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Abstract

In cloud computing resource allocation, Virtual Machine Placement (VMP) is one of
the most studied problems with several possible formulations and different optimiza-
tion criteria. The present work summarizes main advances focused on studying Many-
Objective Virtual Machine Placement (MaVMP) problems. As first contributions, novel
taxonomies were proposed for VMP problems in cloud computing environments, in order
to gain a systematic understanding of the existing approaches. Additionally, first formula-
tions of MaVMP problems were proposed in: (1) static MaVMP for initial placement, (2)
semi-dynamic MaVMP with reconfiguration of VMs and (3) dynamic two-phase MaVMP
for complex cloud computing environments under uncertainty. Considering the novelty
of the proposed formulations, several methods and algorithms were also proposed to ad-
dress main identified issues on solving each particular MaVMP problem. Experimental
results prove the correctness, effectiveness and scalability of the proposed methods and
algorithms in different experimental scenarios when comparing to state-of-the-art and
industry alternatives. Open challenges for further advance of the area are discussed.

Keywords: Virtual Machine Placement, Many-Objective Optimization, Resource Allocation, Cloud Com-
puting Datacenters, Elasticity, Overbooking.

1 Introduction

Significant research challenges for delivering computational resources as a fifth utility (like water, electricity,
gas, and telephony) has already been identified [1]. In this context, cloud computing datacenters deliver
infrastructure (IaaS), platform (PaaS) and software (SaaS) as services, available to tenants in a pay-as-you-
go basis [2]. When cloud computing datacenters dynamically provide millions of virtual machines (VMs)
to tenants in current cloud computing markets, achieving an efficient resource management for IaaS service
model operations could be considered as one of the most relevant challenges, including important research
topics such as: resource allocation, resource provisioning, resource mapping and resource adaptation [3].
Additionally, other research topics such as admission control and proactive elasticity could also represent
relevant open challenges related to efficient resource management in cloud computing datacenters [4].

The research summarised in this paper focused on resource allocation, specifically in one of the most
studied problems for resource allocation in cloud computing datacenters: the process of selecting which VMs
should be hosted at each physical machine (PM) of a cloud computing infrastructure, known as Virtual
Machine Placement (VMP). Several research articles in the specialized literature demonstrated that solving
the VMP problem for efficient allocation of resources in cloud computing datacenters could significantly
improve energy-efficiency, quality of service (QoS), carbon dioxide emissions, among other advantages; all of
them with economical [5] and ecological impact [6].

Beloglazov and Buyya proposed in [7] four different sub-problems for resource allocation in cloud com-
puting datacenters: (1) determining when a PM is overloaded, requiring migration of VMs from this PM;
(2) determining when a PM is underloaded, requiring migration of all VMs from this PM and switching the
PM to sleep mode; (3) selecting VMs to migrate from an overloaded PM; and (4) finding a new placement
of the VMs selected for migration, considering overloaded and underloaded PMs. Additionally, a concep-
tual architecture considering the most studied problems related to resource allocation in cloud computing
datacenters is presented by Elmroth et al. in [4], where placement of admitted services (composed by VMs)
could be solved considering different criteria and requirements.
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In cloud computing datacenters, there are several criteria that can be considered when selecting a solution
for a VMP problem, depending on management policies and optimization objectives. These criteria can even
change from one period of time to another, which implies a variety of possible environments, formulations
and objectives to be considered for optimization of the VMP problem. As part of the summarised research,
nearly 60 different objective functions were identified in the VMP literature [8, 9, 10]. Taking into account
the large number of existing objective functions, providers of cloud computing datacenters must be able to
formulate the VMP problem as a Pure Multi-Objective Optimization Problem (PMO), optimizing more than
just one objective function at a time. It is worth remembering that PMOs simultaneously optimizing more
than three objective functions are known as Many-Objective Optimization Problems (MaOPs) [11].

Several challenges should be considered when solving problems with more than three objective functions
in Pareto optimization contexts [12]. These challenges are intrinsically related to the fact that as the number
of objective functions increase, the proportion of non-dominated solutions in the population grows, being
increasingly difficult to discriminate among solutions using only the Pareto dominance relation [13]. Addi-
tionally, determining which solution to keep and which to discard in order to converge toward the Pareto set
is still a relevant issue to be addressed [12], making more difficult to solve MaOPs. Clearly, existing difficul-
ties in solving MaOPs explain why Many-Objective Optimization was considered an unexplored domain in
resource management of cloud computing datacenters before this research work [14] and no many-objective
formulation was proposed for the VMP problem [8, 9, 10].

In this context, research on VMP problems was explored, analyzed and classified to gain a systematic
understanding of existing approaches. Consequently, the main scope of the research summarized in this
paper is studying first Many-Objective Virtual Machine Placement (MaVMP) problems from the perspec-
tive of cloud computing providers for several variants of the VMP problems. Different MaVMP problem
formulations were proposed for: (1) initial placement of VMs (static) [15, 16], (2) reconfiguration of VMs
(semi-dynamic) [17, 18], and (3) cloud computing under uncertainty (dynamic) [19, 20]. Considering the nov-
elty of the proposed formulations, several methods and algorithms were also proposed to address identified
issues on solving each studied MaVMP problem.

Additionally, advances of this research are also presented in this paper, such as: experimental comparisons
of proposed algorithms against well-known resource allocation algorithms of the industry (e.g. OpenStack),
identifying promising results in order to advance the conceptualization of a good tool for resource allocation
in real world cloud computing markets. Finally, open challenges are also discussed to guide further advance
of the considered cloud computing datacenters research area.

The remainder of this paper is structured as follows: Section 2 presents the proposed taxonomies of the
VMP problem for cloud computing datacenters. Section 3 presents concepts on Multi-Objective Optimiza-
tion, while Section 4 proposes a general optimization framework for MaVMP problems for initial placement
of VMs, including a method for effectively reducing the potentially unmanageable number of non-dominated
solutions as well as an interactive Memetic Algorithm (MA) for solving the formulated problems. Section 5
presents a first formulation of a MaVMP problem with reconfiguration of VMs, considering the simultaneous
optimization of five objective functions, as well as an evaluation of five different strategies for automati-
cally selecting a convenient solution from a Pareto set approximation and an extended MA for solving the
formulated problem. Section 6 presents a first formulation of a MaVMP problem for cloud computing con-
sidering the optimization of four objective functions in a complex IaaS environment, a first scenario-based
uncertainty approach for modeling four uncertain parameters of the proposed complex IaaS environment
and novel methods and algorithms related to the resolution of the proposed problem in cloud computing
datacenters. Finally, Section 7 summarizes the main findings of this research and presents future directions.

2 VMP Taxonomies for Cloud Computing

The VMP problem has been extensively studied in the literature and several surveys have already been
presented. Existing surveys focused on specific issues such as: (1) energy-efficient techniques applied to the
problem [6, 21], (2) deployment architectures where the VMP problem is applied, as federated clouds [22],
and (3) methods for comparing performance of placement algorithms in large on-demand clouds [23].

