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Abstract

The discovery of knowledge in textual databases is an approach that basically seeks for implicit
relationships between different concepts in different documents written in natural language, in
order to identify new useful knowledge. To assist in this process, this approach can count on
the help of Text Mining techniques. Despite all the progress made, researchers in this area must
still deal with a large volume of information and with the challenge of identifying the causal
relationships between concepts in a certain field. A statistical and verbal semantic approach that
supports the understanding of the semantic logic between concepts may help the extraction of
relevant information and knowledge. The objective of this work is to support the user with the
identification of implicit relationships between concepts present in different texts, considering
their causal relationships. We propose a hybrid approach for the discovery of implicit knowledge
present in a text corpus, using analysis based on association rules together with metrics from
complex networks to identify relevant associations, verbal semantics to determine the causal
relationships, and causal concept maps for their visualization. Through a case study, a set of texts
from alternative medicine was selected and the different extractions showed that the proposed
approach facilitates the identification of implicit knowledge by the user.

Keywords: knowledge visualization, knowledge discovery, knowledge modeling, knowledge representation, implicit
relationship, knowledge acquisition, causal concept maps

1 Introduction

The amount of knowledge accumulated in documents written in natural language represents a potential source for new
discoveries. Due to the advancement of digital media, this knowledge can be stored and made available to those who
need it [1]. However, researchers must deal with a significant number of publications, the overload of information,
and the lack of data structure. This scenario promotes many challenges related to the acquisition, representation and
analysis of this content [2].

To deal with these challenges, different models, processes, and methodologies have been proposed. Among these
is the Knowledge Discovery in Text (KDT) [3, 4, 5], an approach used to find latent rules and patterns in texts that
result in useful knowledge [4, 6, 7]. Due to the potential of the KDT process, it is fundamental to develop models
that facilitate the process of discovering implicit relationships. Note that an implicit relationship, as the name implies,
is a type of relationship between concepts that is hidden. In this work, we assume that it either exists as a proven
or accepted concept or as a hypothesis to be verified. To make this process viable, faster and more efficient, one
can count on the support from Text Mining (TM) techniques [8, 9, 10, 11]. The TM process is basically divided
into five main phases: identification of the problem to be addressed, preprocessing of texts, extraction of patterns,
post processing and use of knowledge [10]. TM fundamentally relates to the discovery of useful information from
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unstructured or semi-structured documents. Its techniques enable automatic analysis of a large textual set with little
manual intervention.

However, the area surrounding TM must still deal with the complexity inherent in the overall structure of ma-
nipulated texts since these documents are composed of complex and heterogeneous data. Therefore, it is essential to
identify and consider existing relationships in the dataset [12] to better understand the general context of the processed
texts. Despite the available technology, the extraction of knowledge from texts remains an arduous task [13]. Textual
documents have a structure that requires the application of specialized techniques due to the implicit meaning assigned
to each word in the human language [14] and between the relationships in which those words are involved.

The main advantage of a set of associated words is the fact that it relates to the context of the document [15],
and it contributes to the maintenance of its representativeness. Association analysis is one of the several TM tech-
niques presented in the literature [16], which is responsible for highlighting indirect relationships and making explicit
potentially useful connections between the words that make up a set of documents. In an association analysis, the
discovered relationships are represented by association rules. These rules make explicit the items that are most often
listed in a database. Thus, in relation to TM, the association process aims to elicit existing indirect relationships be-
tween words, which may explain potentially useful connections. However, some of the discovered relationships are
potentially false, because they may happen simply by chance. Therefore, the results of an association analysis must
be carefully interpreted, since inference by an association rule does not necessarily imply causality. Causality requires
the knowledge of cause-and-effect attributes in the data [12].

In this scenario, the detection of causal relationships could represent another method to determine potentially
useful relationships, representing an interesting way of analyzing and understanding how the words (concepts) relate
to each other. However, mining these relations is a challenge due to the difficulty of capturing the causality between
events. In comparison with statistical coexistence, causal relations have some unique properties. For example, by
saying that an event X causes an event Y, it is expected that Y will be influenced by X, not the opposite. This fact
indicates that there is an intrinsic asymmetry between related concepts, which can not be disregarded. Therefore, there
is a need to use approaches that explain how these cause-and-effect relationships occur [17].

In order to obtain such explanations, we can count on the support of techniques based on linguistic analysis. These
techniques can use textual analysis of the syntactic and/or semantic type. Syntactic analysis is related to the superficial
aspects of language, that is, its structure and form. It works as a set of combination rules to form words, phrases, and
sentences. The semantic analysis, in turn, is related to the meaning of these constructions. We note, however, that
several researchers are only committed to the syntactic function of a word in a sentence, or else, at the semantic level,
they only focus on the meaning of words and their hierarchical (taxonomic) relationships [18, 19]. In most cases, the
methods frequently used in the KDT process disregard the contextual semantic of the processed texts and, therefore,
they provide few elements corresponding to the general content of the text.

The most common semantic approach used in TM is the treatment of latent semantics, performed using the Latent
Semantic Indexing (LSI) method [20, 21], followed by applications related to the use of concepts or topics present
in the documents [22, 23]. However, these approaches are not able to provide semantic explanations linked to rela-
tionships that do not belong to a semantic hierarchy taxonomic relationship. In order to obtain semantic explanations
related to relationships between concepts of distinct semantic classes (non-taxonomic relationship), the analysis should
be based on events. Thus, the main focus of this type of analysis necessarily falls on verbs. Verbs lead to the specifica-
tion of words that fit in a sentence, the morphological forms of these words, the order in which they should appear in
the sentence [24, 25, 26, 27] as well as their cause-effect relationships [28]. The contextual semantic based on events
is related not only to the order (i.e. syntax) in which the words are distributed in a sentence but also to the semantic
role (thematic role) that these words play in that sentence and how the set of all sentences intertwine to form the
general context of a document. Thus, the aim of thematic role work is to identify the predicate (verb) of a sentence and
then assign to its arguments (subjects, verbal complements) certain semantic roles such as agent, patient, instrument,
place, among others. Therefore, semantic research techniques focused on the verb can help in the understanding of
contextual semantics.

However, in addition to the problem of textual data complexity, the TM process must also deal with a large number
of words present in a textual dataset. To deal with this issue, statistical measurements from complex networks may
be used. There is a wide range of metrics in the complex networks approach available for the characterization of the
topological properties of a linguistic network. These metrics can aid in the process of assigning weights to the main
words and relationships present in the data. In this sense, metrics are considered as a type of weight assignment, in
order to select a subset of more representative words. By using this approach, we can apply a filter to select valid and
useful relationships for the discovery of knowledge. The interest in modeling and analyzing text as complex networks
has been on the rise in recent years and considerable research in this area has already been accumulated [29, 30]. These
investigations demonstrate that several aspects of natural language systems may be represented as complex networks.
Their vertices depict linguistic units (such as words, morphemes, and phonemes), while links shape their relationships
[31, 29].

Within this context, the goal of this work is to facilitate the inference of implicit relationships in a textual corpus,
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by applying a TM technique based on association analysis, plus complex network metrics and verbal semantics to
allow the visualization of explicit causal relationships in a concept map.

This approach allows us to add the advantages of the quantitative and qualitative analysis models to the TM
processes. The extracted relationships may contribute to the discovery of implicit relationships by the user assisting
in the KDT process. In essence, our methodology is based on association analysis that enables the identification of
frequently associated words in the entire corpus (set of processed texts). These words and their relationships are then
represented in the network format and are analyzed using quantitative measures from complex networks that provide
a ranking of the concepts (nouns) that stand out in the set. With this ranking, we can decrease the volume of data and
extract a subset of more representative concepts. With these main concepts and their explicit relationships, we model
a causal concept map with the aid of linguistic techniques based on verbal semantics. This map enables the user to
manually infer implicit relationships.

This work is structured as follows: Section 2 discusses background and related work. Section 3 shows the proposed
approach. Section 4 addresses the implementation of the approach and the results. Finally, Section 5 presents the
conclusion.

2 Background and Related Work

In this section, we review key concepts and related work on the three techniques used in this work, i.e. association
analysis, complex networks, and verbal semantics.

