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Abstract

Manual testing can be rather time consuming and prone to errors specially when testing
asynchronous reactive systems. Model based testing is a well-established approach to
verify reactive systems specified by input output labeled transition systems (IOLTSs).
One of the challenges stemming from model based testing is verifying conformance and,
also, generating test suites, primarily when completeness is a required property. In order
to check whether an implementation under test is in compliance with its respective spec-
ification one resorts to some form of conformance relation that guarantees the expected
behavior of the implementations, given the behavior of the specification. The ioco re-
lation is an example of such a conformance relation. In this work we study another
conformance relation based on formal languages. We also investigate how to generate
complete test suites for IOLTS models, and discuss the complexity of the test generation
mechanism under this new conformance relation. We also show that ioco is a special case
of this new conformance relation. Further, we relate our contributions to more recent
works, accommodating the restrictions of their classes of fault models as special cases,
and we expose the complexity of generating any complete test suite that must satisfy
their restrictions.

Keywords: Test suite generation, Complete test suites, Asynchronous systems, IOLTS

1 Introduction

Software testing has been an important part in system development processes, with the goal of improving the
quality of the final products. The systematic use of formal methods and techniques has taken prominence
when accuracy and critical guarantees are of paramount importance to the development process, such as when
failures can cause severe damages. Testing approaches based on formal models have the added advantage
that test suite generation, with proven completeness guarantees, can be effectively and precisely automated,
for certain classes of specification models.

Some formalisms, such as Finite State Machines (FSMs) [1, 2, 3], capture some aspects of systems’
behaviors. However, in FSM models, input actions from the environment and output actions produced by
the implementations under test are strongly related, and must occur synchronously. This may limit the
designers’ ability to model more complex asynchronous behaviors.

This work studies aspects of a more powerful formalism where the exchange of input and output stimuli
can occur asynchronously, namely, the class of Input/Output Labeled Transition Systems (IOLTSs) [4, 5].
In this context, model based testing [6, 7] has been widely used as a formal framework to verify whether an
implementation under test (IUT) is in conformance to a given specification, according to a given fault model
and a given conformance relation [8, 9, 4]. In particular, the ioco relation has been proposed as a suitable
conformance relation for testing IOLTS models [5]. We propose a new notion of conformance relation for
testing IOLTS models. Under this new notion, it is possible to accommodate wider classes of IOLTS models,
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thus removing some of the structural restrictions imposed by other approaches. Our main contributions can
be summarized as follows:

— The new notion of conformance allows for the specification of arbitrary desired, as well as undesired,
behaviors that an IUT must comply to. When these specifications can be cast as regular languages, we
show that a certain regular language is a complete test suite that can be used to detect the presence
of all desired behaviors and the absence of any undesired behaviors in any IUT.

— In a “white-box” testing scenario, when one has access to the internal structure of the IUTs, we prove
the correctness of a polynomial time algorithm that can be used for checking conformance against the
new relation. If the specification model is fixed, then the algorithm runs in linear time in the number
of states in the implementation.

— In a “black-box” testing environment, when the tester does not have access to the internal structure
of the implementations, we show that the classical ioco relation [5] is a special case of this new con-
formance relation. We also show how to generate complete test suites that can be used to verify
ioco-conformance under the same set of fault models considered by Tretmans [5], and for implementa-
tions with any number of states, independently of the number of states in the specification. We remark
that our models and definitions in Section 5 are co-extensive with those found in [5]. Further, in this
setting, we prove that 1.61m is an asymptotic worst case lower bound on the size of any ioco-complete
test suite, where m is the number of states of the largest implementation to be put under test. We
also show that our approach attains such a lower bound.

— In a recent work, Simão and Petrenko [10] discussed how to generate complete test suites for some
classes of restricted IOLTSs. We prove that our method can construct a complete test suite for such
classes of models, when the same restrictions must be satisfied. Also, in [10] the complexity of the
generated test suites was not studied. Here we prove an asymptotic exponential worst case lower bound
for any ioco-complete test suite that must satisfy the same restrictions as in [10] and, further, we prove
that our method also attains this lower bound.

We briefly comment on works that are more closely related to our study. See Section 7 for a more expanded
view. Tretmans [5] proposed the ioco-conformance relation for IOLTS models, and developed the foundations
of an ioco-based testing theory, where IUTs are treated as “black-boxes”. In this testing architecture the
tester is seen as an artificial environment that drives the exchange of input and output symbols with the
IUT during test runs. Some restrictions must be observed by the specification, implementation and tester
models, such as input-completeness and output-determinism. Simão and Petrenko [10] also described an
approach to generate finite complete test suites for IOLTSs. They, however, also imposed a number of
restrictions upon the specification and the implementation models in order to obtain finite complete test
suites. They assumed test purposes to be single-input and also output-complete. Moreover, specifications
and implementations must be input-complete, progressive, and initially-connected, so further restricting the
class of IOLTS models that can be tested according to their fault model. Here, we remove many of such
restrictions.

Section 2 establishes notations and preliminary results. A new notion of conformance relation is defined
in Section 3. Generating complete test suites for verifying adherence to the new conformance relation, and
its complexity, is described in Section 4. Section 5 visits the ioco-conformance relation and establishes
exponential lower bounds on the size of ioco-complete test suites. Section 6 looks at another class of IOLTS
models and show how to obtain complete test suites for this class, and discusses complexity issues when
working with models of this class. Section 7 comments on related works, and Section 8 offers concluding
remarks.

2 Preliminaries and Notation

In this section we define Labeled Transition Systems (LTSs) and Input/Output Labeled Transition Systems
(IOLTSs). For completeness, we also include standard definitions and properties of regular languages and
finite state automata (FSA). Some preliminary results associating LTSs and FSA are given.

2.1 Basic Notation

Let X and Y be sets. Then P(X) = {Z |Z ⊆ X} is the power set of X, and X−Y = {z | z ∈ X and z 6∈ Y }
is the set difference. We let XY = X ∪ Y . When no confusion can arise, we write Xy instead of X{y}. If X
is a finite set, the size of X will be indicated by |X|.
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An alphabet A is any non-empty set of symbols. A word over A is any finite sequence σ = x1 . . . xn
where n ≥ 0 and xi ∈ A, for i = 1, 2, . . . , n. When n = 0 we have the empty sequence ε. The set of
all finite words over A is denoted by A?. When we write x1x2 . . . xn ∈ A?, it is assumed that n ≥ 0
and that xi ∈ A, 1 ≤ i ≤ n, unless noted otherwise. The length of α ∈ A? is indicated by |α|. Hence,
|ε| = 0. Let σ = σ1 . . . σn and ρ = ρ1 . . . ρm be words over A. The concatenation σρ of σ and ρ is the word
σ1 . . . σnρ1 . . . ρm. Clearly, |σρ| = |σ| + |ρ|. A language G over A is a set G ⊆ A?. Let G1, G2 ⊆ A?. The
product G1G2 is {σρ |σ ∈ G1, ρ ∈ G2}, and the complement is G1 = A? −G1.

Definition 1 Let A, B be alphabets. A homomorphism from A to B is any function h : A→ B?.

A homomorphism h : A → B? can be extended to a function ĥ : A? → B? where ĥ(ε) = ε, and ĥ(aσ) =

h(a)ĥ(σ) where a ∈ A. We can further lift ĥ to a function h̃ : P(A?)→ P(B?), by letting h̃(G) = ∪σ∈Gĥ(σ),

for all G ⊆ A?. We often write h in place of ĥ, or of h̃, when no confusion can arise. When a ∈ A is any
symbol, we define the simple homomorphism ha : A→ (A−{a})? by letting ha(a) = ε, and ha(x) = x when
x 6= a. So, ha(σ) erases all occurrences of a in σ.

2.2 Labeled Transition Systems

A Labeled Transition System (LTS) is a formal model that is convenient to express asynchronous exchange
of messages between participating entities, in the sense that outputs do not have to occur synchronously
with inputs, but are generated as separate events. It consists of a set of states and a transition relation
between states. Each transition is guarded by an action symbol. We first give the finite syntactic description
of LTSs. A semantic structure that attributes meaning to a syntactic description will be given shortly in the
sequel.

Definition 2 A Labeled Transition System is a tuple S = 〈S, s0, L, T 〉:

1. S is a finite set of states or locations;

2. s0 is the initial state, or initial location;

3. L is a finite set of labels, or actions; τ /∈ L is the internal action symbol;

4. T ⊆ S × Lτ × S is a set of transitions.

The symbol τ is used to model any actions that are not exchanged as messages, that is, actions that cause
only an internal change of states. The class of all LTSs over an alphabet L will be denoted by L(L).

Example 1 For the LTS S = 〈S, s0, L, T 〉, depicted in Figure 1, we have S = {s0, s1, s2, s3, s4} and L =
{b, c, t}. Arrows indicate transitions, so that

s0

s1s2

b
b

bb

s3s4

tc

τ τ

Figure 1: An LTS with 5 states and 8 transitions.