The above mentioned surveys and research articles focused into specific issues related to the VMP pro-
blem. Consequently, López-Pires and Barán proposed in [8, 9, 10] a general and extensive study of a large
part of the VMP literature including 84 studied articles [24], presenting a wide analysis of the existing
approaches for the formulation and resolution of the VMP as an optimization problem. Additionally, a
novel taxonomy was proposed in [8] for the classification of the studied articles by the following criteria: (1)
optimization approach, (2) objective function and (3) solution technique.
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Figure 1: VMP Environment Taxonomy from [9]. Example references for each environment are presented.
Unexplored environments are considered as Research Opportunities (RO).

The taxonomy presented in [8] was extended in later works [9, 10], including novel taxonomies and
presenting a detailed view of the existing approaches as well as several possible research opportunities to
further advance in this research area. The taxonomies presented in [9, 10] could guide interested readers to:
(1) understand different possible environments where a VMP problem could be studied, considering both
provider and broker perspectives in different deployment architectures, (2) identify existing approaches for
the formulation and resolution of the VMP as an optimization problem and (3) present a detailed view of
the VMP problem, identifying research opportunities to further advance in this research area.

2.1 VMP Environment Taxonomy

Depending on the particular environment where a VMP problem is studied, several different characteristics
should be taken into account before considering a particular formulation or technique for the resolution of the
considered VMP problem. Here, different possible environments could be identified by classifying research
articles in the VMP literature by: (1) orientation, (2) deployment architecture and (3) type of formulation.

For a complete understanding of the possible environments where a VMP problem could be studied,
considering both provider and broker perspectives in different deployment architectures and types of formu-
lations, Figure 2.1 presents the taxonomy described in this section including example references from the
studied VMP literature [24]. A VMP problem could be studied from both provider or broker perspectives.

A provider-oriented VMP problem could be studied considering one of the following deployment archi-
tectures: single-cloud, distributed-cloud or federated-cloud, while a broker-oriented VMP problem could be
studied considering a multi-cloud deployment architecture. Additionally, both provider-oriented and broker-
oriented VMP problems, in any of the possible deployment architectures, could be studied considering two
different types of formulation: offline or online formulations. Interested readers could refer to [9, 10] for
details on the VMP Environment Taxonomy presented in Figure 2.1.

2.2 VMP Formulation Taxonomy

Considering each possible environment where a VMP problem could be studied (see Figure 2.1), several
different formulations of the problem could be proposed. In this context, formulations of a VMP problem
may be classified by the: (1) optimization approach, (2) objective function and (3) solution technique, as
initially considered in [8]. A VMP problem could be formulated considering one of the following optimization
approaches: (1) mono-objective (MOP), (2) multi-objective solved as mono-objective (MAM) or (3) pure
multi-objective (PMO). Once the optimization approach is defined, formulations may also be classified by the
objective function(s) studied, both in minimization and maximization contexts. These objective functions
could be optimized separately or simultaneously, depending on the selected optimization approach. Finally,
solution techniques for solving a VMP problem could be used as a third classification criterion [8, 9, 10].

3 Concepts on Multi-Objective Optimization

A Pure Multi-Objective Optimization (PMO) problem includes a set of p decision variables, q objective
functions, and b constraints. Objective functions and constraints are functions of decision variables. In a
PMO formulation, x represents the decision vector (or solution), while y represents the objective vector (or
solution cost). The decision space is denoted by X, the objective space as Y and can be expressed as [55]:
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Table 1: VMP Formulation Taxonomy from [9]. Example references for each environment are presented.
Unexplored environments are considered as Research Opportunities (RO). In this table f1(x): Energy Con-
sumption, f2(x): Network Traffic, f3(x): Economical Costs, f4(x): Performance, f5(x): Resource Utilization.

Technique Approach
Objective Functions

f1(x) f2(x) f3(x) f4(x) f5(x)

Optimal
Algorithms

MOP [31] [32] [33] [28] [34]
MAM [5, 35] [5, 36] RO RO [35, 36]
PMO RO RO RO RO RO

Heuristics
MOP [29] [37] [38] [39] [34]
MAM [40, 26] [40, 41] [41, 42] [26, 43] [44, 45]
PMO RO RO RO RO RO

Meta-Heuristics
MOP [46] RO [30] [47] RO
MAM [27, 48] [49, 27] [50, 48] [49] [50, 48]
PMO [25, 51] [25, 52] [25, 52] RO [51]

Approximation
Algorithms

MOP [53] RO RO RO RO
MAM [54] RO RO RO RO
PMO RO RO RO RO RO

Optimize:
y = f(x) = [f1(x), f2(x), ..., fq(x)] (1)

subject to:

e(x) = [e1(x), e2(x), ..., eb(x)] ≥ 0 (2)

where:
x = [x1, x2, ..., xp] ∈ X (3)

y = [y1, y2, ..., yq] ∈ Y (4)

The set of constrains e(x) ≥ 0 defines the set of feasible solutions Xf ⊂ X and its corresponding set of
feasible objective vectors Yf ⊂ Y . The feasible decision space Xf is the set of all decision vectors x in the
decision space X that satisfies the constraints e(x) given by (2). The feasible objective space Yf is the set
of the objective vectors y that represents the image of Xf onto Y . These feasible spaces are defined as:

Xf = {x | x ∈ X ∧ e(x) ≥ 0} (5)

Yf = {y | y = f(x) ∀x ∈ Xf} (6)

To compare two solutions in a pure multi-objective context, the concept of Pareto dominance is used.
Given two feasible solutions u, v ∈ Xf , u dominates v, denoted as u � v, if f(u) is better or equal to f(v)
in every objective function and strictly better in at least one objective function. If neither u dominates v,
nor v dominates u, u and v are said to be non-comparable (denoted as u ∼ v).

A decision vector x is non-dominated with respect to a set U , if there is no member of U that dominates
x. The set of non-dominated solutions of the whole set of feasible solutions Xf , is known as optimal Pareto
set P ∗. The corresponding set of objective vectors constitutes the optimal Pareto front PF ∗.

Taking into account the large number of existing objective functions and possible approaches for objective
function modeling identified in [24, 8], PMO approaches could result in more realistic formulations of a VMP
problem, optimizing more than just one objective function at a time (e.g. maximizing economical revenue by
simultaneously optimizing economical penalties for SLA violations, operational costs and profit for leasing
computational resources).

4 MaVMP for Initial Placement

As previously presented, provider-oriented VMP problems considering PMO optimization represent a re-
search challenge for resource allocation in cloud computing datacenters. It is worth remembering that no
many-objective formulation had already been proposed for the VMP problem (MaVMP) in the specialized
literature [8] before our work was published in [15].
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4.1 Many-Objective Optimization Framework

This section summarizes a general many-objective optimization framework, which is able to consider as
many objective functions as needed when solving MaVMP problems for initial placement. As an example
of utilization of the proposed framework, a formulation of a MaVMP problem is proposed, considering the
simultaneous optimization of the following five objective functions: (1) power consumption, (2) network
traffic, (3) economical revenue, (4) quality of service (QoS) and (5) network load balancing. In the presented
MaVMP formulation, a multi-level priority is associated to each VM, representing a Service Level Agreement
(SLA) to be considered in the placement process in order to effectively prioritize important VMs.