2.1 Association Analysis

Bhardwaj and Khosla [16] point out that in TM, one of the main components to be considered in the treatment of
textual data is context analysis. According to the authors, the techniques of association analysis stand out in obtaining
this type of information. In addition, association analysis can be used to decrease the volume of data. This type of
analysis is used to find patterns that describe highly associated characteristics within the data [12]. Thus, one can
find useful relationships that, apparently, are not visible. Discovered relationships can be represented in the form of
association rules. Thus, association rules extract the relationships between items (words) in a database, where A→ B,
meaning that when a term A occurs, a term B also tends to occur [32]. Thus, regarding TM, the association analysis
aims to evidence existing indirect relationships between words, explaining the potentially useful connections. The
strength of an association rule is measured in terms of support and confidence. Support determines the frequency with
which a rule is applicable to a particular dataset. Confidence, in turn, determines how often items in a set appear in
transactions that contain another set of items [12].

Support and confidence measures are the most common in extracting association rules. However, this model gen-
erates a large number of rules, which may render the process of user analysis difficult [33]. Moreover, in many cases,
the rules obtained using only these two measures may present many false relationships, even with high confidence
values [34]. This is especially true when the antecedent support value is low and the consequent support value is high,
so that most of the extracted rules are composed of items that most occur in transactions.

Considering the examples illustrated in Table 1, the values shown in the second column and the third column
represent, respectively, the support value of each word. For example, the word vitamin, independently of the rule
it may belong to, has a support value of 29.3 (see the first through the fourth lines where it occurs). The values
presented in the fourth and fifth columns represent the support and confidence of each association rule, respectively.
We conclude, by analyzing these results, for example, that the “risk→ vitamin” rule may represent a false relationship,
since the support value of the antecedent (risk = 2.8) is low compared to the support value of the consequent (vitamin =
29.3). Therefore, in this case the rule that would most accurately represent the relationship between these two concepts
is the “vitamin→ risk” rule, where the antecedent has a higher support value (vitamin = 29.3) and the consequent a
lower one (risk = 2.8).

The selection of the rule in this case may be confirmed by its confidence value. In this case, “risk→ vitamin” has
a low value (9.7), whereas “vitamin→ risk” has a high value (28.6), which leads to its adoption. Thus, for a rule to be
considered strong, it must have adequate support and confidence values. The decision about which rules to keep and
which to discard during the mining process is based on the values of these two measures. This means that support and
confidence act as key measures of interest in the association rule mining process. However, this process is not trivial,
and in many cases rules that appear to be classified as false may reveal relevant information to the user. This problem
was worked out in our approach by using metrics from complex network theory.

Ruiz et al. [35] used association rules to merge information extracted from various datasets in order to decrease the
volume of data, their distribution and volatility. The model proposed by the authors produces meta-association rules,
that is, rules in which the antecedent or the consequent word may also contain rules, to find joint correlations between
the trends found individually in each dataset. d’Amato et al. [36] have shown that the use of association rules can
also help in the coupling between ontologies and statements that may be out of sync. The authors proposed a method
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Table 1: Association Rules extracted from the database.

Rule Support Support Support Confidence
Antecedent (LHS) Consequent (RHS) Rule Rule

“vitamin→ pregnant” 29.3 9.9 4.3 42.9
“pregnant→ vitamin ” 9.9 29.3 4.3 14.6

“vitamin→ risk” 29.3 2.8 2.8 28.6
“risk→ vitamin” 2.8 29.3 2.8 9.7

“labor→ premature” 5.7 5.7 4.5 80.0
“premature→ labor” 5.7 5.7 4.5 80.0

“risco→ labor” 2.8 5.7 3.4 60.0
“labor→ risk” 5.7 2.8 3.4 34.3

to discover a multi-relational relationship through the use of association rules, considering intentional knowledge.
Moreover, the rules discovered could be directly integrated into the ontology, enriching its expressive power and
increasing the assertive knowledge that could be derived.

Amin et al. [37] used association rules to assist in the development of a dengue control system in Pakistan.
Through the rules obtained, the authors have shown that if a virus attacks somewhere, it is possible to predict its next
geographic target. In Vasques et al. [38], association rules were used to help telecom companies with the adoption
of business strategies to satisfy and maintain their customers. Considering the reports of occurrences of telephone
service, which were registered in a private database, the authors, through the rules generated, identified the profiles of
the users who remained faithful to the operator and the profiles of those who left them. The resulting association rules
allowed the understanding of the reasons that led them to stay or give up the operator.

2.2 Complex Networks

In addition to the body of work that uses association analysis, we also find in the literature work from complex
networks for the exploration of the contextual aspects of a document, currently, as an alternative to representations
based on the vector space model. Networks are composed of objects and their relationships. A network can be
described as a graph and, as such, inherits its conceptual properties. A graph is defined as a mathematical structure
consisting of two sets: V (vertices) and E (edges), resulting in the formula G = (V; E). A certain vertex is adjacent
to another if there is an edge that joins both. A graph can also be directed or not. In a directed graph, also called
a digraph, there is no symmetry between the two objects of the relation. The graphic representation of the edge is
an arrow, which points out the relation of one concept to another. In an undirected graph, there exists a symmetrical
relationship between the edges.

Networks are able to represent different types of objects and different types of relationships [39] and obtain better
results in comparison to algorithms based on the vector space model [40]. Such models are used to represent relations
between textual documents or between the many concepts that make up the documents. The analysis based on complex
networks allows the extraction of different metrics, such as the average degree of vertex, hubs, betweenness centrality,
and clustering coefficient, among others. [41]. Wachs-Lopes and Rodrigues [31] developed a study that proved that
complex networks also provide a useful tool to aid in the understanding of context-related issues. In their study, the
authors modeled two complex networks, the first being in English and the second in Portuguese, and they presented
the study of the dynamics of these two networks. They showed the behavior of the small world and the influence of
the hubs, thus suggesting that these databases have a high degree of modularity, which indicated specific contexts of
words. Ke et al. [42] used complex networks to develop a method to analyze the quality of nonlinear Chinese-language
text. For the development of the study, the authors used texts produced by university students in China. These texts
were then represented as free-scale networks (word adjacency model), from which typical network resources were
obtained, such as clustering coefficient and network dynamics. The results revealed that complex network features of
different text qualities can be clearly revealed and used in potential applications for other text analysis.

A network representation can also increase the number of links that make up the intermediate path between dif-
ferent words, allowing the extraction of all the words involved in a relationship. The relations between words enable
the extraction of patterns that would hardly be captured by algorithms based on the vector space model, besides being
useful to improve the quality of the extracted standards [43]. According to Solé et al. [44], different configuration
models can be used to generate graphs that represent the content of documents written in natural language. These
templates can be configured to generate co-occurrence networks (words that appear together in a sentence), syntactic
networks (words that have syntactic dependencies) and semantic networks (words linked by semantic relations).

Xu et al. [45] developed Knowle, an online news management system, in which they introduced a semantic link
network model. The central elements of Knowle are Web news events linked by their semantic relationships. Knowle
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is a hierarchical data system, composed of three different layers formed by concepts, resources, and events. In short,
this system provides the various semantic relationships between these layers. In their case study, the system was used
to organize and mine health news, and it showed its potential to analyze large databases in the health field.

Thus, in order to obtain a richer representation of texts written in natural language that can be processed by
computer systems, some methods for the generation of different types of networks from texts were created. In this
model of representation, usually, vertices represent the nouns (subjects and objects) of the sentences and the edges
represent the verbs, thus forming a graph. As an example of this model of representation, we find in the literature the
semantic networks of Sowa [46] and also in the Resource Description Framework (RDF), whose model is the basis
of the Semantic Web. In RDF, the representation is done in triple format (subject-verb-object), and the set of several
triples on the same subject is seen as a directed graph [47].

Recently, also in the area of health, SemMedDB, the Semantic MEDLINE [48], was converted into a graph
database called Neo4j, which facilitated the extraction of relations using patterns of discovery and enabling the fusion
information sources. SemMedDB is a repository of semantic (subject-predicate-object) extracted by SemRep [49].
SemMedDB currently contains information on approximately 94 million predictions of all PubMed citations (about
27.9 million citations, on 31 December 2017) and forms the backbone of the MEDLINE Semantic application [50, 51].