T ={(s0, b, s1), (s0, b, s2), (s1, b, s1), (s1, t, s3),
(s2, b, s2), (s2, c, s4), (s3, τ, s0), (s4, τ, s0)}.

The semantics of an LTS is given by its traces, or behaviors. But first, we need the notion of paths in
an LTS.

Definition 3 Let S = 〈S, s0, L, T 〉 be an LTS and p, q ∈ S. Let σ = σ1, . . . , σn ∈ L?τ . We say that σ is:

1. a path from p to q if there are states ri ∈ S, 0 ≤ i ≤ n and, additionally, we have (ri−1, σi, ri) ∈ T ,
1 ≤ i ≤ n, r0 = p and rn = q;

2. an observable path from p to q if µ is a path from p to q and σ = hτ (µ).

We say that the paths start at p and end at q.
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A path σ from p to q is just a sequence of symbols that allows one to move from state p to state q.
Note that a path may include transitions over the internal symbol τ . An observable path arises from any
ordinary path from which internal symbols have been erased. An external observer will not see the internal
transitions, as the model moves from state p to state q. It is also clear that an observable path is not
necessarily a path.

Example 2 Consider the LTS of Figure 1. The following are paths starting at s2: ε, b, bcτ , cτbbbtτb. The
following are observable paths starting at s2: ε, b, bc, cbbbtb. There are observable paths of any length from
s2 to s1. Note that, starting at s2, the path cτb may lead to either s1 or back to s2. 2

If σ is a path from p to q we write p
σ→ q. We write p

σ→ when there is some q ∈ S and p
σ→ q; likewise,

p → q means that there is some σ ∈ L?τ such that p
σ→ q. Also p → means p

σ→ q for some q ∈ S and some

σ ∈ L?τ . To emphasize the underlying LTS we write p
σ→
S
q. The symbol ⇒ will indicate observable paths,

with the same abbreviations used with the → relation. Note that s⇒ p if and only if s→ p.
Paths starting at a state p are traces of p. The semantics of an LTS are the traces of the initial state.

Definition 4 Let S = 〈S, s0, L, T 〉 be an LTS and let p ∈ S. The set of traces of p is tr(p) = {σ | p σ→},
and the set of observable traces of p is otr(p) = {σ | p σ⇒}. The semantics of S is the set tr(s0), and the
observable semantics of S is the set otr(s0).

We may write tr(S) for tr(s0) and otr(S) for otr(s0). If S has no τ -labeled transitions, then otr(S) = tr(S).

Example 3 Consider the LTS of Figure 1. the sequences ε, bbc, btτbcτbbb are in the semantics of S. The
observable semantics of S includes: ε, bcbt, bbbtbcbtb. 2

We can restrict the class of LTS models somewhat, with no loss of descriptive capability. First, we assume
that all τ -moves change state, and we do away with states that are not reachable from the initial state.

Remark 1 In Definition 2 we will always assume that (s, τ, s) 6∈ T and that s0 → s holds, for any s ∈ S.

Internal actions can facilitate the specification of formal models. For example, specifying that “after
delivering money, the ATM returns to the initial state”, can be done by a τ -move back to the initial state,
if there is no need to exchange messages with a user. Note that Remark 1 does not prevent the occurrence
of cycles labeled by τ -moves, which would lead a livelock. Sometimes, however, we may not want such
behaviors, or we might want that no observable behavior leads to two distinct states. This motivates the
next definition.

Definition 5 We say that S = 〈S, s0, L, T 〉 is deterministic if s0
σ⇒ s1 and s0

σ⇒ s2 imply s1 = s2, for all
s1, s2 ∈ S, and all σ ∈ L?.

The following result is immediate.

Proposition 1 A deterministic model has no τ -moves.

2.3 Finite State Automata

An LTS induces a finite automaton with simple properties. In particular, τ -labeled transitions correspond to
nondeterminism induced by ε-moves in the automaton. For completeness, we give here the basic definitions.

Definition 6 A = 〈S, s0, A, ρ, F 〉 is a Finite State Automaton (FSA) where:

1. S is a finite set of states;

2. s0 ∈ S is the initial state;

3. A is a finite non-empty alphabet;

4. ρ ⊆ S × (A ∪ {ε})× S is the transition relation; and

5. F ⊆ S is the set of final states.

A transition (p, ε, q) ∈ ρ is called an ε-move of A.

The semantics of a FSA is the set accepted words.

Definition 7 Let A = 〈S, s0, A, ρ, F 〉 be a FSA. Define the relation 7→ as
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1. p
ε7→ p, and

2. p
xµ7→ q if (p, x, r) ∈ ρ and r

µ7→ q with x ∈ Σ ∪ {ε}.

L(A) = {σ | s0
σ7→ p and p ∈ F} is the set accepted by A. And G ⊆ A? is regular if it is accepted by an FSA.

Determinism requires no ε-moves and the transition relation is a function. Completeness means that
from any state there is an outgoing transition on any symbol.

Definition 8 A = 〈S, s0, A, ρ, F 〉 is deterministic if ρ is a function S × A → S, and A is complete if for
all s ∈ S, a ∈ A we have (s, a, p) ∈ ρ for some p ∈ S.

The subset construction [11, 12] gives:

Proposition 2 Let A be FSA. We can effectively construct a deterministic FSA B such that L(A) = L(B).

Note that B may have up to 2k states if A has k states.
The next constructions require simple algorithms.

Proposition 3 Let A and B be FSAs. We can easily obtain and FSA C such that

1. L(C) = L(A) ∪ L(B), L(C) = L(A) ∩ L(B), or L(C) = L(A).

2. L(C) = L(A) and C is complete.

Also, if A and B are deterministic, then so is C.

Proof See [11].

We can convert τ -moves of an LTS into ε-moves of a FSA, and turn all states of the LTS into final states
of the FSA, and vice-versa. Then algorithmic constructions for FSAs can be used to transform the LTSs.

Definition 9 We have the following two associations:

1. Let S = 〈S, s0, L, T 〉 be an LTS. The induced FSA is AS = 〈S, s0, L, ρ, S〉 where
(p, `, q) ∈ ρ if and only if (p, `, q) ∈ T,
(p, ε, q) ∈ ρ if and only if (p, τ, q) ∈ T.

2. Let A = 〈S, s0, A, ρ, S〉 be a FSA. The induced LTS is SA = 〈S, s0, A, T 〉 where
(p, a, q) ∈ T if and only if (p, a, q) ∈ ρ,
(p, τ, q) ∈ T if and only if (p, ε, q) ∈ ρ.

An easy induction establishes the following

Proposition 4 The associations in Definition 9 give otr(S) = L(AS) and otr(SA) = L(A).

If S is an LTS, Definition 9(1) gives a FSA A where all states are final and L(A) = otr(S). Using Proposition 2
we can get a deterministic FSA B with L(B) = L(A). The subset construction [11, 12] says that all states
in B are final, except possibly for the state representing the empty set. Removing this state we get a FSA
C in which all states are final and such that L(C) = L(B). Now we can use Definition 9(2) and get a LTS T

with otr(T) = L(C). Moreover, since B was deterministic, it is easy to see that T is also deterministic.

Proposition 5 Let S be an LTS. We can construct a deterministic LTS T such that otr(S) = tr(T) = otr(T).

Note that in the worst case T can grow exponentially.

2.4 Input Output Labeled Transition Systems

Sometimes we wish to say that symbols are “received” from the environment as inputs, while others are
“sent back” as outputs. An Input/Output Labeled Transition System (IOLTS) allows for this.

Definition 10 An Input Output Labeled Transition System (IOLTS) is a tuple I = 〈S, s0, LI , LU , T 〉, where:

1. LI is a finite non-empty set of input actions;

2. LU is a finite non-empty set of output actions;

3. LI ∩ LU = ∅, and L = LI ∪ LU is the set of actions;
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4. SI = 〈S, s0, L, T 〉 is the underlying LTS of I.

IO(LI , LU ) is the class of all IOLTSs with input alphabet LI and output alphabet LU . Other works impose
additional restrictions to the basic IOLTS model, but we do not need any restrictions at this point. We look
at more restricted variations in Sections 5 and 6.

Several notions involving IOLTSs will be defined by a direct reference to their underlying LTSs.

Definition 11 The semantics of an IOLTS I is the set otr(I) = otr(SI).

When I is an IOLTS the notation →
I

and ⇒
I

are to be understood as →
S

and ⇒
S

, respectively, where S

is the underlying LTS for I. IOLTSs generalize the simpler formalism of Meally machines [13], where
communication is synchronous. In an IOLTS, inputs and outputs happen asynchronously, which facilitates
the specification of more complex behaviors, like in reactive systems.

s0

s1s2

but?but?

but?but?

teacof

tea!coffee! τ τ

Figure 2: An IOTS for a drink dispensing machine.