Formally, the proposed offline (static) MaVMP problem for initial placement can be enunciated as:
Given a set of PMs, H = {H1, H2, ...,Hn}, a network topology G and a set of VMs, V = {V1, V2, ..., Vm},
it is sought a correct placement of the set of VMs V into the set of PMs H satisfying the b constraints of
the problem and simultaneously optimizing all q objective functions defined in this formulation (as energy
consumption, network traffic, economical revenue, QoS and load balancing in the network), in a pure many-
objective context.

Due to space limitations, the complete mathematical formulation as well as other details are not included
in this summary. Interested readers could refer to [15] and [16] for details on this VMP variant.

As a relevant issue to be solved when considering this particular MaVMP, the general many-objective
optimization framework for the VMP problem proposed in this dissertation considers that as the number
of conflicting objectives of a MaVMP problem formulation increases, the total number of non-dominated
solutions increases (even exponentially in some cases), being increasingly difficult to discriminate among
solutions using only the dominance relation [12]. For this reason, this work proposes the utilization of lower
and upper bounds associated to each objective function fz(x), where z ∈ {1, . . . , q} (Lz ≤ fz(x) ≤ Uz), to be
able to reduce iteratively the number of non-dominated solutions of the known approximation to the Pareto
set (Pknown).

Based on many objective functions and constraints detailed in [16], a MaVMP formulation may be
expressed as:
Optimize:

y = f(x) = [f1(x), f2(x), f3(x), . . . , fq(x)], q > 3 (7)

where for example:
f1(x) = power consumption;

f2(x) = network traffic;

f3(x) = economical revenue;

f4(x) = quality of service;

f5(x) = network load balancing;

...

fq(x) = any other considered objective function.

(8)

subject to constraints as:
e1(x) : unique placement of VMs;

e2(x) : assure provisioning of highest SLA;

e3(x) : processing resource capacity of PMs;

e4(x) : memory resource capacity of PMs;

e5(x) : storage resource capacity of PMs;

e6(x) : f1(x) ∈ [L1, U1];

e7(x) : f2(x) ∈ [L2, U2];

e8(x) : f3(x) ∈ [L3, U3];

e9(x) : f4(x) ∈ [L4, U4];

e10(x) : f5(x) ∈ [L5, U5];

...

er(x) : any other considered constraint.

(9)

To solve the formulated MaVMP problem, an interactive Memetic Algorithm (MA) is proposed con-
sidering particular challenges associated to the resolution of a VMP problem for initial placement in a
many-objective context.
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4.2 Interactive Memetic Algorithm for MaVMP

A Memetic Algorithm (MA) could be understood as an Evolutionary Algorithm (EA) that in addition to
the standard selection, crossover and mutation operators of most Genetic Algorithms (GAs) includes a local
optimization operator to obtain good solutions even at early generations [56]. In the studied VMP context,
it is valuable to obtain good quality solutions in a short time. Consequently, a MA could be considered as
a promising solution technique for VMP problems.

An interactive MA is presented for solving the proposed MaVMP problem for initial placement, to
simultaneously optimize the following objective functions: (1) power consumption, (2) network traffic, (3)
economical revenue, (4) quality of service (QoS) and (5) network load balancing. The proposed algorithm is
extensible to consider as many objective functions as needed while only minor modifications may be needed
in the code if objective functions change.

It was shown in [57] that many-objective optimization using Multi-Objective Evolutionary Algorithms
(MOEAs) is an active research area, having multiple challenges that need to be addressed. The interactive
MA presented in this section is a viable way to solve a MaVMP problem for initial placement, including
desirable ranges of values for the objective function costs in order to interactively control the possible
huge number of feasible non-dominated solutions, as described in Section 3. The proposed interactive MA
presented in Algorithm 1 basically works as follows:

At step 1, it is verified if the problem has at least one solution to continue with next steps. If there is no
possible solution to the problem, the algorithm returns an appropriate error message. If the problem has at
least one solution, the algorithm proceeds to step 2, which generates a set of random candidates Pop0, whose
solutions are repaired at step 3 to ensure that Pop0 contains only feasible solutions. Then, the algorithm
tries to improve candidates at step 4 using local search. With the obtained non-dominated solutions, the
first Pareto set approximation Pknown is generated at step 5. After initialization at step 6, evolution begins
(iterations between steps 7 and 18). The evolutionary process basically follows the same behaviour: solutions
are selected from the union of Pknown with the evolutionary set of solutions (or population) also known as
Popt (step 8), crossover and mutation operators are applied as usual (step 9), and eventually solutions
are repaired, as there may be infeasible solutions (step 10). Improvements of solutions of the evolutionary
population Popt may be generated at step 11 using local search (local optimization operators). At step 12,
the Pareto set approximation Pknown is updated (if applicable); while at step 13 the generation (or iteration)
counter is updated. At step 15 the decision maker adjust the lower and upper bounds if it is necessary, while
at step 17 a new evolutionary population Popt is selected. The evolutionary process is repeated until the
algorithm meets a stopping criterion (such as maximum number of generations), finally returning the set of
non-dominated solutions Pknown at step 19.

Due to space limitations, details on population initialization, solution reparation, local search, fitness
function and variation operators are not included in this summary.

Algorithm 1: Interactive Memetic Algorithm from [17].

Data: datacenter infrastructure
Result: Pareto set approximation Pknown

1 check if the problem has a solution
2 initialize set of solutions Pop0
3 Pop′0 = repair infeasible solutions of Pop0
4 Pop′′0 = apply local search to solutions of Pop′0
5 update set of solutions Pknown from Pop′′0
6 t = 0;Popt = Pop′′0
7 while stopping criterion is not met do
8 Qt = selection of solutions from Popt ∪ Pknown

9 Q′
t = crossover and mutation of solutions of Qt

10 Q′′
t = repair infeasible solutions of Q′

t

11 Q′′′
t = apply local search to solutions of Q′′

t

12 update set of solutions Pknown from Q′′′
t

13 increment t
14 if interaction is needed then
15 ask for decision maker modification of (Lz and Uz)
16 end
17 Popt = non-dominated sorting from Popt ∪Q′′′

t

18 end
19 return Pareto set approximation Pknown
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Given that the number of non-dominated solutions may rapidly increase, an interactive approach is
recommended. That way, a decision maker can introduce new constraints or adjust existing ones, while the
execution continues, learning about the shape of the Pareto front in the process. The present work considers
lower and upper bounds associated to each objective function in order to help the decision maker to reduce
interactively the potential huge number of solutions in the Pareto set approximation Pknown, while observing
the evolution of its corresponding Pareto front PFknown to the region of his preference.