This body of work reveals the importance that association analysis and complex networks approach assume in the
context of KDT. However, for the most part, the methods used still have little emphasis on contextual semantics, thus
impairing the performance in terms of the representativeness of explicit relationships and the discovery of implicit
relationships. Thus, we note that a large part of the recent KDT and TM research has focused on reinforcing more
advanced semantic applications.

2.3 Verbal Semantics

The semantic aspects that one wishes to emphasize in a given representation guide the type of extraction and selection
of certain types of semantic relationships between words [52, 53]. There are two types of semantic relationships
existing between the words (concepts) that guide the rules of interpretation of their meanings: taxonomic and non-
taxonomic relationships. A taxonomic relationship is one that occurs at the word level, and it includes items of the
same category (class of words), such as the relationship between the words “chair - table - armchair”, which fall into the
class of “Furniture”. Therefore, this type of relationship refers only to the lexical structure of terms and concerns the
practices of naming, defining and categorizing them [54, 55, 56]. The non-taxonomic relationship is that which occurs
at the sentence level and is also called thematic relations (or semantic relations). This type of relationship includes
words that are related to scenarios or events [26]. In this type of relationship, words assume certain “thematic roles (or
semantic roles),” that is, their functions in the sentence, such as “agent”, “patient”, etc. In this way, the words present
the non-taxonomic relationships share an associative relationship of distinct classes [26, 57, 58, 19]. The relationship
between the words “Joiner - builds - table” reveals the association between a class referring to “Professions” and a
class relating to “Furniture”, linked by means of a verb.

The discovery of non-taxonomic relationships was identified in the literature as being the most difficult to obtain
[59, 2]. This difficulty is due to the linguistic complexity involved in the construction of a sentence and the identifi-
cation of the function (thematic role) that each word (concept) plays in a sentence. The assignment of thematic roles
to non-taxonomic relationships is difficult, since various relations between instances of the same general concepts are
possible at semantic-lexical and sentence level [60, 2]. Besides that, there is a lack of consensus in the literature on the
actual number of thematic roles, as well as the lack of consensus on the terminology used [28]. Several approaches
have been proposed, which differ from one another, generating a large number of “semantic types” for the concepts
[61, 62, 63, 64, 65, 66].

Nevertheless, this body of work regards the verb as the central element for the discovery of non-taxonomic rela-
tionships. Thus, the verbs gained prominence in semantic investigations [60, 59, 67] and began to be used in several
types of research also as an instrument for the extraction of causal relationships in textual documents. Garcia et al.
[68] developed COATIS, an automatic system created to acquire knowledge of causality from texts. Khoo et al. [69]
developed a type of automatic extraction of information from and made from texts. For this, they used linguistic clues
without the use of any domain knowledge. These clues were based on causative verbs, constructions (“if ... then ...”)
and in adverbs and causative adjectives. Girju [70], presented an intensive system of supervised knowledge that is
based on constructs structured into semantic (or triple) predications of “noun-verb-noun”. These triples were used to
identify new pairs of nouns that codify causes and effects (e.g, “Tsunamis cause tidal waves”). In that system, the
verb is identified from a set of 60 causal verbs present in Word-Net (for example, “cause”, “leads to”, “provokes”).
Thus, in this work, the author developed an approach to automatically identify lexical-syntactic patterns that express
the causal relationship and semi-automatically validate the patterns.

A disadvantage in the research papers cited above is the lack of a context of sentences, which are analyzed in
isolation. This generates a loss of information, which may be fundamental to the understanding of knowledge. Most
systems are methods to create non-taxonomic relationships (based on in events) but do not consider the context in
which those relationships may be inserted. The context is related to the comprehension of the set and interlacing of the
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various sentences that make up a text, not just the comprehension of some isolated phrases. With one chain of logical
links between words and sentences, explicit relationships can be understood and hidden relationships can be identified.
According to Nastase et al. [71], causality is a type of complex relationship and not primitive, which can be refined
into more specialized sub-relationships. In this sense, only the labeling of the concepts (thematic roles) is not enough
to reveal all the relationships existing causal relationships in a text. It is also necessary to cross-reference the labeled
sentences to obtain the more specialized sub-relationships that will provide sufficient information for the identification
of causal relationships. Hashimy and Kulathuramaiyer [72] sought to consider the context of the input text to obtain a
semantic classification of relationships, in particular, relationships of causality. They proposed a framework to extract
the initial semantic causality relationships of the input samples. They then filtered these patterns using two algorithms.

These papers contributed significantly to demonstrate the importance of more complex event-based semantic an-
alyzes to logical understanding of the relationships existing between the different concepts. They also demonstrated
that the identification of causal relationships can contribute to more advanced TM. However, most of the time, these
papers used lists of predefined verbs, neglecting any other relationship that did not derive from that list. This fact
generates a loss of relevant information, especially with respect to the context and the discovery of implicit relation-
ships. Another problem is the limitation related to triple extraction model, which considers only the subject and the
complement object (usually direct object) of the verb, neglecting the other linguistic information present in the verbal
syntagma (as adverbial adjuncts, for example), which are fundamental for obtaining an understanding of meaning.

Meaningful words or sentences embedded in any paragraph of a full text can be processed to extract logical
relationships. With a chain of logical connections, hidden relationships can be identified. From the identification
of semantic relationships between words, it is possible to identify the logical meaning of such relationships, without
the need for explicit words such as “cause” or “effect” [73]. This idea was also explored by Vasques et al. [28,
74] who, with the help of verbal semantic analysis, developed a process called Verbka that is capable of extracting
causal relationships from a text. To this end, a basic distinction between a participant X (Cause) and one (or more)
participant(s) Y (Effect) is necessary.

To assist in the process of obtaining more meaningful causal relationships, Vasques et al. [74] developed a pro-
cess of knowledge acquisition called Verbka. This process considers, together, the approach of semantic roles, verbal
semantics and the context of a document for the identification of causal relationships. Based on theories of Cogni-
tive Semantics that approach takes the verbal semantic as the central unit of discourse [61, 75, 76] and provides a
relevant linguistic theoretical basis for sustaining a process of knowledge extraction based on cause-and-effect. The
classification of concepts in thematic proto-roles proposed by Dowty [76] makes it possible to reduce the large number
of semantic roles present in literature in only two macro roles (proto-roles), classified as X and Y (proto-agent and
proto-patient). The Langacker [75] model of energy flows is harmonized with the theory of thematic proto-roles since
the focus of this theory is also the definition of an agent (responsible for causing an action) and of a patient (affected
by an action).

Therefore, the process requires that a text must be initially fragmented in linguistic pieces. Then, this fragmented
text will be finally reconstructed in the form of concepts and their causal relationships, which will then be interlaced
and represented in the form of a graph (network), composing a causal concept map. It should be noted that in this
process all the verbs present in the texts are considered. Each of these verbs is then inserted into a specific verbal
category (verbal semantic), according to its typology: cause-and-effect verbs, reflexive verbs, and static verbs. In
this approach, the conceptual modeling of propositions extracted from the text is suggested in a concept map format
because of its ability to represent knowledge in an interactive and dynamic model, facilitating the user’s visualization
and comprehension [28].

2.4 Comprehensive Work

In this subsection, we review work that combines one or more of the previous techniques. Salloum et al. present a
study that demonstrates a comprehensive view of text mining and its current research status. The authors point out
that there is a limitation in the treatment of information extraction from research articles using data mining techniques.
According to Jabri et al., The textual information user must deal with the exponential increase of data and the difficulty
of structuring and understanding them. This creates a challenge for information retrieval. In order to deal with these
problems, different authors have been using the task based on extracting association rules.