Example 4 Figure 2 was adapted from [5]. It describes a strange coffee machine. When the user hits the
start button, indicated by the input label but?, the machine chooses to go either to s1 or to s2. If it goes to
s1, no matter how many extra times but? is hit the loop at s1 keeps the machine at s1; then, asynchronously,
the machine dispenses a cup of tea, signaled by the output label tea!, reaching state tea. Next, the machine
performs an internal action, and returns to the start state. The left branch indicates a similar behavior, but
now it dispenses a cup of coffee, and by another internal action returns it to the start state. 2

3 Conformance testing

We define a new and generalized notion of conformance, allowing for sets of desired and undesired behaviors
in IOLTS models. We study the relationship of this notion to ioco-conformance [5], and show that the latter
is a special case of this new conformance relation.

Remark 2 We deal with the notion of quiescent states in Section 5. For now we note that the treatment
of quiescent states will require the addition of a new symbol δ to the output alphabet, and some δ-transition
to the set of transitions. Since the results obtained in this section are valid for any LTS model, they will
remain valid for those variations that treat quiescent states explicitly.

3.1 The New Conformance Relation

We consider a language D, the set of “desirable” behaviors, and a language F , the set of “undesirable”, be-
haviors. We say that an implementation I conforms to a specification S according to (D,F ) if no undesirable
behavior observable in I is specified in S, and all desirable behaviors observable in I are specified in S.

Definition 12 Let D,F ⊆ L?, S and I be LTSs over L. Then I (D,F )-conforms to S, written I confD,F S,
if and only if σ ∈ otr(I) ∩ F gives σ 6∈ otr(S), and σ ∈ otr(I) ∩D gives σ ∈ otr(S).

For an equivalent way of expressing these conditions write otr(S) for the complement of otr(S).

Proposition 6 Let S and I be LTSs over L, and D,F ⊆ L?. Then I confD,F S if and only if

otr(I) ∩
[
(D ∩ otr(S)) ∪ (F ∩ otr(S))

]
= ∅.

Example 5 Let S be as in Figure 3(a) and I as shown in Figure 3(b). Let D = (a + b)?ax and F = ba?b.
We want to check if I confD,F S holds.

Since baab ∈ F ∩ otr(S)we get F ∩ otr(S) 6= ∅. Because baab ∈ otr(I), we conclude that confD,F S

does not hold. Alternatively, it is easy to see that ababax ∈ otr(S), and clearly ababax ∈ D, so that

6
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s0 s1

s2s3

a

b,xab

a b

x

b

(a) An LTS specification S.

q0 q1

q2q3

a

b,xab

a b

a

b

(b) An LTS IUT I.

Figure 3: LTS models in the new conformance relation

ababax ∈ D ∩ otr(S). From Figure 3(b), by an easy inspection ababax ∈ otr(I). So, otr(I) ∩D ∩ otr(S) 6= ∅
and again I confD,F S does not hold. In this case, either F or D is enough to guarantee non-conformance.

Now take F = abb?x and D = aaa?b(bb)?ax. By inspection, we get σx 6∈ otr(I) for all σ ∈ abb?, so that

otr(I)∩F ∩otr(S) = ∅. Moreover, for any σ ∈ D we get s0
σ⇒ s2 so that D ⊆ otr(S). Hence, D∩otr(S) = ∅.

Therefore, otr(I) ∩
[
(D ∩ otr(S)) ∪ (F ∩ otr(S))

]
= ∅, and we see that I confD,F S holds.

In Subsection 3.2 we will use this example to relate the new relation to ioco relation [5]. 2

By varying D and F , the confD,F relation can accommodate several different notions of conformance:

1. Any observable behavior of I must rest specified in S. Let D = L? and F = ∅. We get I confD,F S if
and only if otr(I) ⊆ otr(S).

2. Let C and E be disjoint subsets of locations of I. The set of allowed behaviors, HC , must lead to a
location in C, and the set of forbidden behaviors, HE , lead to a location in E. Then, I confHC ,HE

S if
and only if any allowed behavior of I is also specified in S and no forbidden behavior of I is specified
in S.

3. Desirable behaviors must end in H ⊆ L, undesirable behaviors occurring in the IUT are irrelevant and
need not be checked for conformance. Let F = ∅, D = L?H.

Clearly, D and F are regular in all cases listed above.
In general, if I conforms to S according to (D,F ), then we can assume D and F to be finite languages.

Corollary 1 Let S and I be LTSs over L, and let D,F ⊆ L?. Then, there are finite sets D′ ⊆ D and
F ′ ⊆ F such that I confD,F S if and only if I confD′,F ′ S.

Proof If D ∩ [otr(I) ∩ otr(S)] 6= ∅ then let D′ = {x} where x ∈ D ∩ [otr(I) ∩ otr(S)], else let D′ = ∅. Also,
if F ∩ [otr(I) ∩ otr(S)] 6= ∅ then let F ′ = {y} where y ∈ F ∩ [otr(I) ∩ otr(S)], else let F ′ = ∅. Then use
Proposition 6. 2

3.2 The ioco Conformance Relation

The ioco-conformance relation [5] essentially requires that if σ is any observable trace of both an implemen-
tation I and of a given specification S, then if σ leads I to a location from which it can move on a symbol `,
then σ must also lead S to a location from which it can move on `. This motivates the following definitions.

Definition 13 ([5]) Let S = 〈S, s0, LI , LU , T 〉, I = 〈Q, q0, LI , LU , R〉, and L = LI ∪ LU .

1. Define out(V ) =
⋃
s∈V
{` ∈ LU | s

`⇒}, all V ⊆ S.

2. Define s after σ = {q | s σ⇒ q}, all s ∈ S, σ ∈ L?.

3. Define I ioco S if and only if out(q0 after σ) ⊆ out(s0 after σ), all σ ∈ otr(S).

We may write out(s) instead of out({s}).

Example 6 Let I = 〈S, s0, LI , LU , T 〉 as in Figure 2 where LI = {but?} and LU = {coffee!, tea!}. We
then see that out({s1}) = {but?, tea!}, and out(tea) = {but?}. Also, s0 after but?tea! = {tea, s0} and
cof after but? = {s1, s2}. 2

7



CLEI ELECTRONIC JOURNAL, VOLUME 24, NUMBER 2, PAPER 13, JULY 2021

Definition 12 then subsumes ioco-conformance [5].

Lemma 1 Let S, I ∈ IO(LI , LU ). Then D = otr(S)LU is regular and I ioco S if and only if I confD,∅ S.

Proof From Definition 9 we see that otr(S) is regular, and so D is also regular.
Assume I confD,∅ S. From Definition 12 it is clear that I confD,∅ S is equivalent to otr(I) ∩D ⊆ otr(S).

In order to prove that I ioco S, let σ ∈ otr(S) and let ` ∈ out(q0 after σ). We must show that ` ∈
out(s0 after σ). Because ` ∈ out(q0 after σ) we get σ, σ` ∈ otr(I). Since ` ∈ LU , we get σ` ∈ otr(S)LU
and so σ` ∈ D. Hence, σ` ∈ otr(I) ∩D, and then σ` ∈ otr(S). So, ` ∈ out(s0 after σ), as desired.

Next, assume that I ioco S and we want to show that I confD,∅ S. Since otr(I) ∩ ∅ ∩ otr(S) = ∅, the
first condition of Definition 12 holds. In order to show that otr(I) ∩ D ⊆ otr(S), let σ ∈ otr(I) ∩ D, so
that σ = α` with ` ∈ LU and α ∈ otr(S). Then σ ∈ otr(I) gives α` ∈ otr(I), and so α ∈ otr(I). Hence,
` ∈ out(q0 after α). Since I ioco S and α ∈ otr(S), we get ` ∈ out(s0 after α), and so α` ∈ otr(S). Hence,
σ ∈ otr(S). Thus, we have otr(I) ∩D ⊆ otr(S). 2

The next example illustrates Lemma 1.

Example 7 Let S be as in Figure 3(a), and I as in Figure 3(b) with the extra transition q3
x→ q0. Recall

that LI = {a, b}, LU = {x}.
From Figure 3(a) and the new I it is apparent that s0

aa⇒ s3 and also q0
aa⇒ q3. Also, x ∈ out(q3), but

x 6∈ out(s3). So, by Definition 13, I ioco S does not hold. Now take σ = aax. Since aa ∈ otr(S), we get
σ ∈ otr(S)LU = D. Also, σ ∈ otr(I) and σ 6∈ otr(S), so that σ ∈ otr(I) ∩D ∩ otr(S). From Proposition 6,
we see that I confD,∅ S does not hold, as expected. 2

The next example shows that the new conformance, confD,F , is able to capture non-conformance situ-
ations where the ioco relation would yield positive verdicts.