4.3 Experimental Results: Interactive Bounds

Several experimental evaluations were performed in order to validate the good quality of solutions obtained
by the proposed interactive MA against optimal solutions when possible, as well as its scalability for solving
problem instances with large number of PMs and VMs [15, 16]. This section focuses on summarizing
experimental results related to the evaluation of the lower and upper bounds proposed to address issues
associated to MaVMP problems for initial placement previously described.

For example, a problem instance composed by 12 PMs and 50 VMs, one run of the proposed algorithm was
completed, after evolving populations of 100 individuals for 300 generations. The number of generations was
incremented for this experiment from 100 to 300, taking into account the large number of possible solutions
for the particular problem considered. An interactive adjustment of the lower or upper bounds associated
to each objective function was performed after every 100 generations in order to converge to a treatable
number of solutions. It is important to remark that the interactive adjustment used in this experiment is
only one of several possible ones.

As an example, we may consider: (1) automatically adjusting a % of the lower bounds associated to
maximization objective functions when the Pareto front has a defined number of elements or (2) manually
adjusting upper bounds associated to minimization objective functions until the Pareto front does not have
more than 20 elements, just to cite a pair of alternatives.

The Pareto front approximation PFknown represents the complete set of Pareto solutions considering
unrestricted bounds (Lz = −∞ and Uz = ∞). On the other hand, Pareto front approximation PFreduced

represents the reduced set of Pareto solutions obtained by interactively adjusting bounds Lz and Uz. After
100 generations, the proposed algorithm obtained 251 solutions with unrestricted bounds.
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Figure 2: Summary of results obtained in [16] using restricted lower and upper bounds against unrestricted
bounds.
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A decision maker evaluated the bounds associated to f1(x) (power consumption) and adjusted the upper
bound U1 to U ′1 = 9000 [W], selecting only 35 out of the 251 solutions (not considering 216 otherwise feasible
solutions) for the PFreduced as shown in Figure 2. After 200 generations, the algorithm obtained a total
of 484 solutions with unrestricted bounds. Considering instead U ′1 = 9000 [W], the algorithm only found
68 solutions. The decision maker evaluated the bounds associated to f2(x) (network traffic) and adjusted
the upper bound U2 to U ′2 = 115 [Mbps], selecting only 36 out of the 68 solutions for the PFreduced. After
300 generations, the algorithm obtained a total of 965 solutions with unrestricted bounds. Considering
U ′1 = 9000 [W] and U ′2 = 115 [Mbps], the algorithm found 63 solutions. The decision maker evaluated
the bounds associated to f3(x) (economical revenue) and adjusted the lower bound L3 to L′3 = 13500 [$],
selecting only 17 out of the 63 solutions for the final PFreduced as shown in Figure 2.

Clearly, at the end of the iterative process, the decision maker found 17 solutions according to his
preferences instead of 965 unmanageable candidate solutions.

5 MaVMP with Reconfiguration of VMs

Once an initial placement of VMs have been performed, a virtualized datacenter could be reconfigured
through VM live migration in order to maintain efficiency in operations, considering that the set of requested
VMs changes over time. This particular semi-dynamic formulation of a VMP problem may be studied as an
approximation to dynamic formulations of real-world IaaS environments.

5.1 Problem Formulation

According to [8, 9], the optimization of power consumption is the most studied objective function in VMP
literature [35, 6]. Furthermore, network traffic [5] and economical revenue [58, 26] are also very studied as
objective functions for the VMP problem. For a VMP problem formulation with reconfiguration of VMs,
two additional objective functions associated to migration of VMs represent challenges for CSPs: number of
VM migrations [59] and network traffic overhead for VM migrations [7].

Considering the large number of existing objective functions for VMP problems identified in [8, 9], Lopez-
Pires and Baran have proposed in [15, 16] a many-objective optimization framework in order to consider as
many objective functions as needed when solving a MaVMP problem for initial placement. To the best of the
authors’ knowledge there was no published work presenting a formulation of a MaVMP with reconfiguration
of VMs before our work in [17]. This section extends formulations presented in [15, 16], proposing for the
first time a MaVMP with reconfiguration of VMs, considering this time the simultaneous optimization of
the following five objective functions: (1) power consumption, (2) inter-VM network traffic, (3) economical
revenue, (4) number of VM migrations and (5) network traffic overhead for VM migrations.

Formally, the proposed offline (semi-dynamic) MaVMP problem with reconfiguration of VMs can be
enunciated as:

Given the available PMs and their specifications, the requested VMs and their specifications, the network
traffic between VMs and the current placement of the VMs, it is sought a new placement of the set of VMs in
the set of PMs, satisfying the constraints of the problem while simultaneously optimizing all defined objective
functions (as power consumption, inter-VM network traffic, economical revenue, number of VM migrations
and network traffic overhead for VM migration), in a pure many-objective context, before selecting a specific
solution for a given time instant t.

Due to space limitations, the complete mathematical formulation as well as other details are not included
in this summary. Interested readers could refer to [15] and [16] for details on this VMP variant.

To solve the formulated MaVMP problem, the interactive MA presented in Section 4.2 was extended to
consider challenges associated to solve a MaVMP problem with reconfigurations of VMs, as next introduced.

5.2 Extended Memetic Algorithm for MaVMP

Several challenges need to be addressed for MaVMP problems with reconfiguration of VMs. In Pareto-based
algorithms, the Pareto set approximation can include a large number of non-dominated solutions. Selecting
one of these solutions can be considered a relevant issue in semi-dynamic environments. In consequence, this
work evaluates the following selection strategies: (1) random, (2) preferred solution [57], (3) minimum dis-
tance to origin, (4) lexicographic order (provider preference) and (5) lexicographic order (service preference)
to identify convenient strategies for automatic selection of a solution for the considered problem.

For a MaVMP problem with reconfiguration of VMs, at each time instant the set of feasible placements
can be composed by a large number of non-dominated solutions. Therefore, the proposed algorithm auto-
matically selects one of the possible placements after each time instant according to one of the considered
selection strategies.
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Table 2: Selection Strategy Comparison from [17]. In this table f1(x): Power Consumption, f2(x): Inter-
VM Network Traffic, f3(x): Economical Revenue, f4(x): Number of VM Migrations, f5(x): Network Traffic
overhead for VM Migrations.

Selection
Strategy

Dominance Preference
Objective Functions Averages (row � column) (row � column)

f1(x) f2(x) f3(x) f4(x) f5(x) S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

W1

S1 9, 908 19, 981 32, 623 44 1, 526

� �
� �
� � � �
�

S2 9, 827 19, 991 32, 623 8 180
S3 9, 639 19, 228 32, 623 6 124
S4 8, 543 21, 038 32, 623 19 520
S5 10, 395 21, 957 32, 623 5 150
W2

S1 104, 559 371, 664 325, 217 650 26, 886

� �
� �
� � �
�
� �

S2 104, 835 373, 467 325, 217 37 1, 204
S3 104, 378 370, 489 325, 217 26 804
S4 103, 175 374, 210 325, 217 92 3, 531
S5 104, 860 373, 230 325, 217 20 618

Considering that the MA proposed for this particular MaVMP problem is an extension of the one pre-
sented in Section 4.2 and due to space limitations, details are not included in this summary. Nevertheless,
interested readers may refer to [17] for a more detailed explanation.