Liu et al. [77] presented a mining approach to detecting topic relationships based on parallel association rules,
called PARMTRD (Parallel Association Rules Multi-Topic Relationship Detection). This approach detects relevance
across multiple topics by selecting and assembling association keywords in keyword sets, which help you find event
sources across multiple topics. Li et al. analyzed high-frequency word co-occurrence networks in the bioinformatics
literature, in addition to their structural and evolutionary characteristics. They analyzed the co-occurrence relationship
between the high-frequency words of the articles and created a co-occurrence network of these words. The results
showed that the high-frequency word co-occurrence network in the bioinformatics literature was a small-world net-
work with non-scaled distribution.
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Zupanc and Davis [78] investigated large automatically constructed knowledge bases (KBs) in order to learn how
these knowledge bases generate new knowledge in the form of inferred facts or rules that define regularities. They
proposed a scoring function to evaluate the quality of a first-order rule learned in a KB. The proposed metric was
intended to include information about tuples that were not contained in KB when assessing the quality of a potential
rule. However, one of the major challenges of TM is related to the semantic aspects of the texts. In this sense,
researchers have presented works focused on improving the semantic representation of information and knowledge
extracted from texts.

Kralj, Robnik-Sikonja, and Lavrac [79] proposed a semantic data mining approach called NetSDM, which trans-
forms available semantic knowledge into a network format, followed by classification. and removing nodes based
on network analysis to reduce the size of the original knowledge. In the experimental evaluation of the proposed
methodology on acute lymphoblastic leukemia and breast cancer data, they demonstrated that NetSDM achieved im-
provements in time efficiency and that the rules learned were comparable or better than the rules obtained by other
semantic data mining algorithms. Biryukov et al. implemented a pipeline that, while exploring text mining and se-
mantic technologies, to help researchers access the semantic content of PubMed and Elsevier’s full-text abstracts and
articles. Relationships are extracted along with the context that specifies the location of detected events, preconditions,
temporal and logical order, mutual dependency, and / or exclusion. To assist in the task of implementing improvements
to semantic aspects of textual representation, several authors have used the network science approach.

Sizemore et al. [80] created semantic resource networks, where words correspond to nodes and connections corre-
spond to shared resources to understand language learning and knowledge acquisition. According to the authors, nodes
and their connections characterize the structure of strongly interrelated word groups. Using the network topology, they
found that, despite varying word order, the overall organization remains similar. They also showed that network mea-
surements correlate better with sparse parts than basic lexical properties. Raimbault [81] introduced a methodology
combining citation network analysis and semantic analysis. They collected a corpus of about 200,000 articles with
their abstracts and the corresponding citation network that provides a first citation classification. They extracted rel-
evant keywords for each article through text mining, building a semantic classification. They studied the qualitative
patterns of relationships between endogenous disciplines within each classification and showed the complementarity
of the classifications and their associated interdisciplinary measures.

Yang et al. [82] used a Subject-Action-Object (SAO) network to analyze trends in the development of graphene
technology. The authors, by means of a network representation, represent the subject and the object of the sentences as
nodes and the action as the edge. An empirical study of graphene technology was used to apply the method, employing
concepts of structural holes, changes in node degree distribution, and changes in network centrality to detect trends
in the development of graphene technology. Vlietstra et al. [83] have shown that semantically integrated knowledge,
drawn from biomedical literature and structured databases, can be used to automatically identify potential migraine
biomarkers. To do so, they filtered out composite biochemical concepts and classified them by their potential as
biomarkers, based on their connections to a subgraph of migraine-related concepts. The minimum unit of knowledge
in the network is a triple formed by two concepts linked by a predicate (subject - predicate - object). The sources
(origins) of each triple are also included in the network.

Qiu et al. [84] feature a multiphase correlation search framework to automatically extract non-taxonomic relation-
ships from big data documents in a smart city. Different types of semantic information were used to improve system
performance. They proposed a method based on semantic graphs to combine semantic graph structure information
and term context information to identify non-taxonomic relationships. They then used different semantic types of verb
sets based on syntactic dependency information, classified to act as non-taxonomic relationship labels. Yu et al. [85]
developed an approach for extracting relationship information from bioentities present in texts, in order to label cer-
tain relationships as true or false. To this end, they used Natural Language Processing (NLP) and a theoretical-graphic
algorithm. The method, called GRGT (Grammatical Relationship Graph for Triplets), extracts the pairs of terms that
have certain relationships and also the type of relationship (the word that describes relationships). Thus, they represent
the sentence structure as a dependency graph where words are nodes and edges are typed dependencies. The shortest
paths between the word pairs in the triplet are then extracted, forming the basis of the information extraction method.

Our work aims at the syntactic and semantic exploration of sentences for more detailed information and a more
meaningful analysis of the extracted relationships [21, 86, 87, 88]. The process of extracting implicit relationships used
in our work, in addition to having techniques for extracting association rules and metrics from complex networks, uses
as attributes the semantics contained in the verbs that make up the existing relationships between concepts. This
type of semantic analysis allows the understanding of causal relationships existing between the concepts of the texts
analyzed. Thus, it seeks to maintain, as far as possible, the contextual semantic load, in order to use the relationships
extracted in knowledge discovery. It may be seen from the literature that there is early work that uses association rules,
complex networks, and work that combines both. To our knowledge, no prior work has combined association rules,
complex networks and concept maps, structured around verbal semantics, to support the task of uncovering implicit
relationships in textual databases.
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3 Proposed Model

Much of the information produced and made available by digital means is in textual format. The texts do not present
data organized in rows and columns and, therefore, they are composed of a set of unstructured data. Because it
does not have a formal structure, this type of information becomes difficult to analyze. To assist in the process
of extracting relationships from this type of information, we can rely on a set of techniques from different areas,
which may contribute to a more advanced TM. However, the KDT process is not trivial, mainly due to the lack of
methodologies that emphasize the contextual aspect in which the extracted relationships are involved. There are two
different types of approaches that can be used to analyze textual data: statistical analysis (based on the frequency of
terms) and semantic analysis (based on the functionality of terms). These approaches can be used either separately or
together [89]. In statistical analysis, the importance of a term is calculated by counting the number of times it appears
in the text. Its process is centered on statistical learning from data usually involving the steps of data coding, data
estimation, and document representation models. The semantic analysis (linguistics) is based on Natural Language
Processing (NLP) techniques [90, 91], which is used to evaluate the sequence of terms in the context of the texts in
order to identify their function, i.e. it’s meaning in a given context.

Thus, the present work proposes a process for discovering implicit relationships present in a text corpus, using
a hybrid approach based on three different techniques: association analysis, complex networks metrics (which are
statistical), and analysis based on verbal semantics (which is linguistic). Fig. 1 illustrates the phases (and their
respective steps) that make up the proposed TM process for uncovering implicit relationships. These phases enable
the interconnection of textual content represented by concepts (words) in a domain of analysis with the purpose
of supporting the process of knowledge discovery. The first phase is related to problem identification. It must be
understood what is the purpose of the TM, for example, “Why some emerging infectious diseases cause epidemics”.
The second phase concerns the texts preprocessing, including usual tasks that prepare the text for the extraction
of terms. The third phase consists of deriving patterns (i.e. causal relationships) that summarize the underlying
relationships in the data. It extracts and explains the results obtained through the visualization (through a concept map
in our case), considering that a different view of textual data may reveal important features. Pos-processing is the
fourth phase, and it is necessary to evaluate and interpret the patterns extracted from the documents. Finally, in the
last phase, after being evaluated and validated, the extracted knowledge may then be used by the users in a way that
suits them (Knowledge Utilization).

To test the feasibility of the proposal, we apply the process to a set of ten health texts dealing with alternative
medicine, which are processed and represented in a network format in order to enable the exploration of data from
different points of view. We highlight that one of the major challenges of TM is the high dimensionality of the words.
A set of documents may have hundreds or even thousands of words. However, many of these words are irrelevant and
do not contain useful information for the mining task. An option to deal with this issue is to analyze the words in terms
of their relationships. In this type of approach, the first step in the analysis is to find relationships between the different
words to then execute the remaining analysis using these relationships, rather than analyze the words themselves [12].
Thus, the representation model used to visualize the data is a causal concept map, since it is able to capture and reveal
important aspects of the relationship between the words (i.e. concepts) under analysis. The next subsections address
each phase and the corresponding steps.