Example 8 Let S as in Figure 3(a) and I as in Figure 3(b). Let LI = {a, b}, LU = {x}.
From Figures 3(a) and 3(b) we see that there is no σ ∈ (LI ∪ LU )?, s ∈ S and q ∈ Q such that s0

σ⇒ s

and q0
σ⇒ q with x ∈ out(q), but x 6∈ out(s). By Definition 13, I ioco S holds.

Now let F = ∅, D = (a + b)?ax, and take σ = ababax ∈ D. We see that σ ∈ otr(S) and σ ∈ otr(I). So
that σ ∈ otr(I) ∩D ∩ otr(S). From Proposition 6, I confD,∅ S does not hold, whereas I ioco S would always
hold. 2

We know that ioco-conformance is equivalent do I confD,F S when F = ∅. By taking F 6= ∅, however,
gives the test designer even more freedom to check whether some behaviors that occur in the specification are,
or are not, also represented in the implementation. In particular, when D = ∅ and a verdict of conformance
is obtained, the behaviors specified in F are not present, whereas a verdict of non-conformance would say
that some behavior of F is present in the implementation.

Lemma 1 and Corollary 1 lead to the next result.

Corollary 2 Let S, I ∈ IO(LI , LU ). Then I ioco S if and only if I confD,∅ S for some finite D ⊆ (LI∪LU )?.

From Lemma 1 and Proposition 6 we get a new ioco characterization.

Corollary 3 I ioco S if and only if otr(I) ∩ T = ∅, where T = otr(S) ∩
[
otr(S)LU

]
, all S, I ∈ IO(LI , LU ).

4 Test Generation for IOLTS models

We show how to generate complete test suites for checking conformance of IOLTS models according to the
new relation defined in Section 3, and for arbitrary sets of behaviors D and F . For deterministic IOLTS
models, the algorithm has time complexity linear on the number of states of the implementation, regardless
of the specification. Recall Remark 2.

4.1 Complete Test Suite Generation

A test suite is a set of words over the IOLTS alphabet.

Definition 14 Let L be a set of symbols. A test suite is any set T ⊆ L?. Each σ ∈ T is called a test case.

Loosely speaking, an IUT I conforms to a specification S when behaviors of I do not deviate from those
specified by S. Test suites are designed to flag any such deviations, or guarantee that none is possible.

Definition 15 I ∈ L(L) adheres to T ⊆ L? if T ∩ otr(I) = ∅, and I ∈ IO(LI , LU ) adheres to T if SI does.

8
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Given a pair of languages (D,F ) and a specification S, we want to generate test suites T that are sound,
that is, if I adheres to T then I also (D,F )-conforms to S. The converse is also desirable, that is, when
I confD,F S then adherence of I to T should also be guaranteed.

Definition 16 Let S ∈ IO(LI , LU ) and T ⊆ L?. Also, let D,F ⊆ L?. We say that:

1. T is sound for S and (D,F ) if, for all I ∈ IO(LI , LU ), I adheres to T implies I confD,F S.

2. T is exhaustive for S and (D,F ) if, for all I ∈ IO(LI , LU ), I confD,F S implies I adheres to T .

3. T is complete for S and (D,F ) if it is both sound and exhaustive for S and (D,F ).

We view adherence as a syntactic notion, as it is verified just by the emptiness of a set intersection. On the
other hand, conformance is closer to a semantic notion, since it is based on output events generated by the
intrinsic behavior of the IUT. So, here, we preferred to use soundness in the tradition in mathematical logic,
in the sense that once a sentence is (syntactically) proven, it is guaranteed to be (semantically) true. On
the other direction, also as in mathematical logic, when every (semantically) true sentence has a (syntactic)
proof, the theory is said to be complete. Here instead, we used the term exhaustive to indicate that if an IUT
(semantically) conforms to a specification, then it must (syntactically) adhere to the test suite, reserving the
term complete to indicate situations when both soundness and exhaustiveness are guaranteed to be present.
Our notions of soundness and exhaustiveness might have their meaning reversed when compared to other
definitions in the literature. But, of course, when both soundness and exhaustiveness are guaranteed, as is
the case with our results, this reversal of notation is innocuous.

We can always have complete test suites. Furthermore, in a sense they are also unique.

Lemma 2 Let S ∈ IO(LI , LU ), and D, F ⊆ L?. Then, T =
[
(D∩otr(S))∪(F ∩otr(S))

]
is the only complete

test suite for S and (D,F ).

Proof That T is complete follows from Proposition 6. Now let Z be complete for S and (D,F ), with Z 6= T .
Let I ∈ L(L) be arbitrary. Since T and Z are complete we have I confD,F S if and only if otr(I) ∩ T = ∅ if
and only if otr(I) ∩ Z = ∅. By symmetry, since Z 6= T , we get some σ ∈ T ∩ Z. It is simple to construct
I ∈ L(L) with σ ∈ otr(I), leading to a contradiction. 2

Because we have no control over the size of the witness σ ∈ otr(I), it was crucial that we had no restrictions
on the size of I. This indicates that the size of the implementations will affect the complexity of the test
suites can verify (D,F )-conformance. We investigate the complexity of complete test suites in the next
subsection.

Lemma 2 says that T =
[
(D ∩ otr(S)) ∪ (F ∩ otr(S))

]
is complete for S and (D,F ). So checking if

I confD,F S is equivalent to checking if otr(I) ∩ T = ∅. If D and F are regular, that is D = L(AD) and
F = L(AF ) for some FSAs AD and AF , then using Propositions 4 and 3 we can construct a FSA AT such
that T = L(AT ). Further, by the same propositions we know that otr(I) ∩ T is also regular. Moreover, if I
is a “white-box”, that is, we have access to its the syntactic description, we can construct the FSA AI such
that otr(I) = L(AI) and so, using Proposition 3 we can obtain a FSA A such that L(A) = otr(I)∩ T . Now,
a simple breadth-first algorithm can check if L(A) = ∅, so that we can effectively decide if I (D,F )-conforms
to S. Proposition 7, in the sequel, details the time complexity of such an algorithm.

4.2 On the Complexity of Test Suites

An important issue is the size of test suites. If S has n states and t transitions, then n− 1 ≤ t ≤ n2, and it
is reasonable to take t as the size of S.

Let D,F ⊆ L?, and S = 〈S, s0, L, T 〉 be deterministic with nS states. Lemma 2 says that T =
[
(D ∩

otr(S))∪ (F ∩otr(S))
]

is complete for S and (D,F ). Assume that D and F are regular with L(AD) = D and
L(AF ) = F for deterministic FSAs AD and AF with nD and nF states, respectively. By Proposition 4 we can
construct a deterministic FSA A1 with nS + 1 states and L(A1) = otr(S). The proof of Proposition 3 shows
that we can get a deterministic FSA A2 with at most (nS + 1)nF states and such that L(A2) = F ∩ otr(S).
Reversing the set of final states of A1 we get a deterministic FSA B1 with L(B1) = otr(S). From Proposition 3
we get a deterministic FSA B2 with (nS + 1)nD states and L(B2) = L(AD) ∩ L(B1) = D ∩ otr(S). Again,
Proposition 3 yields a FSA C with (nS + 1)2nDnF states and such that L(C) = L(A2) ∪ L(B2) = T .

Proposition 7 Let S ∈ IO(LI , LU ) be deterministic with nS states. Let L(AD) = D, L(AF ) = F where
AD, AF are deterministic FSAs with nD, nF states, respectively. We can construct a deterministic FSA
T with (nS + 1)2nDnF states, and L(T) a complete test suite for S and (D,F ). Also, if I ∈ IO(LI , LU ) is
deterministic with nI states, there is a O(n2

SnInDnFnL) algorithm that verifies I confD,F S, where nL =
|LI ∪ LU |.

9
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Proof The preceding discussion and Lemma 2 yield T. A breadth-first search over T gives the algorithm. 2

We can state a similar result for checking ioco-conformance when a description of the IUT is available.

Theorem 9 Let S, I ∈ IO(LI , LU ) deterministic with nS and nI states, respectively, and nL = |LI ∪ LU |.
There is a O(nSnInL) algorithm to check I ioco S.

Proof Let A be the FSA with nS and L(A) = otr(S) given by Proposition 4. Starting with A we construct
a deterministic FSA B with nS + 2 as follows. Let sI and sU be new states. For any state s of A and any
symbol ` ∈ LI ∪ LU : if there is no transition (s, `, p) in A, for any state p of A, we add to B the transition
(s, `, sI) when ` ∈ LI , and the transition (s, `, sU ) when ` ∈ LU . Finally, we turn B into a deterministic FSA
by adding the transitions (sU , `, sI) and (sI , `, sI) for all ` ∈ LI ∪ LU . Let the initial state of B to be as in
A, and sU be the only final state of B. It is easy to see that L(B) = otr(S)∩

[
otr(S)LU

]
. Use Proposition 4

again to get a deterministic FSA C with nI + 1 states and L(C) = otr(I). Proposition 3 gives a deterministic
FSA T with (nS + 2)(nI + 1) states and L(T) = otr(I)∩ otr(S)∩

[
otr(S)LU

]
. Now use Corollary 3. A simple

breadth-first search on T gives the algorithm. 2

Example 10 Let S be as in Figure 4(a), with LI = {a, b}, and LU = {x}. Following Theorem 9, the FSA

s0 s1

s2s3

a

a

xbb

a

a

b

b

(a) An LTS specification S.

q0 q1

q2q3

a

a

xbb

a

a

b

b,x

(b) An LTS IUT I.