5.3 Experimental Results: Strategies Evaluation

Table 2 summarizes the results obtained considering two different workloads. First workload W1 is composed
by 10 PMs, running in average 100 VMs for 24 time instants, while the second workload W2 is composed by
100 PMs, running in average 1000 VMs also for 24 time instants.

As expected, when the lexicographic order is used, the most important objective function is the one with
the best results, i.e. the S4 strategy (provider preference) obtains the best results in power consumption
f1(x), with 20% less power consumption than the worst strategy in W1 and 2% less power consumption than
the worst strategy in W2. When service perspective is prioritized (S5), the objective functions f4(x) and
f5(x) obtain the best results.

However, as the focus of this work is the simultaneous optimization of all five objective functions with a
PMO optimization approach, a comparison is made considering the concept of Pareto dominance. As seen
in Table 2 (dominance column), the S3 strategy dominates S2 and S1 in both experiments; however, it is
non-comparable with respect to S4 and S5 in both presented problem instances.

Given that S3 cannot be declared as the best strategy considering exclusively Pareto dominance, a further
comparison of selection strategies using preference (i.e. larger number of better objective functions) criteria
[57] is presented in the corresponding column of Table 2.

It may seem intuitive that the S2 strategy (that uses the preference criterion) should be the best; however,
Table 2 shows that strategy S3 is preferred not only to S2 but also to S1 and to S4 in both problem instances.

Additionally, it can be seen that S3 is preferred to S5 in problem instance W1 while no strategy is
preferred to S3, indicating that S3 (distance to origin) could be considered the preferred (best) strategy for
solving the proposed MaVMP problem with reconfiguration of VMs.

As a consequence of the above results, for production cloud datacenters, instead of calculating all the
Pareto set approximation, the S3 strategy (distance to origin) could be used to combine all considered
objective functions into only one objective function, therefore solving the studied problem considering a
Multi-Objective problem solved as Mono-Objective (MAM) approach.

6 Uncertain MaVMP for Cloud Computing

This section proposes a complex IaaS environment for VMP problems, considering service elasticity and
overbooking of physical resources. To the best of the authors’ knowledge, there is no previous published
work considering these fundamental criteria, directly related to the most relevant dynamic parameters in
the specialized literature [60]. In order to model this complex IaaS environment for VMP problems, cloud
services (i.e. a set of inter-related VMs) are considered instead of only isolated VMs.
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It is worth remembering that VMP is a NP-Hard combinatorial optimization problem [61]. From an
IaaS provider perspective, it is mostly formulated as an online problem and must be solved with short time
constraints [8]. Online decisions made along the operation of a dynamic cloud computing infrastructure
negatively affects the quality of solutions in VMP problems when comparing to offline decisions, studied
as part of this dissertation in [19]. In this context, offline algorithms present a substantial advantage over
online alternatives. Unfortunately, offline formulations are not appropriate for highly dynamic environments
for real-world IaaS providers, where cloud services are requested dynamically according to current demand.

In what follows, this section presents a two-phase optimization scheme, decomposing the VMP problem
into two different sub-problems, combining advantages of online and offline VMP formulations considering
a complex IaaS environment: (1) incremental VMP (iVMP) and (2) VMP reconfiguration (VMPr). This
two-phase optimization scheme combines both online (iVMP) and offline (VMPr) algorithms for solving each
considered VMP sub-problem.

In online algorithms for solving the proposed problem, placement decisions are performed at each discrete
time t. The formulation of the proposed iVMP (online) problem is based on [19], formally enunciated as:
Given a complex IaaS environment composed by a set of PMs (H), a set of active VMs already requested
before time t (V (t)), and the current placement of VMs into PMs (i.e. x(t)), it is sought an incremental
placement of V (t) into H for the discrete time t + 1 (x(t + 1)) without migrations, satisfying the problem
constraints and optimizing the considered objective functions.

On the contrary, offline algorithms solve a VMP problem considering a static environment where VM
requests do not change over time and considers migration of VMs between PMs. The formulation of the
proposed VMPr (offline) problem is based on [17, 15] and could be stated as:

Given a current placement of VMs into PMs (x(t)), it is sought a placement reconfiguration through migration
of VMs between PMs for a discrete time t (i.e. x′(t)), satisfying the constraints and optimizing the considered
objectives.

For IaaS customers, cloud computing resources often appear to be unlimited and can be provisioned
in any quantity at any required time [2]. This formulation considers a basic federated-cloud deployment
architecture for the problem.

It is important to remember that more than 60 different objective functions have been proposed for
VMP problems [8]. In this context, the number of considered objective functions may rapidly increase
once a complete understanding of the VMP problem is accomplished for practical problems, where several
different parameters should be ideally taken into account. Consequently, a formulation of the VMP problem
is presented considering the optimization of the following four objective functions: (1) power consumption,
(2) economical revenue, (3) resource utilization and (4) reconfiguration time.

Due to the randomness of customer requests, VMP problems should be formulated under uncertainty.
This work presents a scenario-based uncertainty approach for modeling uncertain parameters, considering a
two-phase optimization scheme for VMP problems in complex IaaS environments.

This work identifies two main research questions related to the considered two-phase optimization scheme:

• Research Question 1 (RQ1): when or under which circumstances the VMPr phase should be
triggered? (VMPr Triggering method).

• Research Question 2 (RQ2): what should be done with cloud service requests arriving during
recalculation time in the VMPr phase? (VMPr Recovering method).

The presented optimization scheme for the VMP problem introduces novel methods to decide when to
trigger placement reconfigurations with migration of VMs between PMs (defined as VMPr Triggering) and
what to do with cloud services requested during placement recalculation times (defined as VMPr Recovering).

6.1 Related Works and Motivation

To the best of the authors’ knowledge, there is no published work considering uncertainty of parameters for
provider-oriented VMP problem formulations. Consequently, this section mainly focus on describing IaaS
environments considered on each related work, as well as already proposed VMPr Triggering and VMPr
Recovering methods, when applicable. The most relevant works for this research are briefly described [44, 6]
and a summary of considered related works is presented in Table 3.

Calcavecchia et al. studied in [44] a practical model of cloud service placement for a stream (or workload)
of requests where inter-related VMs are created and destroyed, considering CPU overbooking and static
reservation of VMs resources. The mentioned cloud service placement model is composed by two phases: (1)
continuous deployment (or iVMP) and (2) ongoing optimization (or VMPr).
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Table 3: Summary of IaaS environments and VMPr methods already studied in related works from [20].
N/A indicates a Not Applicable criterion.