3.1 Phase 1: Problem Identification

This step is fundamental to structuring the rest of the mining process. The focus of this phase is to detect a problem
and select the database and techniques that may possibly help in its resolution. At the end of the entire mining process,
it will, therefore, be necessary to check whether the initial problem has been solved.

1. Define Goals. It is at this stage that the objective of the mining must be delimited and specified, having clear
what is expected from the analysis of the data. It is also at this stage that one selects the base of texts that will
be explored and define how the results will be used.

2. Select Textual Documents. This step consists of selecting the textual documents that will compose the input
dataset.

3.2 Phase 2: Preprocessing

Preprocessing transforms documents written in natural language into a viable data format, which is then used to extract
interesting relationships and information relevant to the KDT process. To improve the quality of mining standards and
the time required for mining, some data cleaning techniques must be applied in the preprocessing phase.

1. Prepare Text. it is necessary to prepare the documents in the collection to be processed by the algorithms
used for pattern extraction. Therefore, it is first necessary to generate the attributes that represent the textual
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define goals select text prepare text map transactions

extract rules construct net extract metrics rank concepts

select key concepts capture sentences structure sentences 

create maps extract relations identify implicit relations

evaluate relations use knowledge

Figure 1: Approach for uncovering implicit relationships.

documents. To this end, treatment, cleaning and volume reduction activities are usually performed. The cleanup
aims to remove special characters (digits, punctuation and accent marks, and line breaks), plus some stop-
words (articles, prepositions, conjunctions). After obtaining the attributes that represent the textual documents,
a representation of the data is then generated in a format that is suitable for the extraction of knowledge.

2. Map Documents into Transactions. After the preprocessing phase, the set of texts is mapped into transactions
(different sets of items). In association analysis, a collection of items is called an item set. In the case of TM,
these items are the words that make up the texts. The mapping of the textual document into transactions allows
the extraction of association rules. Transactions are sets of words (items) under the same context of analysis.
They may be obtained either from sentences, paragraphs or from a sliding window. The paragraph mapping
considers the set of all the words that are contained between the punctuation marks “.”, “!”, or “?”, followed
by a line break. The mapping in sentences considers the words that appear between the “.”, “!”, or “?” signs.
To obtain the transactions in this work, we opted for the sliding window technique. [92]. In a sliding window
mapping, it is possible to limit the maximum distance that two words should appear in the text to be considered
as their co-occurrence. Thus, the first transaction contains only the first word of the document, the second
contains the first two words, and so on, until the window contains the number of words equal to the size defined
for the window [92].

3.3 Phase 3: Pattern Extraction

This step aims to extract knowledge through the application of pattern extraction techniques. These techniques are
based on the main tasks of Data Mining (classification, clustering, regression, and association). The tasks to be
performed are defined according to the ultimate goal of the knowledge extraction process. It is possible to summarize
the main activities related to the extraction of patterns in predictive and described activities. Predictive activities
(classification and regression), which consist of the use of supervised machine learning algorithms, which require a
set of training examples that have meta attributes. Descriptive activities (obtaining association rules, clustering, or
summarization of document collections) consist of the use of unsupervised machine learning algorithms that detect
intrinsic behaviors in the collection of data that do not have meta attributes. In this work, we used the descriptive
activity, using association rules, plus metrics derived from the analysis based on complex networks and semantic
information obtained through analysis based on verbal semantics. In summary, our goal it to identify relationships
and thus we use association rules for textual documents, which encode important information about the relationships
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between items (i.e. words, documents, etc..) and, ultimately, are able to identify patterns, themes, and context [93].
Thus, in this work, we use the association analysis with the objective of (i) identify the words that are most frequently
related; (ii) decrease the volume of data; (iii) provide pairs of related words for the construction of a complex network.

The approach based on complex networks can provide important metrics to assist in the selection of words. In this
work, we use complex networks to (i) extract metrics from the network; (ii) use metrics to weigh words; (iii) rank the
core words of the network; (iv) extract a subset of words; (v) decrease the number of words.

The verbal semantics may help in the detection and understanding of causal relationships between concepts. Thus,
we use a knowledge acquisition process (Verbka) based on verbal semantics to: (i) select the main concepts (main
nouns) ranked in the previous step; (ii) search the original textual dataset for the sentences in which those concepts
appear; (iii) divide the sentences into linguistic blocks using Verbka to extract logical relationships; (iv) create a causal
concept map to enable the visualization of the mined result; (v) add verbal semantics to the explicit relationships; (vi)
make inferences and find implicit relationships.

In order to achieve these objectives, the following steps should be taken:

1. Extract Association Rules. The execution of this step is carried out with the support of the Features gEnerator
tool [92]. An association rule is represented as an implication in the LHS→ RHS format, in which LHS and
RHS are, respectively, the Left Hand Side (antecedent) and the Right Hand Side (consequent) of the rule [94].
In order to evaluate the strength of an association rule, two classical measures are used: support and confidence.
The value of the support is applied to measure the co-occurrence strength between LHS and RHS and does not
indicate possible dependencies between RHS and LHS. The confidence measures the strength of the implication
described by the rule [95]. The problem of obtaining association rules can be decomposed into two steps: 1) find
all k-itemsets that have support greater than or equal to the minimum support specified by the user (minSup),
and 2) use the frequent k-itemsets, with k ≥ 2 (greater or equal), to generate the association rules [32].

2. Select Association Rules. This step is carried out by the user. For the development of this work, we select all the
rules composed of two words, that is, one word that forms the antecedent and another word for the consequent.

3. Construct Complex Network. With the association rules selected in the previous step, we may build the complex
network. In a simplified way, the concept of a complex network is that of a set of elements that are connected
to each other [96]. Networks (graphs) are able to model textual content and may be useful in TM steps [39]. In
this phase of development of the work, we use a non-directed graph because the direction of the relationships
will be considered only in the Semantic Analysis steps.

4. Extract Metrics. Metrics extracted from networks can also be considered as an automatic weight assignment
type for the objects that make up the dataset [12]. This weighing is a key element is this work, as it is the
alternative used to select the words that must be either maintained or eliminated from the set of texts. Heavily
connected words must be selected because they play an important role in the overall context of documents.
Thus, the selected words and their relationships will compose a subset of data. This subset enables us to reap
the full benefits of reducing the number of words. Complex networks have a set of definitions that can describe
a series of behaviors related to a network, such as the degree of a vertex, its hubs, the average connectivity, the
shortest path, its diameter, clustering coefficient, closeness centrality, betweenness centrality, among others. To
this end, we use the Gephi Tool [97], a free software available at (https://gephi.org). It enables us to view and
analyze networks by providing their various metrics. For the development of this work, we used the following
metrics: 1) the average degree of a vertex (number of connections); 2) hubs (vertices with greater intensity of
connections); 3) betweenness centrality (quantifies the participation of a vertex i in paths of minimum length),
and 4) clustering coefficient (number of connections between the neighbors closest to a vertex) [41]. These
metrics are used because they emphasize the most connected nodes. These nodes are closer to the underlying
context of interest. Due to their larger connectivity, they may correspondingly uncover a larger number of
implicit relationships than the nodes that are less connected. On the other hand, a remote node would reveal far
less implicit relationships and these could be more outside the context of interest.

5. Rank Concepts. The metrics obtained in the previous step may help with the identification of the main concepts
(nouns) of the network. The Gephi tool generates a ranking of the words (vertices) for each of the measures
of interest, providing a list in descending order of corresponding values, which effectively contributes to the
identification of the main concepts of interest, that is, the most representative concepts of the network built with
association rules.

6. Select Key Concepts. Based on the word ranking obtained in the previous phase, it is possible to make a selection
of two (or more) key concepts according to the users interests and application goals. The selected concepts serve
as the basis for the construction of a subset of data.

7. Capture Sentences. With the selection of key concepts performed in the previous step, we capture (or retrieve)
the sentences present in the original dataset that contain at least one of the previously selected key concepts.
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8. Structure Sentences. Verbka decomposes a sentence into a set of minimal linguistic blocks formed by concepts.
This is possible by applying a sequence of steps that input the preselected sentences and output a structured
table of concepts and their relationships. These tables can provide a structured textual knowledge base, which
can be constantly expanded with the insertion of new information.