Figure 4: Relating the new conformance and ioco relations.

in Figure 5 accepts T = otr(S) ∩D, with D = otr(S)LU . So T is a complete test suite for S and (D, ∅). Let
I be as in Figure 4(b). We get bax ∈ L(I), bax ∈ T . Hence, I does not (D, ∅)-conform to S, i.e., I ioco S

fails. 2

Given a specification S, of which we know its structure, Theorem 9 can check if I ioco-conforms to S in
O(t) time complexity for any IUT I of size O(t).

Corollary 4 Let S ∈ IO(LI , LU ) be deterministic. Let M be a class of deterministic IUTs, of which we
know their syntactic description. There is an O(t) algorithm to verify I ioco S, where t is the size of I, for
all I ∈M.

Proof Follows from Theorem 9. 2

s0 s1

s2s3

sU

sI

a

a

xbb

a

a

b

b

x

x

x

a, b, x

a, b, x

Figure 5: FSA that accepts otr(S) ∩D for S in Figure 4(a).
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5 Testing IOLTS with Test Purposes

In Section 4 the testing architecture presupposed that one has access to a syntactic description of the IUTs.
In a contrasting setting, where IUTs are “black-boxes”, we do not have access to their syntactic structure.
In this case, we can imagine a scenario where there is a tester or “artificial environment”, T, and an IUT, I,
which are connected by a “zero-capacity” bidirectional and lossless channel. At each step either of two moves
may occur: (i) T issues an output action symbol x to I and changes state. At once, I accepts x as an input
symbol and also changes state; or (ii) the move is reversed with I sending an output symbol y and changing
its state, while T accepts y as an input symbol and also changes state. Clearly, a sequence of type (i) moves
can occur before a type (ii) move occurs; and vice-versa. We see that the input and output sets of symbols
are interchanged in T and I. Hence, one should write I = 〈S, s0, LI , LU , T 〉 and T = 〈Q, q0, LU , LI , R〉. We
will always refer to a symbol x as an input or an output symbol from the perspective of the IUT I, unless
there is an explicit mention to the contrary.

It may happen, however, that I reaches a so called quiescent state. Informally, those are states from
which there are no transitions labeled by some output symbol [7, 5]. From this point on I could no longer
respond to T, and the latter will have no way of “knowing” whether I is rather slow, has timed out, or will
not ever respond. If we want to reason about this situation, within the formalism, it will be necessary to
somehow signal to the tester that the IUT is in a quiescent state. A usual mechanism [5] is to add a special
symbol δ as an output symbol to I, and hence as an input symbol to T. Then I sends δ to T when it reaches

a quiescent state s. Since I is not changing states in this situation, we also add the self-loop s
δ→ s to the

transitions of I. On the tester side, being on a state q and upon receiving a δ symbol it decides whether
that is appropriate or not, depending on the fault model it is supposed to describe. If that was adequate,

the tester may then move to another state through a move q
δ→ q′1.

In this section we apply our results of Section 4 to the architecture described in Tretmans [5], and where
IUTs are black-boxes. But first we must formally prepare our models to deal with quiescent states. Further,
when we consider models with quiescent states, we must ensure that we are treating the same class of models
as in [5], and that ioco-conformance, as in Definition 13, is the same as the ioco relation studied in [5].

We proceed as follows:

1. We define a variation of IOLTS models, where the special symbol δ is used to indicate quiescence.

2. We formalize the notion of an external tester in order to reason precisely about test runs. For that,
we define test purposes in Subsection 5.1.

3. When IUTs are black-boxes, it is customary to impose a series of restrictions over the formal models
that describe specifications, IUTs and test purposes [5], so that some guarantees about the exchange
of messages can be stated. Although our methods impose almost no restrictions on the formal models,
except for regularity of the D and F sets, in Subsection 5.2 we look at the extra model restrictions
imposed by Tretmans [5].

4. In Subsection 5.3 we look at the complexity of complete test purposes under these restrictions, and we
establish a new asymptotic worst case exponential lower bound of the size of these test suites. Other
works hinted at possible exponential upper bounds on the size of complete test suites for these models,
but we are not aware of any precise lower bounds, under the same restrictions as mentioned here.

We start with the following variation of Definition 10 incorporating quiescence in IOLTS models.

Definition 17 A δ-Input/Output Labeled Transition System (δ-IOLTS) is a tuple I = 〈S, s0, LI , LU , T 〉:

1. 〈S, s0, LI , LU , T 〉 is an IOLTS;

2. δ ∈ LU is a distinguished quiescent symbol.

3. For all s, p ∈ S, x ∈ L we have (s, δ, p) ∈ T if and only if (a) s = p, and (b) s
x→ implies x ∈ LI ∪{δ}.

A state s ∈ S is said to be quiescent if s
δ→.

We indicate the class of all δ-IOLTSs with input alphabet LI and output alphabet LU by IOδ(LI , LU ). The
following example illustrates the situation.

Example 11 Consider the δ-IOLTS depicted in Figure 6, where LI = {a} and LU = {b, δ}. States s1 and

s3 are quiescent. Since s0
τ→ s1 and τ 6∈ LI ∪ {δ}, there is no self-loop δ at s0, and so it is not quiescent.

Although s0 is not quiescent, it can not, nevertheless, emit any output symbol. Only after the internal τ -move
can it issue the symbol δ signaling quiescence. 2

1In [5], a different symbol, θ, was used to signal quiescence on the tester side, but in our formalism it makes no difference.

11
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s0 s1 s2 s3

a

τ

a

δ

τ

b
a, δ

Figure 6: A simple δ-IOLTS.

In the test architecture studied in [5], given an IOLTS S = (S, s0, LI , LU , T ), a state s ∈ S is said to be

quiescent if, for all x ∈ LU∪{τ} we have s 6x→ in S, a fact there indicated by δ(s). Then, assuming δ 6∈ LU , the
extended model Sδ = 〈S, s0, LI , LU ∪ {δ}, T ∪ Tδ〉 is defined, with Tδ = {(s, δ, s) | δ(s)}, so that Sδ includes
self-loops on the new output symbol δ at any quiescent state. Since in this section we are applying our
results of Sections 3 and 4 to the test architecture described in [5], it is important to guarantee that the
class of δ-IOLTS models from Definition 17 is coextensive with the class of extended models in [5]. Also,
the ioco-relation used in [5] must coincide with that at Definition 13. All details of these considerations are
given in Appendix 8, specially Proposition 17 for the guarantee that both classes of models are the same,
and Proposition 21 that shows that both ioco-relations coincide.

In this section all IUTs are from IOδ(LI , LU ).

5.1 A Class of Fault Models

An IUT is a model from IOδ(LI , LU ). A tester, however, is a model from IO(LU , LI), that is, from the
perspective of the tester δ is now an ordinary input symbol. Upon receiving a δ-symbol, signaling quiescence
on the IUT side, the test designer is free to specify any δ-transitions to drive the tester model, as deemed
appropriate to the design of the test goals.

We will refer to testers as test purposes. We require that test purposes have two special states: pass
and fail [5]. Once the fail or pass state is reached we have a test verdict, so it is reasonable to require that
there are no paths from pass to fail, or vice-versa. A fault model is a finite set of test purposes, allowing for
several conditions for acceptance and rejection to be verified.

Since IOδ(LI , LU ) ⊆ IO(LI , LU ), it is more profitable to express some notions and results using the full
IO(LI , LU ) class, and specialize only when needed.

Definition 18 Let LI and LU be sets of input and output symbols, respectively, with L = LI ∪ LU . A test
purpose over L is an IOLTS T = 〈Q, q0, LU , LI , R〉 where for all σ ∈ L? we have neither fail

σ⇒ pass nor

pass
σ⇒ fail, when fail,pass ∈ Q. A fault model over L is a finite collection of test purposes over L.

The exchange of symbols between two models can be described by their cross-product2.