Ref Overbooking Type Elasticity Type VMPr Triggering VMPr Recovering
[44] CPU Not Considered Periodically Cancellation
[62] Not Considered Not Considered Periodically Not Considered
[63] Not Considered Not Considered Periodically Not Considered
[64] Not Considered Not Considered Periodically Not Considered
[65] CPU and RAM Not Considered Periodically Not Considered
[66] Not Considered Not Considered Periodically Not Considered
[67] Not Considered Not Considered Continuously Not Considered
[6] CPU Not Considered Threshold-based N/A
[68] CPU, RAM, Network Not Considered Threshold-based N/A
[69] CPU Horizontal Threshold-based N/A

This work CPU, RAM, Network Vertical, Horizontal Prediction-based Update-based

The continuous deployment is performed by a Best-Fit Decreasing (BFD) heuristic while a Backward
Speculative Placement (BSP) is performed in the ongoing optimization phase. To improve a current place-
ment, the ongoing optimization is periodically triggered for the duration of the workload and canceled
whenever a new request is received.

Beloglazov et al. identified in [6] two stages for the VMP problem: (1) initial admission of VMs and (2)
optimization of the current placement. For the admission of VMs (or iVMP) a Modified Best-Fit Decreasing
(MBFD) algorithm is considered, using the CPU utilization of VMs to sort a list of VM requests and
allocate each VM into a PM that provides the minimum increment in power consumption. Additionally, the
optimization of the current placement (or VMPr) is triggered whenever an overloaded or underloaded PM
is detected, according to well-defined CPU utilization thresholds. In this case, the VMPr runs distributively
for each overloaded or underloaded PM to migrate VMs from overloaded PMs until each PM is appropriately
loaded, consolidating VMs from underloaded PMs to decrease the number of running PMs to the minimum
possible number. It is important to consider that this threshold-based triggering represents a decentralized
decision process, relaxing the computational complexity of the VMP problem. Consequently, it is not
necessary to consider the arrival of VM requests during the reconfiguration because no offline centralized
decision is performed. Considering the VMPr, a selection process is performed to determinate which VMs
should be migrated (all in case of underloaded PMs). Selected VMs are allocated by the MBFD algorithm
into PMs considering CPU overbooking.

In summary, as presented in Table 3, most of the related works that consider IaaS environments with
overbooking are limited to CPU resources. Only [68] considered overbooking for all available resources, as
proposed in this work. Additionally, studied IaaS environments with elasticity are limited to horizontal
elasticity [69], while this work considers both vertical and horizontal elasticity.

According to the studied articles (see Table 3), existing VMPr Triggering methods may be classified as:
(1) periodical and (2) threshold-based. Periodically triggering the VMPr could present disadvantages when
defining a fixed reconfiguration period (e.g. every 10 minutes) because reconfigurations may be required
before the established time or in certain cases the reconfiguration may not be necessary. For threshold-
based approaches, thresholds are defined in terms of utilization of resources (e.g. CPU) without a complete
knowledge of global optimization objectives. Therefore, this work proposes a novel prediction-based approach
as VMPr Triggering method, statistically analyzing the objective function costs and proactively detecting
requirements for triggering the VMPr.

Additionally, most of the studied works do not consider any VMPr Recovering method, when applicable.
Only Calcavecchia et al. studied in [44] a very basic approach, canceling the VMPr whenever a new request
is received. Consequently, the VMPr is only performed in periods with no requests, that could result
unrealistic, specially for highly loaded IaaS environments. On the other hand, this work proposes a novel
VMPr Recovering method based on updating the potentially obsolete placement recalculated in the VMPr
phase with the required cloud services created, modified and removed during the recalculation time.

6.2 Problem Formulation

This section presents a formulation of the VMP problem under uncertainty considering a two-phase scheme
for the optimization of the following objective functions: (1) power consumption, (2) economical revenue,
(3) resource utilization and (4) placement reconfiguration time.
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Due to space limitations, the complete mathematical formulation as well as other details are not included
in this summary. Interested readers could refer to [20] for details on this particular VMP variant.

According to [8], this section focuses on a provider-oriented VMP for federated-clouds, considering a
combination of two types of formulations: (1) online (i.e. iVMP) and (2) offline (i.e. VMPr).

An online problem formulation is considered when inputs of the problem change over time and the
algorithm does not have the entire input set available from the start [7]. On the other hand, if inputs of the
problem do not change over time, the formulation is considered offline (e.g. MAs proposed in [17] and [15]).

In order to model a dynamic VMP environment taking into account both vertical and horizontal elasticity
of cloud services, the set of requested VMs V (t) may include the following types of requests for cloud service
placement at each discrete time t:

• cloud services creation: where new cloud services Sb, composed by one or more VMs Vj , are created.
Consequently, the number of VMs at each discrete time t (i.e. m(t)) is a function of time;

• scale-up / scale-down of VMs resources: where one or more VMs Vj of a cloud service Sb increases
(scale-up) or decreases (scale-down) its capacities of virtual resources with respect to current demand
(vertical elasticity). In order to model these considerations, virtual resource capacities of a VM Vj (i.e.
V r1,j(t)-V r3,j(t)) are a function of time, as well as the associated economical revenue (Rj(t));

• cloud services scale-out / scale-in: where a cloud service Sb increases (scale-out) or decreases
(scale-in) the number of associated VMs according to current demand (horizontal elasticity). Conse-
quently, the number of VMs Vj in a cloud service Sb at each discrete time t, denoted as mSb(t), is a
function of time;

• cloud services destruction: where virtual resources of cloud services Sb, composed by one or more
VMs Vj , are released.

In most situations, virtual resources requested by cloud services are dynamically used, giving space to re-
utilization of idle resources that were already reserved. Information about the utilization of virtual resources
at each discrete time t is required in order to model a dynamic VMP environment where IaaS providers
consider overbooking of both server and networking physical resources.

6.2.1 Normalization and Scalarization Methods

As a consequence of experimental results obtained in a previous work by the authors [17] for VMP problems
optimizing multiple objective functions, even in a many-objective optimization context for cloud computing
datacenters, instead of calculating a whole Pareto set approximation, a scalarization method (e.g. minimum
distance to origin) is suggested to combine all considered objective functions into a single objective function;
therefore, solving the studied problem considering a Multi-Objective problem solved as Mono-Objective
(MAM) approach [8]. Consequently, each of the considered objective function must be formulated in a single
optimization context (in this case, minimization) and each objective function cost must be normalized to be
comparable and combinable as a single objective.

This work normalizes each objective function cost by calculating f̂i(x, t) ∈ R, where 0 ≤ f̂i(x, t) ≤ 1 for
each original objective function fi(x, t).

f̂i(x, t) =
fi(x, t)− fi(x, t)min

fi(x, t)max − fi(x, t)min
(10)

where:

f̂i(x, t): Normalized cost of objective function fi(x, t) at instant t;
fi(x, t): Cost of original objective function;
fi(x, t)min: Minimum possible cost for fi(x, t);
fi(x, t)max: Maximum possible cost for fi(x, t).

