate two alternative 
sets of classes of nodes 
functionally enriched 

CePa [19] Graph theory (centrality) Find important 
pathways 

Assign weights to the nodes 
based on the centrality 

Cytoscape and 
PSICQUIC [20] 

Graph theory (communities detection) Clustering in 
biological networks 

Clusters inside the 
biological network 

[14] Mining applications Functional similarity 
between groups of 

genes 

Incorporate biological 
knowledge, using 

knowledge bases as GO and 
KEGG 

[16] Graph theory (centrality) Clustering in 
Networks of 

interactions of 
proteins 

Main Proteins 

 

According to Table 3, similar approaches usually perform the analysis only using graph theory or ontologies. The 

only one that mix both in a semantic enrichment process is our approach. Our proposal is based on the structure of the 

generated graph of the signaling pathway, and the graph is analyzed using techniques of SNA to detect clusters 

(communities). Additionally, it identifies the most central nodes in each cluster. Also, it uses OM techniques 

(alignment and linking of the most central nodes of the clusters) for the semantic enrichment of the nodes (proteins) in 

the clusters. Our approach can use any gene ontology, not only GO, in the semantic enrichment process, and can be 

used in any signaling pathway, as we are shown in two case studies. 

Additionally, we use the silhouette measure to determine the similarity of an object with its own cluster compared 

to other clusters (see eq. 6). The silhouette ranges from -1 to 1, where a high value indicates that the object is well 

matched to its own cluster and poorly matched to neighboring clusters. If most objects have a high value, then the 

clustering configuration is appropriate, otherwise the clustering configuration may have too many or too few clusters. 

The result of the Silhouette Coefficient value for the first case is 0.9214, and for the second case is 0.9067, that is, the 

quality of the clustering process is very good with respect to previous works (see previous sections). 

6. Conclusions 

This paper proposed the use of clustering techniques aimed initially for SNA, to detect communities or groups in the 

signalling pathway networks. As main contribution, respect to other signalling pathway analysis techniques, our 

approach does not use the traditional clustering techniques, but from another area (SNA). In this way, it uses the ideas 

of modularity to define the clusters, then the centrality of nodes is used to link them with semantic knowledge, and 

characterize the biological clusters where each central node belongs to. In particular, the centrality identifies the central 

nodes within groups, without making a study of the characteristics of the nodes, only considering their structures and 

connectivity. It is sufficient to determine the critical nodes in a community.  

Particularly, this idea of the utilization of measures from the graph theory can extend the analysis of the biological 

networks with other concepts, to understand them better. Next work must explore the relationship between these 
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measures and the biology, and analyse the interest in using other metrics from the graph theory: eigenvector centrality, 

Katz centrality, PageRank, among others 

On the other hand, we have used the GO for the semantic enrichment, and in particular, the PANTHER query 

engine. Semantically, it enriches the most central nodes in each group. This provides much information of value to 

biologists because it gives precise biological information for critical nodes in the spread of a disease. Our approach 

does not depend of this ontology, we can use others ontologies, or a mix of them. 

A future work is an application that integrates all these tools. Also, future studies should analyse a process of 

semantic enrichment from multiple ontological sources (for this task, it will be required other OM tasks, such as the 

ontological merge. 
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