Definition 19 Let T = 〈Q, q0, LU , LI , R〉 and I = 〈S, s0, LI , LU , T 〉 be in IO(LI , LU ). Their cross-product
is the LTS T × I = 〈Q× S, (q0, s0), LI ∪ LU , P 〉, where ((q1, s1), x, (q2, s2)) ∈ P if and only if either

1. x = τ , s1 = s2 and (q1, τ, q2) ∈ R, or

2. x = τ , q1 = q2 and (s1, τ, s2) ∈ T , or

3. x 6= τ , (q1, x, q2) ∈ R and (s1, x, s2) ∈ T . 2

Behavior in the cross-product is tightly tied to behaviors in the participating IOLTSs, and conversely.

Proposition 8 Let T, I ∈ IO(LI , LU ). Then:

1. (t, q)
τk

→ (p, r) in T × I if and only if t
τn

→ p in T and q
τm

→ r in I with n+m = k, for all m,n ≥ 0.

2. (t, q)
σ⇒ (p, r) in T × I if and only if t

σ⇒ p in T and q
σ⇒ r in I, for all σ ∈ L?.

Proof Inductions on k ≥ 0 and |µ| ≥ 0, with hτ (µ) = σ. 2

Assume we want to verify if an IUT I ioco-conforms to a specification S using a test purpose T. That
is, we want T to act as an “external environment” and drive a run of I, so that if T reaches a fail state
in this run then I does not ioco-conform to S. Because the simultaneous run of T and I is described by
their cross product, it is sufficient to check that T× I cannot reach a (fail, s) state. Conversely, when I does
ioco-conform to S we need that T×I never reaches a (fail, s) state. Further, we may require that T correctly
verifies ioco-conformance only when I is taken from a subclass of models.

2In [5] LTS T × I is known as the parallel operator |[·]|.
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Definition 20 Let I ∈ IO(LI , LU ), T ∈ IO(LU , LI). We say that I passes T if (fail, q) is not reachable in
T×I, for any state q of I. We say that I passes a fault model TP if I passes all T in TP . Let S ∈ IO(LI , LU ),
IMP ⊆ IO(LI , LU ). We say that TP is ioco-complete for S relative to IMP if I ioco S if and only if I

passes TP , for all I ∈ IMP. When IMP = IO(LI , LU ) we say that TP is ioco-complete for S.

The following implies a single test purpose suffices.

Lemma 3 Let S ∈ IO(LI , LU ). We can construct a fault model {T} which is ioco-complete for S. Also, T
is deterministic and has a single fail and no pass states.

Proof Let I be an arbitrary IUT. From Definition 20 we need I ioco S does not hold if and only if I does
not pass T, that is, (t0, q0)

σ⇒ (fail, q) in T × I for some σ ∈ L?, where t0 and q0 are initial states. From

Proposition 8(2) this is equivalent to t0
σ⇒ fail in T and σ ∈ otr(I). We construct T deterministic and such

that t0
σ⇒ fail holds if and only if σ ∈ otr(S) ∩

[
otr(S)LU

]
. Thus, t0

σ⇒ fail in T and σ ∈ otr(I) is equivalent

to otr(I) ∩ otr(S) ∩
[
otr(S)LU

]
6= ∅, and Corollary 3 closes the argument.

From Proposition 5 we may take S deterministic. We follow the same idea as in the proof of Theorem 9,
and construct T by extending S with a fail state and the transitions: (i) (s, `, fail) when ` ∈ LU and there is

no transition (s, `, p) in S for any state p, and (ii) (fail, `, fail) for all ` ∈ LU ∪ LI . Again, we get s0
σ⇒ fail

in T if and only if σ ∈ otr(S) ∩
[
otr(S)LU

]
. Since S is deterministic, it is clear that T is deterministic. 2

As an illustration we have the following:

Example 12 Let S as in Figure 4(a) and recall that LI = {a, b} and LU = {x}. To avoid cluttering,
quiescent δ-loops were not inserted in Figure 4(a). If needed, just add δ-self-loops at states s0, s2 and s3.
Also, this should pose no difficulty since a δ is treated as just any other symbol in LU .

The argument in Lemma 3 yields the structure in Figure 5, but: (i) sI and all transitions into it are
removed, and (ii) sU is relabeled fail and we do not need final states in T.

We have (t0, q0)
axbx⇒ (fail, q2) in T × I with I in Figure 4(b), so that I does not pass T. Since Lemma 3

says {T} is complete for S, then I ioco S should not hold. To check this, we have s0
ba⇒ s3 in S and q0

ba⇒ q3

in I. Thus x 6∈ out(s3) and and x ∈ out(q3), so that out(q0 after β) 6⊆ out(s0 after β). Hence, I ioco S

does not hold according to Definition 13. 2

5.2 A Specific Family of Formal Models

Some extra restrictions are imposed by Tretmans [5] so that test runs can be adjusted to more practical
situations. First, one requires test purposes to be acyclic, so that any test run is a finite process. Secondly,
since one cannot predict in advance which output symbol a black-box IUT will be sending back at any
instant, test purposes must be able to synchronize on any of such symbols, that is, the tester must be
input-enabled. Further, since the tester drives the IUT, at any state it must be able to send at least one
symbol to the IUT. Also, in order to avoid arbitrary choices and non-determinism, the tester is required to
be output-deterministic, that is, at any state it can emit only one of its output symbols. Moreover, because
fail and pass states already hold a verdict, it is required that the tester can only have self-loops at these
states. Recall Definition 13.

Definition 21 Let T = 〈S, s0, LI , LU , R〉. We say that T is output-deterministic if |out(s)| = 1, for all

s ∈ S. T is input-enabled if inp(s) = LI , for all s ∈ S, where inp(s) = {` ∈ LI | s
`⇒}. T is acyclic if it has

no cycles, except for self-loops at states fail and pass. IOE(LI , LU ) is the set of all input-enabled IOLTSs
over LI and LU .

Input-enabledness is no serious restriction.

Corollary 5 For any specification S there is an ioco-complete fault model {T} where T is deterministic,
input-enabled and has a single fail and no pass states.

Proof The test purpose constructed in proof of Lemma 3 is deterministic and input-enabled. 2

It is no surprise that the acyclic requirement imposes restrictions on the size of IUTs.

Proposition 9 Consider the deterministic specification S = ({s0}, s0, {a}, {x}, {(so, a, s0)}). Then there is
no fault model TP , comprised only of acyclic test purposes, and which is ioco-complete for S even with
respect to the subclass of all deterministic IUTs.

13
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Proof We see that anx ∈ otr(S)∩(otr(S) LU ) for all n ≥ 0. Consider an IUT In with transitions (qi−1, a, qi)
for i = 1, . . . , n, (qn, x, q), where q0 is the initial state. Clearly, In is deterministic. We have anx ∈ otr(In)
so that otr(In)∩

[
otr(S)∩otr(S) LU

]
6= ∅. Then Corollary 3 says that In ioco S does not hold, for all n ≥ 0.

Because TP is complete, we must have T ∈ TP such that In does not pass T, that is, (fail, q) is reachable in

T × In. By Proposition 8 we have t0
σ⇒ fail in T and q0

σ⇒ r in In, where t0 is initial in T and q0 is initial in
I. By construction of In, either σ = ak for some k ≤ n, or σ = anx. We can not have σ = ak for any k ≥ 0
because then (fail, s0) is reachable in T× S, implying that S does not pass T. Since TP is ioco-complete for
S we get that S ioco S does not hold with S deterministic, a contradiction. Let σ = anx. Since T is acyclic,

except for self-loops at fail, and n can be arbitrarily large, t0
anx⇒ fail in T imply again t0

an⇒ fail in T for n
large enough, and we reach a contradiction again. 2

In the preceding proof we can take S where a state s has a self-loop on any input symbol. This makes the
proposition much more widely applicable.

Next, we investigate the case where there is an upper bound on the number of states in the IUTs. The
situation is more amenable in these cases.

Definition 22 Let IMP ⊆ IO(LI , LU ) be any class of IOLTSs. We denote by IMP[m], m ≥ 1, the subfamily
of IMP comprised by all models with at most m states. Let S ∈ IO(LI , LU ). A fault model TP over LI ∪LU
is m-ioco-complete for S relatively to IMP if and only if it is ioco-complete for S relatively to the class
IMP[m].

Since it is not possible to construct fault models comprised only of acyclic test purposes, and that are
ioco-complete in general, we turn to the problem of obtaining such fault models that are m-ioco-complete,
for a given m.

Proposition 10 Let S ∈ IO(LI , LU ) be deterministic, and let m ≥ 1. Then, there is a fault model TP
which is m-ioco-complete for S, and such that all test purposes in TP are deterministic and acyclic.