Finally, the presented normalized objective functions are combined into a single objective considering a
minimum Euclidean distance to the origin, expressed as:

F (x, t) =

√√√√ q∑
i=1

f̂i(x, t)2 (11)
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Table 4: Summary of evaluated algorithms as well as their corresponding VMPr Triggering and Recovering
methods. N/A indicates a Not Applicable criterion.

Algorithm
Decision
Approach

iVMP VMPr VMPr
Triggering

VMPr
Recovering

A0 - inspired in [71] N/A FFD N/A N/A N/A
A1 - inspired in [44] Centralized FFD MA Periodically Cancellation
A2 - inspired in [6] Distributed FFD MMT Threshold-based N/A
A3 - from [20] Centralized FFD MA Prediction-based Update-based
A4 - inspired in [72] N/A OpenStack N/A N/A N/A

where:

F (x, t): Single objective function combining each f̂i(x, t) at instant t;

f̂i(x, t): Normalized cost of objective function fi(x, t) at instant t;
q: Number of objectives. In this work q = 4.

6.2.2 Scenario-based Uncertainty Modeling

In this work, uncertainty is modeled through a finite set of well-defined scenarios S [70], where the following
uncertain parameters are considered: (1) virtual resources capacities (vertical elasticity), (2) number of
VMs that compose cloud services (horizontal elasticity), (3) utilization of CPU and RAM memory virtual
resources and (4) utilization of networking virtual resources (both relevant for overbooking).

For each scenario s ∈ S, a temporal average value of the objective function F (x, t) presented in Equation
(11) is calculated as:

fs(x, t) =

∑tmax

t=1 F (x, t)

tmax

(12)

where:

fs(x, t): Temporal average of combined objective function for all discrete time instants t in scenario s ∈ S;
tmax: Duration of a scenario (or simulation) in discrete time instants.

As previously described, when parameters are uncertain, it is important to find solutions that are accept-
able for any (or most) considered scenario s ∈ S. This work considers minimization of the following criteria
to select among solutions from different evaluated alternatives as: (1) average [70], (2) maximum [70] and
(3) minimum objective function costs:

F1 = F (x, t) =

∑|S|
s=1 fs(x, t)

|S|
(13)

F2 = max
s∈S

(fs(x, t)) (14)

F3 = min
s∈S

(fs(x, t)) (15)

where:

F1: Average fs(x, t) for all scenarios s ∈ S;

F2: Maximum fs(x, t) considering all scenarios s ∈ S;

F3: Minimum fs(x, t) considering all scenarios s ∈ S.

Although F1 and F2 are the most studied criteria in the specialized literature [70], this work also considers
F3 as a criterion just to demonstrate that experimental conclusions do not change when also considering
minimum costs.
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6.3 Evaluated Algorithms

Taking into account that this work presents a novel uncertain VMP formulation considering a complex
IaaS environment [20], there is no published alternatives to which we can compare the proposed algorithm.
Therefore, the main goal of the experimental evaluation to be presented is to validate that the proposed
VMPr Triggering and VMPr Recovering methods improve the quality of solutions, against adapted state-of-
the-art alternatives that originally consider only partially the proposed complex IaaS environment.

This work firstly evaluates four different algorithms (A0 to A3 in Section 6.4), presented in Table 4.
First, Algorithm 0 (A0 ) is evaluated considering only the online iVMP phase, without taking into account
reconfiguration of VMs. Algorithm 1 (A1 ) is inspired in [44], considering a centralized decision approach
while Algorithm 2 (A2 ) is inspired in [6] following a distributed decision approach. Additionally, Algorithm
3 (A3 ) considers a centralized decision approach implementing the prediction-based VMPr Triggering and
update-based VMPr Recovering methods proposed in [20]. In this context, A1 and A2 consider original
VMPr Triggering and VMPr Recovering methods proposed on each research work [44, 6].

Additionally, this work presents a comparison of two algoritms (A3 and A4 in Section 6.5), presented in
Table 4. Here, A4 is inspired in [72], representing main functioning of industry de-facto standard OpenStack.

6.3.1 Proposed Prediction-based Triggering

Considering the main identified issues related to the studied VMPr Triggering methods, this work presents
a prediction-based VMPr Triggering method from [20], statistically analyzing the global objective function
F (x, t) that is optimized (see Equation (11)) and proactively detecting situations where a VMPr triggering
is potentially required for a placement reconfiguration.

The presented prediction-based VMPr Triggering method considers Double Exponential Smoothing (DES)
[73] as a statistical technique for predicting values of the objective function F (x, t), formulated next in
Equations (16) to (18):

St = α× Zt + (1− τ)(St−1 + bt−1) (16)

bt = τ(St − St−1) + (1− τ)(bt−1) (17)

Zt+1 = St + bt (18)

where:

α: Smoothing factor, where 0 ≤ α ≤ 1;
τ : Trend factor, where 0 ≤ τ ≤ 1;
Zt: Known value of F (x, t) at discrete time t;
St: Expected value of F (x, t) at discrete time t;
bt: Trend of F (x, t) at discrete time t;
Zt+1: Value of F (x, t+ 1) predicted at discrete time t.

At each discrete time t, the proposed prediction-based VMPr Triggering method predicts the next N̂
values of F (x, t) and effectively triggers the VMPr phase in case F (x, t) is predicted to consistently increase,
considering that F (x, t) is being minimized.

6.3.2 Proposed Update-based Recovering

Considering an identified opportunity to improve the existing VMPr Recovering method [44], this work
proposes a novel update-based VMPr Recovering method based on updating the placement reconfiguration
calculated in the VMPr phase, according to changes that happened during the placement recalculation time,
applying operations to update the potentially obsolete placement. Details can be seen in [20].

6.4 Experimental Results: VMPr Triggering and Recovering Methods

Table 5 presents values of the considered evaluation criteria, i.e. F1, F2 and F3 costs (see Equation (13)
to (15)), summarizing results obtained in performed simulations. The mentioned evaluation criteria are
presented separately for each of the five considered IaaS cloud datacenter. It is worth noting that the
considered IaaS cloud datacenters represent datacenters of different sizes and consequently, the considered
workload traces represent different load of requested CPU resources (e.g. Low (≤ 30%), Medium (≤ 60%),
High (≤ 90%), Full (≤ 98%) and Saturate (≤ 120%)) workloads. The main idea of evaluating different load
of requested CPU resources is inspired in [74].
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Table 5: Summary of evaluation criteria in experimental results for evaluated algorithms from [20].
Criterion DC1 DC2 DC3 DC4 DC5 Rank

F1

A0 0.691 0.758 0.855 0.901 0.934 3th

A1 0.691 0.758 0.855 0.901 0.934 3th

A2 0.684 0.750 0.847 0.898 0.931 2nd

A3 0.636 0.701 0.819 0.799 0.839 1st

F2

A0 0.773 0.876 0.917 0.962 0.998 3th

A1 0.773 0.876 0.917 0.962 0.998 3th

A2 0.763 0.835 0.918 0.959 0.995 2nd

A3 0.738 0.764 0.876 0.860 0.897 1st

F3

A0 0.603 0.653 0.750 0.806 0.840 3th

A1 0.603 0.653 0.750 0.806 0.840 3th

A2 0.593 0.652 0.741 0.797 0.827 2nd

A3 0.534 0.593 0.677 0.673 0.708 1st
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Figure 3: Temporal average cost from [20]: Average values of fs(x, t) in DC1 to DC5 per each s ∈ S.