9. Represent Relationships through Concept Maps. The table obtained in the previous step is then mapped into
a concept map, which enables the visualization of the explicit relationships from the data subset. Concept
maps graphically illustrate the relationships between the concepts of a knowledge domain [98]. Each concept
is positioned within a circle or box (vertices) and relates to other concepts by means of arcs (edges) which
represent the connections (verbs, prepositions). Concepts connected by an arc give rise to a proposition, which
is the particular characteristic of concept maps [99].

10. Extract Causal Relationships. After the construction of the map, it is possible to assign semantics to the verbal
relationships existing between the concepts and to create a causal concept map. The verbal relationships are
divided into three categories which are represented by colored arrows: red arrows represent action verbs, i.e.
causal relationships where the action starts from a “cause” concept and affects an “effect” concept , which in
turn is modified by this action (e.g. she breaks the vase); blue arrows indicate reflexive relationships. In this
case, an action departs from a cause concept and returns to the same concept (e.g. she washes herself, she feels
happy); black arrows represent non-action verbs, indicating the absence of action and, therefore, absence of a
causal relationship (e.g. she stays at home).

11. Identify Implicit Relationships (User). Based on the visualization of the map, we can then proceed to the
qualitative analysis. This analysis should be performed by humans as it requires an overview of the context.
Therefore, based on this map, we look for connections that are not explicit in the network but can be inferred
from the knowledge that already exists there. It is the cause-effect semantics present in the map and the visual
aid (layout of information) that it provides that facilitates the identification of implicit relationships by humans.

3.4 Phase 4: Post-processing (Evaluate Uncovered Relationships)

In this step, it is necessary to evaluate and interpret the patterns extracted from the documents. Such as the other steps,
this step should also be guided by the objectives defined at the beginning of the process. Certain aspects of extracted
knowledge, such as representativity, novelty, validity, and applicability, should be evaluated.

3.5 Phase 5: Knowledge Utilization

After being evaluated and validated, the extracted knowledge can then be used by the users in a way that suits them.

4 Implementation and Results

In this section, we address the experiments that were carried out using the methodology described in Section 3. The
problem of interest was to find out how vitamins may affect the human gestation. To this end, we decided to use a set
of ten textual documents ranging from alternative medicine (“human gestation” and “vitamin” domains), in order to
extract the implicit relationships in these texts. The texts were taken from the Cochrane website 1, which is a global
and independent network of researchers, practitioners, patients, caregivers, and people interested in health, who work
to produce reliable health information. The texts had an average of 550 words and the combination of all texts had
5575 words.

After selecting the texts, we proceed to the data preprocessing phase and the extraction of association rules with
the support of the FEATuRE tool [92]. The texts were preprocessed separately, since the frequency of a given word
within the whole collection may be negligible, whereas if processed separately, may not be. We opted for the removal
of stop words to decrease the number of words. The texts were not subject to stemming in order to keep the semantic
quality (related to the meaning) of the extracted words. In this work, we chose word frequency instead of stemming
to generate transactions.

The documents were then mapped into a set of transactions with sliding windows of size five and step one (this
size was chosen since it represents the usual number of connected words in a phrase). Sliding windows were chosen
instead of sentences since they generate more transactions. The sliding windows correspond to excerpts from textual
documents and they extract sets of words that are related to a specific context of the document. Table 2 provides an
example of the transactions extracted.

For the extraction of association rules from the transactions previously obtained, we configure the tool for operation
in automatic support mode. In this mode, the support value is generated by the tool. It takes into account the average

1(http://brazil.cochrane.org/)
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Table 2: Examples of transactions extracted from a text.

...
{supplements, vitamin, woman, health, produced}
{vitamin, woman, health, produced, body}
{woman, health, produced, body, human}
{health, produced, body, human, exposition}
{produced, body, human, exposition, excess}
...

frequency of words in transactions, thus exempting the user from knowing the characteristics of the collection of
documents. This avoids the definition of a low minimum support value, which could generate a large number of rules
[92]. Table 3 shows some examples of extracted rules, where the first value represents the support and the second the
confidence values.

Table 3: Example of association rules composed of two words extracted from transactions.

vitamin← supplements (3.4, 80.0)
supplements← vitamin (3.4, 11.7)
clear← is (3.4, 80.0)
is← clear (3.4, 60.0)
labor← premature (4.5, 80.0)
premature← labor (4.5, 80.0)
risk← premature (2.8, 50.0)
premature← risk (2.8, 28.6)
risk← labor (3.4, 60.0)
labor← risk (3.4, 34.3)
risk← reduce (4.5, 80.0)
reduce← risk (4.5, 45.7)

We considered the association rules only for sets of two words in order to preserve a common structure for the
construction of the complex network in the next phase. In possession of these rules, we start to build the complex
network using the Gephi tool. For network modeling, we consider each set of rules as related items. Thus, the network
was created by mapping items as vertices of the network and the relationship between them was represented as non-
directed edges. We emphasize that in this phase, the order of the relationship (edge sense) between the items does not
interfere with the measures of interest. Upon execution, the tool generated a network as a non-directed graph of 161
vertices.

Networks have several properties that are part of their topology. Having built the network, we move on to the
calculation of the metrics. After performing these calculations, it was possible to generate a ranking of items based
on the metrics, i.e. degree of a node, clustering coefficient, hubs and betweenness centrality. Notice that the verbs
must be excluded from the ranking, since 1) they represent the connections between the items that compose the causal
concept map in the next phase, and 2) in this phase we wish only to capture the main nodes (items, i.e. nouns) that
should compose the causal concept map. In a later stage, these verbs need to be retrieved back to complete the map.
Table 4 shows the ranking of the average degree and hubs, and Table 5 shows the ranking of the betweenness centrality
and clustering coefficient. We emphasize that the first items of the ranking are the most significant and are more likely
to have implicit relationships due to their importance to the network.

An analysis of these tables shows that some of the most repeated concepts in all rankings are “vitamin”, “labor”,
“risk”, “premature” and “pregnancy”. The most common approach to dealing with the number of words is to select
a small subset of these words (usually two) for the display. This technique constitutes a type of dimensionality
reduction [12]. For the sake of illustration, we select two concepts that henceforth are called key concepts: “vitamin”
and “premature”. Note that this step admits some flexibility in that the user (analyst) may also pick up other concepts
that he or she may be interested in, other than the ones selected here.

The next step of the process focus on obtaining (retrieving) all the sentences of the input corpus that have either
one or both of the key concepts. Each retrieved sentence is then broken into linguistic blocks, as proposed by the
Verbka process (Table 6). In Verbka, a number of steps are applied corresponding to some linguistic adjustments in
the sentences, such as removal of articles, separation of coordinated sentences, and conversion of sentences from the
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Table 4: Ranking of vertices using a) average degrees and b) hubs.

Vertices Avg. Degree Vertices Hubs
vitamin 12 premature 8,87E+0.3

labor 6 risk 8,87E+0.3
pregnancy 5 evaluated 2,31E+0.3
supplement 4 study 8,14E+0.2

studies 4 hypothyroidism 8,14E+0.2
women 4 vitamin 0,575

orofacial 4 supplements 0,284
premature 3 pregnancy 0,236

cocoa 3 prenatal 0,227
pressure 3 labor 0,110

obstetrics 3 studies 0,106
risk 3 folate 0,090
cleft 3 premature 0,089

Table 5: Ranking of a vertex using a) betweenness and b) cluster. coeff.

Vertices Betweenness Vertices Clustering
Centrality Coefficient

vitamin 1117,5 prenatal 1
labor 834 malformation 1
risk 798 risk 0,333

pregnancy 487,5 premature 0,333
supplements 470,5 cleft 0,333

women 420 supplements 0,166
folate 323 orofacial 0,166
baby 270 labor 0,066

studies 171 vitamin 0,015
premature 58 – –
incidence 58 – –

malformation 24 – –
cleft 20 – –

orofacial 15 – –
obstetrics 15 – –
models 10 – –
control 10 – –
cocoa 9 – –

Table 6: Linguistic blocks extracted from each retrieved sentence.
Agent - NS Patient - VS

P subject verb compl.1 compl.2 compl.3 compl.4
who? what? for whom? where? when?