Proof Let S = 〈S, s0, LI , LU , T 〉 and S = {si : 0 ≤ i < n}. Construct a directed acyclic multi-graph D with
mn+ 1 levels. At level i, 0 ≤ i ≤ mn, list all nodes in S as s0,i, s1,i, . . . , sn−1,i. Consider sj,k, k < mn. For
each transition (sj , `, si) of S: (i) if i > j, add an arc from sj,k to si,k; (ii) if i ≤ j add an arc from sj,k to
si,k+1. Let ` label the new arc. Next, add a fail node to S and for any ` ∈ LU and any si,k, if (si, `, p) 6∈ T
for every p ∈ S, add an arc labeled ` from si,k to fail. Finally, let s0,0 be the root and discard any node

not reachable from it. Clearly, D is acyclic. Also, s0
σ⇒ si with |σ| = k ≤ mn if and only if there is a path

labeled σ from s0,0 to some si,r in D.

For each path si0
x1→ si1

x2→ · · · xir→ sir in D where si0 = s0,0 and sir = fail, we add the acyclic test purpose
T = ({si0 , . . . , sir}, si0 , LU , LI , {(sij−1 , xj , sij | 1 ≤ j ≤ r}) to TP . Clearly, T is deterministic.

Assume that I ioco S does not hold, where I = (Q, q0, LI , LU , R) with |Q| = h ≤ m. We show that
I does not pass TP . By Corollary 3 we get some σ ∈ otr(I), σ 6∈ otr(S) and σ ∈ otr(S)LU . Let |σ|
be minimum. Clearly, σ = α`, with ` ∈ LU and α ∈ otr(S) so that s0

α⇒ s. From α` ∈ otr(I) we get

q0
α⇒ q

`⇒ q′. Let α = x1 . . . xr (r ≥ 0). By Proposition 8, (s0, q0)
x1⇒ (s1, q1)

x2⇒ (s2, q2)
x3⇒ . . .

xr⇒ (sr, qr),
with s = sr and q = qr. We argue that r < mn. If r ≥ mn ≥ hn we get (si, qi) = (sj , qj) for some

i < j. Then, (s0, q0)
µ⇒ (sr, qr) with µ = x1 . . . xixj+1 . . . xr. Again, s0

µ⇒ sr and q0
µ⇒ qr, which

gives µ ∈ otr(S) and µ ∈ otr(I). Moreover, (sr, `, p) 6∈ T for all p ∈ S, otherwise σ = α` ∈ otr(S), a

contradiction. Hence, µ` 6∈ otr(S), but µ` ∈ otr(S)LU . Further, q
`⇒ q′ and q = qr give µ` ∈ otr(I).

Thus, µ` ∈ otr(I) ∩
[
otr(S) ∩ otr(S)LU

]
. But |µ`| < |α`| = |σ| violates the minimality of |σ|. Hence,

|σ| = r + 1 ≤ mn. Since s0
α⇒ sr we get a path α from s0,0 to a node si,k. Since (sr, `, p) 6∈ T for any

any p ∈ S, there is an arc ` from si,k to fail, and so the path α` goes from s0,0 to fail. Thus, we put a

T = (ST, t0, LU , LI , TT) in TP with t0
α`⇒ fail. So, (t0, q0)

σ⇒ (fail, q′) in T × I, and so I does not pass TP .

For the converse assume that I = (Q, q0, LI , LU , R) does not pass TP . We have (t0, q0)
σ⇒ (fail, q) in

T × I, for some T = (ST, s0,0, LU , LI , TT) in TP . So, s0,0
σ⇒ fail in T and q0

σ⇒ q in I. Thus, σ ∈ otr(I).
By the construction, s0,0

α⇒ si,k
`⇒ fail in T, and (si, `, p) is not a transition in S, for all p ∈ S. Then

s0
α⇒ si in S, so that σ = α` ∈ otr(S)LU . If α` ∈ otr(S) we would have s0

α⇒ s′
`⇒ s′′ in S. Since S is

deterministic, si = s′ and so (si, `, s
′′) is a transition in S, a contradiction. Thus, σ = α` ∈ otr(S). Whence,

σ ∈ otr(I) ∩ otr(S) ∩ (otr(S)LU ), and, by Corollary 3 I ioco S does not hold.
We have shown that I ioco S if and only if I passes TP , for any IUT I with at most m states. 2

Example 13 Let S as in Figure 4(a) with LI = {a, b} and LU = {x}. Again, quiescent δ symbols were not
included to keep the example simple, and pose no extra difficulty in the construction. The construction in

14



CLEI ELECTRONIC JOURNAL, VOLUME 24, NUMBER 2, PAPER 13, JULY 2021

s0,0 s1,0 s2,0 s3,0

s0,1 s1,1 s2,1 s3,1

s0,15 s1,15 s2,15 s3,15

s0,16 s1,16 s2,16 s3,16

fail fail
fail

fail fail
fail

a

b

x

a

b

b

a
a

b

a

b

x

a b

b

a
a

b

a

b

x

a

b

b

a
a

b

a

b

x

b

b

x

x

x

x

x

x

x

x

x

x

x

x

...
...

Figure 7: A direct acyclic multi-graph D for Figure 4(a).

the proof of Proposition 10, gives the multi-graph D, of which Figure 7 depicts the first two and the last two
levels. As S has n = 4 states we have four states at each level. In this example we consider IUTs with at
most m = n = 4 states, so there are mn + 1 = 17 levels in D. To avoid cluttering figure, we replicated the
fail label.

A simple algorithm collects test purposes by traversing D from s0,0 to fail. One possible traversal is
s0,0→s1,0→s1,1→ s2,1→s1,2→s3,2→s2,3→s3,3→s3,4→ fail, and yields α = aaxabbbax.

For I as in Figure 4(b), α leads from q0 to q2. So that IUT does not pass the test purpose induced by α
and so I ioco S does not hold, as expected again. 2

A careful observation of the construction at Proposition 10, with minor adjustments, reveals that one can
get m-ioco-complete fault models whose test purposes are deterministic, output-deterministic, input-enabled
and acyclic, except for self-loops at pass and fail states.

Proposition 11 Let S ∈ IO(LI , LU ) be deterministic, and m ≥ 1. Then, there is a fault model TP which
is ioco-complete for S relatively to IO(LI , LU )[m], and such that all test purposes in TP are deterministic,
input-enabled, output-deterministic, and acyclic except for self-loops at fail and pass states.

Proof By Proposition 10 we get TP m-ioco-complete for S, with all T ∈ TP acyclic and deterministic.
Fix T = 〈S, t0, LU , LI , T 〉 ∈ TP . In order to secure input-enabledness, add a pass state to S. For all

` ∈ LU , all t 6= fail, if (t, `, t′) 6∈ T for any t′ ∈ S, add (t, `,pass) to T . Also, add transitions (pass, `,pass)
and (fail, `, fail) to T , for all ` ∈ LU . In the end, we get T′ which is deterministic, input-enabled and acyclic,

except for self-loops at pass and fail. An simple argument shows that t0
σ⇒ fail in T if and only if t0

σ⇒ fail
in T′. Hence, we see that I passes T if and only if I passes T′ for all I ∈ IO(LI , LU )[m]. By so adjusting all
T ∈ TP we get TP ′ which is m-ioco-complete for S, and such that all T ∈ TP ′ is deterministic, input-enabled
and acyclic, except for self-loops at pass and fail.

Let T ∈ TP as in Proposition 10, and T′ ∈ TP ′ obtained from T as in the previous paragraph. Fix
some a ∈ LI . Let t be a state in T, with fail 6= t 6= pass. We have at exactly one transition (t, `, t′) in
T, and on passing to T′ we added no transitions on symbols from LI . Thus, either there is exactly one
transition (t, `, t′) in T′ with ` ∈ LI , or there is none. If there is none, add (t, a,pass) to T′, so that now t
is output-deterministic. Apply this transformation to all states in T′ and complete the transformation by
adding (fail, a, fail) and (pass, a,pass) to T′, yielding a new test purpose T′′. Clearly, T′′ is deterministic,
input-complete, output-deterministic, and acyclic except for self-loops at fail and pass. Further, it is easy
to see that I passes T′ if and only if I passes T′′, for all I ∈ IO(LI , LU ). Apply this transformation to all
T′ ∈ TP ′ to get TP ′′. Then TP ′′ is m-ioco-complete for S, because TP ′ is. 2
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Figure 8: An example TP extracted from Figure 7.

s0,0 s1,0 s1,1 s3,1 s2,2

s1,3s2,3s3,3s3,4s2,5

fail pass
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a

xbab

x
x x

x x

a
xxx

a
x

a, xa, x

Figure 9: Another TP extracted from Figure 7.

The next example illustrates the construction. Note that the quiescent δ symbols were not included to keep
the example uncluttered. They offer no extra difficulty since they are treated as any plain symbol in LU .

Example 14 The outer path from s0,0 to s3,3 to fail in Figure 8 represents a test purpose extracted according
to Proposition 10 and already illustrated in Example 13.