Based on the information presented in Table 5, the Main Findings (MFs) of the experimental evaluation
performed in this section are summarized as follows:

Algorithm A3 that considered the proposed VMPr Triggering and VMPr Recovering methods outperformed
all other evaluated algorithms in every experiment, taking into account the considered evaluation criteria.

In summary, A3 obtained better results (minimum cost) for the evaluation criteria presented in Table 5.

When considering average objective function costs (F1) as evaluation criterion, A3 obtained between
3.4% and 12.4% better results than A2, as well as between 4.4% and 12.9% better results than A0 and A1.
Additionally, when considering maximum objective function costs (F2) as evaluation criterion, the proposed
A3 obtained between 3.3% and 14.1% better results than A2, which performed as the second best algorithm
in this case. When comparing to A0 and A1, the proposed A3 algorithm obtained between 4.7% and 15.4%
better results. Finally, A3 obtained between 9.9% and 11.4% better results than A2 when considering
minimum objective function costs (F3) as evaluation criterion. A3 algorithm also obtained between 10.1%
and 14.7% better results than A0 and A1.

To better understand the experimental evaluation summarized in Table 5, Figure 3 illustrates the tem-
poral average cost of the single combined objective function for all scenarios s ∈ S, denoted as fs(x, t) in
Equation (12).

The proposed A3 outperformed other evaluated algorithms in the considered scenarios, when considering
average values of the single combined objective function on each scenario s ∈ S.

As presented in Figure 3, A3 outperformed the other algorithms in all of the considered scenarios. A3
was the best algorithm in 100% of the 400 carefully designed and evaluated scenarios with different load of
CPU resources.
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Table 6: Summary of evaluation criteria in experimental results for evaluated algorithms.

Criterion Algorithm
Datacenter

DC1 DC2 DC3 DC4 DC5 Ranking

F1
A3 0.636 0.701 0.819 0.799 0.839 1st

A4 0.794 0.932 0.986 1.003 1.019 2nd

Summarizing, according to the performed experimental evaluation, the algorithm that considered the
proposed prediction-based VMPr Triggering and update-based VMPr Recovering methods (A3) is the clear
alternative for solving the uncertain MaVMP problem in a two-phase optimization scheme, considering
results presented in this section.

6.5 Experimental Results: Comparison with OpenStack

Considering the promising results obtained in [20] and presented in Section 6.4, as additional contributions
of this work, a brief initial comparison of the proposed A3 against an industry de-facto standard algorithm
(i.e. inspired in OpenStack - A4) is presented in this section, considering the F1 costs (see Equation (13)).

Table 6 presents values of the considered evaluation criteria, i.e. F1 costs (see Equation (13)), sum-
marizing results obtained in first performed simulations. The mentioned evaluation criterion is presented
separately for each of the five considered IaaS cloud datacenter.

Based on the information presented in Table 6, the Main Findings (MFs) of the experimental evaluation
performed in this section are summarized as follows:

Algorithm A3 that considered the proposed VMPr Triggering and VMPr Recovering methods outperformed
other evaluated algorithm A4 in every experiment, taking into account the considered evaluation criterion.

When considering average objective function costs (F1) as evaluation criterion, A3 obtained between 20%
and 32% better results than A4. In summary, A3 obtained better results (minimum cost) for evaluation
criterion presented in Table 6.

7 Conclusions and Future Directions

Based on 84 studied articles, the research summarized in this paper presented general taxonomies of the
VMP problem from [8, 9, 10], considering possible environments where the VMP problem could be studied
(Figure 2.1) as well as formulations and techniques for the resolution of the VMP problem (Table 1).

A formulation of a MaVMP for initial placement of VMs was also presented, considering the simultaneous
optimization of five objective functions [15, 16, 18]). Adjustable constraints on upper and lower limits of
each objective function are also recommended as a way to interactively control a potential explosion in
the number of solutions. An interactive MA was additionally proposed to solve the proposed formulation,
validating the formulation and proving that it is solvable.

Next, this work presented a first MaVMP with reconfiguration of VMs from [17], simultaneously opti-
mizing five objective functions. An extended MA was proposed to solve this semi-dynamic MaVMP. Five
selection strategies were evaluated to automate the process of selecting a solution from a Pareto set approx-
imation Pknown at each discrete instant t. Experimental results recommend the S3 (minimum distance to
origin) strategy.

Additionally, a complex IaaS environment for VMP problems was proposed, considering service elasticity,
including both vertical and horizontal scaling of cloud services, as well as overbooking of physical resources,
including both server (CPU and RAM) and networking resources [20]). The proposed complex IaaS en-
vironment for VMP problems was studied in a two-phase optimization scheme, combining advantages of
both online and offline VMP formulations, where novel prediction-based VMPr Triggering and update-based
VMPr Recovering methods were proposed [20]). Experimental results suggested that the best algorithm for
solving the proposed uncertain VMP problem is the one considering the proposed methods used by the A9
algorithm.

Several future works were also identified, including considering a dynamic set of PMs H(t), as well as
more sophisticated cloud federation approaches. Additionally, an experimental evaluation of alternative
algorithms for both iVMP and VMPr phase is proposed as a future work, in order to explore performance
issues with the proposed VMPr Triggering and VMPr Recovering methods. Novel VMPr methods could
still be proposed to improve the considered two-phase optimization scheme. A more detailed experimental
evaluation of different parameters of the proposed VMP formulation should also be considered, evaluating
different protection factors λk, penalty factors φk or even different scalarization methods [75].
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Additionally, the authors were working on implementing the evaluated algorithms in IaaS middlewares
(e.g. OpenStack1) to evaluate the proposed methods in real-world cloud computing datacenters supporting
real workloads of cloud applications. In this context, novel contributions were also included to compare
proposed algorithms against simulated OpenStack inspired alternatives, presenting also promising results.

The following challenges are presented to guide further advance on this research:

• Considering that cloud-native applications are mainly using container-based deployment schemes, novel
considerations for the VMP problem should be studied, taking into account particular architectures
related to containers over VMs, such as the ones presented in [76].

• Answering research questions related to the possible application of machine learning techniques for
characterising and also predicting the operation patterns of cloud computing datacenters is a relevant
topic to investigate [77], mainly considering the dynamic nature of these mentioned patterns and
limitations of machine learning techniques with this type of dynamic patterns.

• Serverless ecosystems [78] are emerging and represent a relevant topic that should be included in terms
of its implications and granularity in VMP problems for cloud computing environments. How should
be modelled and resolved serverless operations from the provider perspective?
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