1 vitamin A reduces the risk of anemia ... ... ...
2 vitamin A does not help prevent risk of premature labor ... ... ...
3 levothyroxine reduces risk of premature labor ... ... ...
4 vitamin D + calcium increases risk of premature labor ... ... ...
5 liver oil produces vitamin D ... ... ...
6 mushroom produces vitamin D ... ... ...
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passive to the active voice. For the compilation of Table 6, one must select all the verbs present in these sentences
and then ask some questions (who? what? for whom? where? when?). These questions reveal the subjects/nouns and
the verbal complements such as direct/indirect objects and accessory terms, i.e. verbal adjuncts of each sentence. For
more information on the Verbka process, the reader is referred to [28].

With this set of retrieved sentences structured in tables, we move on to the construction of the concept map (Fig.
2). According to Novak [98] and Novak and Cañas [98], an important criterion for the construction of concept maps
is the ideal number of key concepts needed. This number must vary from 15 to 25 concepts to facilitate the reading
and understanding of the map by humans.

In this network, the subjects and the verbal complements of each sentence are called concepts, and they constitute
the vertices. The relationship between two vertices is given by either a verb or by a preposition, and are represented by
an edge (or directed arrow). This arrow starts from the subject concept and reaches the object concept(s) (Fig. 2). The
key concepts are highlighted in the network in orange. The concepts highlighted in yellow are the ones considered to
be most important from a first qualitative interpretation of the network, since they have a strong relationship with the
key concepts.

Figure 2: Concept map of propositions obtained from Table 6.

With this first constructed network model, we move on to the semantic classification of verbs to construct a causal
concept map (Fig. 3). Thus, each of the edges was colored as follows: red for cause and effect relationships, blue for
reflective relationships and black for static ones (i.e. those with no causal affectation). We emphasize that the network
obtained in this application did not present reflexive verbal relationships (i.e. blue edges).

The information presented as cause and effect allowed the identification, through inferences made by the re-
searcher, of (at least) four implicit relationships, as shown in Fig. 3 and 4 through dashed edges/arrows:

1. Implicit relationship 1 (Fig. 3): “vitamin D combined with calcium may harm calcium balance” .

Given that a sufficient calcium balance has already been attained through vitamin D (which in turn is obtained
from produces such as fish, mushroom, liver oil, and sunlight exposure), any additional supplement of vitamin
D with calcium is likely to create an imbalance of calcium.

2. Implicit relationship 2 (Fig. 3): ”Vitamin D combined with calcium may generate excess calcium”. This is a
variant of the first implicit relationship, where the imbalance is a surplus. Since vitamin D keeps calcium, its
combination with a calcium supplement may exacerbate the levels of calcium.
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Figure 3: Causal concept map with inferences related to the effects caused by the ingestion of vitamin D supplements
combined with calcium and its relationship with the increase in the risk of premature birth.

Figure 4: Causal concept map with inferences related to the impact of the excess of calcium on the blood (arterial)
pressure.
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3. Implicit relationship 3 (Fig. 3): “Calcium balance may influence the risk of premature labor”. Given that
vitamin D may reduce the risk of premature labor whilst also keeping the calcium balance, one may formulate
the hypothesis that vitamin D may reduce the risk of premature labor through the levels of calcium. Under this
hypothesis, it may be that vitamin D is the direct and immediate cause, whereas vitamin D is the trigger.

4. Implicit relationship 4 (Fig. 3):“Excess calcium may increase risk of premature labor”. This is a variant of the
preceding relationship, where the levels of calcium are in excess, indicating the type of influence poses a risk to
premature labor.

5. Implicit relationship 5 (Fig. 4): “Excess calcium may increase high (blood) pressure”. The same situation
previously mentioned regarding the imbalance of calcium in the organism, the excess of intake of this nutrient
may also, in this case, affect the arterial pressure. Since vitamin D may reduce the risk of preeclampsia (a verified
explicit relationship); and since vitamin D keeps the balance of calcium in the body (another verified explicit
relationship); and since vitamin D may reduce blood pressure (the third explicit and verified relationship),
therefore, the implicit relationship is that, excess of calcium may (as an hypothesis) increase blood pressure.
Under this hypothesis, vitamin D affects the balance of calcium which then increases the blood pressure. Thus,
vitamin D may be directly affecting the levels of calcium, and indirectly affecting the blood pressure through
the excess of calcium.

6. Implicit relationship 6 (Fig. 4): “High pressure may increase risk of preeclampsia”. Whereas the map itself
does not provide any solid clue about this relationship, we may establish it since it is known amongst practi-
tioners in the field of medicine that high blood pressure during pregnancy is one of the biggest red flags that
preeclampsia may be developing 2.

7. Implicit relationship 7 (Fig. 4): “Risk of preeclampsia increases the risk of premature labor”. Similarly,
whereas the map itself provides no substantial evidence on this relationship, we may illustrate it in the causal
concept map since it is known by domain experts that gestational hypertension-preeclampsia is the most com-
mon medical disorder of pregnancy 3.

As new relationships are found, these can be added to the table previously created (Table 6), thus increasing the
amount of textual information and knowledge, now structured in rows and columns. Thus, the knowledge bases can
constantly expand (Table 7, lines 7-13) each time a new implicit relationship is identified.

Table 7: Table of propositions with added implicit relationships (line 7 to 13) extracted from the causal concept map.
Agent - NS Patient - VS

P subject verb compl.1 compl.2 compl.3 compl.4
who? what? for whom? where? when?

1 vitamin A reduces the risk of anemia ... ... ...
2 vitamin A does not help prevent risk of premature labor ... ... ...
3 levothyroxine reduces risk of premature labor ... ... ...
4 vitamin D + calcium increases risk of premature labor ... ... ...
5 liver oil produces vitamin D ... ... ...
6 mushroom produces vitamin D ... ... ...
7 vitamin D + calcium may harm calcium balance ... ... ...
8 vitamin D + calcium may generate excess calcium ... ... ...
9 calcium balance may influence risk of premature labor ... ... ...
10 excess calcium may increase risk of premature labor ... ... ...
11 excess calcium may increase high (blood) press ... ... ...
12 high pressure may increase risk of preeclampsia ... ... ...
13 risk of preeclampsia may increase risk of premature labor ... ... ...

Note that these implicit relationships are hypotheses that need to be corroborated by further scientific investigation.
Nevertheless, the inference through the map was able to elicit these relationships. This example was chosen for its
simplicity as a didactic way of illustrating the process. Clearly, other implicit relationships may be uncovered that
may be more difficult to grasp using a simple and conventional approach (e.g. through reading a text). Notice too that,
at best, the uncovering of this implicit relationship may be relatively easy obtained through the proposed approach
(mainly once the tools are all integrated), in comparison to a conventional approach that would require the analyst to
read more than 5000 words spread into ten different texts to achieve a similar result. At worst, either the analyst would

2https://www.preeclampsia.org/health-information/sign-symptoms
3https://www.ncbi.nlm.nih.gov/pubmed/16549208
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not complete this task within a reasonable time, or would not accomplish it at all given the volume of information.
Thus, we argue that the approach proposed in this work reached the proposed goal: to extract implicit information
through text mining techniques and complex networks in conjunction with an approach based on verbal semantics.

5 Summary and Conclusion

Currently, one of the major challenges in the field of Knowledge Discovery in Text is the exploration of the large
amount of information available in textual databases in an attempt to extract meaningful knowledge. Another challenge
is finding the relationships between non-taxonomic concepts (based on events), which shows how these concepts affect
each other.

In this work, we presented an Text Mining approach that attempts to address these concerns by being capable of
generating a causal concept map from a textual corpus. The approach was based on the extraction and interpretation
of concepts and their relationships. By mapping the explicit relationships onto a new view space such as a causal
concept map, it was possible to reveal important characteristics of the set of texts that were used to extract implicit
relationships. We chose to develop a process that facilitated the visualization and observation of the main explicit
relationships existing in a given dataset and, consequently, aided in the inference of new relationships that were
implicit in the same set. This was made possible due to the techniques used to decrease the number of words and the
application of a semantic approach that created a new set of higher-level features from the original data.

The process handles the various stages of the Text Mining process, from data preprocessing to post-processing and
the use of the results. With the application of association analysis in the data mining phase, it was possible to extract
the most interesting rules from the set of texts and decrease the number of words. With the rules obtained, we were
able to build a complex network and automatically extract its metrics. Thus, it was possible to assign weights to the
items (words) and rank them. With this ranking, we obtained a subset of items, further reducing its number, and thus
eliminating characteristics that were irrelevant for the task of extracting implicit relationships.

The process was satisfactory in dealing with two major challenges of text mining: the complexity and heterogeneity
of textual data (word diversity) and the large number of its objects (words). With the reduction of the number of words
(using association rules and complex networks), we were able to select a subset (key concepts) to generate a causal
concept map. This map expresses the relationships obtained through the application of an analysis based on verbal
semantics.

With the reduction of the number of words, we obtained a more understandable model, since this reduction allowed
better visualization of the data in a concept map. This map contributed to the visualization of explicit relationships
and enabled us to analyze a relatively large amount of contextual information, thus allowing the uncovering of rela-
tionships, by the user, that were implicit in the map.

To summarize, one problem that is circumvented in our approach is the potentially large number of patterns
extracted by the algorithms in general, which works against the comprehensibility of user knowledge. The combined
use of association rules and complex networks work both to mitigate this problem. It is possible to eliminate spurious
patterns (false relationships) by applying association rules. Similarly, it is possible to curb the resulting large number
of patterns by applying the metrics from complex networks. Another key task is the visualization of results. The
concept map is a visualization model that can be used to facilitate the understanding and evaluation of the obtained
result. We emphasize that this approach can be generalized to other domains, as the applied method is not bound to use
predefined lists of terms or domain ontologies. The shortcoming of the method is the time taken to apply the semantic
approach, which is performed manually.

Future work will focus on the automation of the knowledge acquisition process based on verbal semantics. This
would allow the exploration of larger knowledge bases. Furthermore, other metrics may also be tried, including the
analysis of nodes in the network with a lower degree. We also aim at performing a quantitative comparison against
other methods.
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[53] L. Café and M. Bräscher, “Knowledge organization: semantic theories as a basis for the study and
representation of concepts (in portuguese),” Informação & Informação, vol. 16, no. 2, 2011. [Online]. Available:
http://dx.doi.org/10.5433/1981-8920.2011v16n2p25

[54] H. Gardner, The Mind’s New Science: A History of the Cognitive Revolution. USA: Basic Books, Inc., 1985.

[55] P. Pantel and D. Lin, “A statistical corpus-based term extractor,” in Conference of the Canadian
Society for Computational Studies of Intelligence. Springer, 2001, pp. 36–46. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45153-6 4

[56] T. M. Chung, “A corpus comparison approach for terminology extraction,” Terminology. International Journal
of Theoretical and Applied Issues in Specialized Communication, vol. 9, no. 2, pp. 221–246, 2003. [Online].
Available: http://dx.doi.org/doi.org/10.1075/term.9.2.05chu

[57] N. Guarino and C. Welty, “Evaluating ontological decisions with ontoclean,” Communications of the ACM,
vol. 45, no. 2, pp. 61–65, 2002. [Online]. Available: http://dx.doi.org/10.1145/503124.503150

[58] A. Schutz and P. Buitelaar, “Relext: A tool for relation extraction from text in ontology extension,”
in International semantic web conference. Springer, 2005, pp. 593–606. [Online]. Available: http:
//dx.doi.org/10.1007/11574620 43

20

http://dx.doi.org/10.11606/T.55.2016.tde-05042016-105648
http://dx.doi.org/10.11606/T.55.2016.tde-05042016-105648
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1016/j.physa.2014.08.022
http://dx.doi.org/10.1002/cplx.20305
http://dx.doi.org/10.1002/cplx.20305
http://dx.doi.org/10.1016/j.future.2014.04.002
http://dx.doi.org/10.1016/C2010-0-68657-3
http://dx.doi.org/10.1093/bioinformatics/bts591
http://dx.doi.org/10.1016/j.jbi.2003.11.003
http://dx.doi.org/10.3233/ISU-2011-0627
http://dx.doi.org/10.5433/1981-8920.2011v16n2p25
http://dx.doi.org/10.1007/3-540-45153-6_4
http://dx.doi.org/doi.org/10.1075/term.9.2.05chu
http://dx.doi.org/10.1145/503124.503150
http://dx.doi.org/10.1007/11574620_43
http://dx.doi.org/10.1007/11574620_43


CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 3, PAPER 5, DECEMBER 2019
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Cardona, N. Trujillo et al., “Syntax, action verbs, action semantics, and object semantics in parkinson’s disease:
Dissociability, progression, and executive influences,” Cortex, vol. 69, pp. 237–254, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.cortex.2015.05.022

[88] D. C. Corrales, A. Ledezma, and J. C. Corrales, “A conceptual framework for data quality in knowledge
discovery tasks (fdq-kdt): A proposal.” JCP, vol. 10, no. 6, pp. 396–405, 2015. [Online]. Available:
http://dx.doi.org/10.17706/jcp.10.6.396-405

[89] N. F. Ebecken, M. C. S. Lopes, M. C. Costa et al., “Text mining (in portuguese),” Sistemas inteligentes: funda-
mentos e aplicações. São Carlos: Manole, pp. 337–370, 2003.

[90] J. L. G. Rosa, “The meaning of the word for natural language processing (in portuguese),” Work presented at the
ZLV Seminar of GEL, University of Campinas (Unicamp), Campinas, 1997.

[91] ——, “A symbolic-connectionist hybrid system for processing thematic roles (in portuguese),” Ph.D. disserta-
tion, University of Campinas (Unicamp). Institute of Language Studies, 1999.

[92] R. G. Rossi and S. O. Rezende, “Generating features from textual documents through association rules,” Pro-
ceedings of the National Meeting on Artificial Intelligence. SBC. Sao Carlos–SP–Brazil, p. 20, 2011.

[93] A. A. Lopes, R. Pinho, F. V. Paulovich, and R. Minghim, “Visual text mining using association rules,” Computers
& Graphics, vol. 31, no. 3, pp. 316–326, 2007. [Online]. Available: http://dx.doi.org/10.1016/j.cag.2007.01.023

[94] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” in Proceedings of
the 20th International Conference on Very Large Data Bases, ser. VLDB ’94. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1994, p. 487–499. [Online]. Available: http://dx.doi.org/10.5555/645920.672836

[95] C. Zhang and S. Zhang, Association rule mining: models and algorithms. Springer-Verlag, 2002. [Online].
Available: http://dx.doi.org/10.5555/1791549

22

http://dx.doi.org/10.1145/3178876.3186006
http://dx.doi.org/10.1145/3178876.3186006
http://dx.doi.org/10.1038/s41562-018-0422-4
http://dx.doi.org/10.1007/s11192-019-03090-3
http://dx.doi.org/10.1016/j.joi.2018.01.006
http://dx.doi.org/10.1109/ACCESS.2018.2881422
http://dx.doi.org/10.1186/s12911-018-0628-4
http://dx.doi.org/10.1016/j.jpdc.2014.08.010
http://dx.doi.org/10.1016/j.cortex.2015.05.022
http://dx.doi.org/10.17706/jcp.10.6.396-405
http://dx.doi.org/10.1016/j.cag.2007.01.023
http://dx.doi.org/10.5555/645920.672836
http://dx.doi.org/10.5555/1791549


CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 3, PAPER 5, DECEMBER 2019

[96] M. E. Newman, “The structure and function of complex networks,” SIAM review, vol. 45, no. 2, pp. 167–256,
2003. [Online]. Available: http://dx.doi.org/10.1137/S003614450342480

[97] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source software for exploring and manipulating
networks.” Icwsm, vol. 8, pp. 361–362, 2009.
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