Recall that LU = {x} and LI = {a, b}. Following Proposition 11, in order to secure input-enabledness, we
added a new pass state. Proceeding, for all states si,j for which there were no outgoing transition on x, we
added transitions (si,j , x,pass). We completed this step by adding (fail, x, fail) and (pass, x,pass). Next, we
fixed a ∈ LI , and for all states si,j for which there were no outgoing transition on a symbol of {a, b} we added
transitions (si,j , a,pass). Adding the transitions (pass, a,pass) and (fail, a, fail) completed the construction.
The test purpose depicted in Figure 8 is easily seen to be deterministic, input-enabled, output-deterministic
and acyclic, except by self-loops at fail and pass.

Fix the IUT I in Figure 4(b), and recall that T at Figure 8 was constructed from the original specification
S in Figure 4(a). In T, the shortest path from s0,0 to fail is σ = axba2b2x. We also see that σ ∈ otr(I),

so that in the cross-product T × I we get (s0,0, q0)
σ⇒ (fail, q2). This shows that I ioco S does not hold, and

T is sufficient to reach a negative verdict. Clearly, from this verdict alone we can not conclude that {T} is
4-complete for S.

As another illustration, Figure 9 shows T′, the result obtained after extracting another test purpose from
the same multi-graph D in Example 13, and transforming it according to Proposition 11. The set of paths
from s0,0 to fail is P = {a2b2axbabxn : n ≥ 1}. For the same IUT I in Figure 4(b) we see that P ∩otr(I) = ∅,
so that we do not have (s0,0, q0)

σ⇒ (fail, q) for any state q of I and any σ ∈ P . Since I ioco S does not hold,
we conclude that {T′} is not 4-ioco-complete for S. 2

These partial results show that we effectively construct test purposes that satisfy all requirements listed
by Tretmans [5] when testing black-box IUTs.

Theorem 15 Let S ∈ IO(LI , LU ) and m ≥ 1. We can effectively construct a finite fault model TP which is
m-ioco-complete for S, with all test purposes in TP deterministic, input-enabled, output-deterministic, and
acyclic except for self-loops at fail and pass states.

Proof From Propositions 5 and 11. 2

It is not hard to see that all our models given by Theorem 15 satisfy all restrictions that must be obeyed
by test cases in [5], Definition 10. A detailed, step by step argument can be seen in Appendix 8, specially
Proposition 24. Also, if one has a different set of characteristics, stemming from another kind of testing
architecture, and with somewhat different requirements to be satisfied by test purposes as compared to those
proposed by Tretmans [5], one might try to proceed as discussed here, and transform each basic test purpose
so as to make it adhere to that specific set of new requirements.
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Figure 10: A simple IOLTS that whose fault model is super-polynomial.

5.3 On the Complexity of Test Purposes

We look at the complexity of the specific family of test purposes constructed in Subsections 5.1 and 5.2.
Let S = 〈S, s0, LI , LU , T 〉 be a deterministic specification, with |S| = n. Consider the acyclic multi-graph
D, described in the proof of Proposition 10, and that was used to obtain acyclic test purposes that are m-
ioco-complete for S. Since S is deterministic, it is clear that D is also deterministic and acyclic. Moreover,
since D has nm+ 1 levels with at most n nodes per level, we conclude that D has at most n2m+ n nodes.
Although the number of nodes and levels in D are polynomial on n and m, the number of traces in D might
be super-polynomial on n and m, in general. Since we extract the test purposes from such traces, the fault
model that is so generated might also be of super-polynomial size on n and m. We argue that, in general, this
is unavoidable, even when we restrict all models to the smaller class of deterministic input-enabled IOLTS
models.

Theorem 16 Let m ≥ 3, LI = {0, 1}, and LU = {x}. Consider the simple deterministic, input-enabled
specification S = 〈S, s0, LI , LU , T 〉 in Figure 10. Let TP be a fault model which is m-ioco-complete for S,
relatively to the class of all deterministic and input-enabled IUTs. If all test purposes in TP are deterministic
and output-deterministic, then TP must be comprised of at least Ω(Φm) distinct test purposes, where Φ =
(1 +

√
5)/2.

Proof Clearly, S is deterministic and input-enabled. Let R = (0 + 11)?. Define σ = 1 when σ = 0, and let
σ = 0 when σ = 1. Let α = y1 . . . yr ∈ R, with 1 ≤ r ≤ m − 3. It is clear that α ∈ otr(S), αx ∈ otr(S)LU ,
and αx 6∈ otr(S), and so αx ∈ otr(S).

Now let Iα = 〈SI, qo, LI , LU , TI〉 be an IUT given by (qi−1, yi, qi) for 1 ≤ i ≤ r, and (qr, x, qr+1). For
input-enabledness, add a new pass state, the transitions (qi−1, yi,pass) (1 ≤ i ≤ r), as well as (qr, σ,pass)
and the self-loops (qr+1, σ, qr+1), (pass, σ,pass), for σ ∈ {0, 1}. See Figure 11. Clearly, Iα has r + 3 ≤ m
states, is deterministic and input-enabled.

Assume that TP is a fault model which is m-ioco-complete for S, relatively to the class of all deterministic
input-enabled IUTs. Since αx ∈ otr(I), we get otr(Iα) ∩

[
otr(S) ∩ (otr(S)LU )

]
6= ∅, so Corollary 3 says that

Iα ioco S does not hold. Hence, t0
σ⇒ fail in Tα and q0

σ⇒ q in Iα for some q ∈ SI, σ ∈ (Li ∪ LU )?. If

σ ∈ {0, 1}? we get s0
σ⇒ s and then (t0, s0)

σ⇒ (fail, s) in Tα × S. and S does not pass TP . Since TP is
m-ioco-complete for S, it must be that S ioco S does not hold, a clear contradiction. Hence σ 6∈ {0, 1}?.
Thus, since σ ∈ otr(Iα), we must have σ = αxα′ with x ∈ LI and α′ ∈ {0, 1}?.

Next, we look at other test purposes in TP . Let β ∈ R, |β| = |α| and β 6= α. A similar reasoning gives

Tβ = 〈Sβ , t′0, LU , LI , Tβ〉 in TP , with t′0
βxβ′⇒ fail in Tβ , where β′ ∈ {0, 1}?. We argue that Tα 6= Tβ . If

Tα = Tβ we get t0
αxα′⇒ fail and t0

βxβ′⇒ fail in Tα. Since prefixes of α and of β are in otr(S) ∩ {0, 1}?, we
can not reach fail in Tα with such prefixes, otherwise we would again conclude that S ioco S does not hold,

a contradiction. We, therefore, must have t0
µ⇒ t1

x1⇒ t2
α1xα

′

⇒ fail and t0
µ⇒ t′1

x2⇒ t′2
β1xβ

′

⇒ fail in Tα, with
α = µx1α1 and β = µx2β1. Since Tα is deterministic, we have t1 = t′1. This gives (t1, x1, t2) and (t1, x2, t

′
2)

as transitions in Tα, with x1 6= x2 in {0, 1}. But this contradicts Tα being output-deterministic. We conclude
that Tα 6= Tβ when α 6= β and |α| = |β|, with α, β ∈ R.

Consider words of length m in R. Since 1 occurs only in blocks of two in R, there are
(
m−i
i

)
distinct

words of length m with i such blocks in R. Thus, there are Fm =
∑bm/2c
i=0

(
m−i
i

)
words of length m in R,

where Fm is the mth Fibonacci number, Fm = 1√
5

(
Φm + 1

Φm

)
≥ Φm
√

5
, where Φ = (1 +

√
5)/2. Thus, there

are at least Φm/
√

5 distinct elements in TP .
For later reference, note that both transitions from qr to pass, as well as both self-loops at qr+1, were

never necessary in the proof. Their only function here is to make states qr and qr+1 input-enabled. 2

It is clear that Theorem 16 applies to any specification S in which Figure 10 is a sub-model.
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Figure 11: Implementation Iα for the specification of Figure 10.

6 Another Restricted Class of IOLTS Models

As another illustration of our approach, in this section we look at a subclass of IOLTS models that were
studied more recently [10]. In that work, Simão and Petrenko considered a more contrived subclass of IOLTS
models, and showed that it is possible to generate ioco-complete test suites for specifications in that subclass,
although they did not study the complexity of the test suites that were generated. In this section we show
how to construct ioco-complete test suites for that same subclass of IOLTS models in a more unified and
direct way, and we also look at the complexity of the test suites that are generated using our approach. As
one of the main results of this section, we also establish a precise exponential lower bound on the worst case
asymptotic size of any test suite that is required to be complete for the class of IOLTS models treated here.

Since there are several restrictions that IOLTS models must satisfy in Simão and Petrenko’s approach [10],
we introduce them in stages, as needed. Motivation for considering these restrictions can be found in their
work [10]. Recall Definitions 13 and 21. First we use the inp and out functions that collect inbound
and outbound transitions, respectively, in order to characterize the notions of input-complete and output-
complete states, among others. Also we need the notion of init, where init(V ) = inp(V )∪ out(V ), for all
V ⊆ S.

Definition 23 ([10]) Let S = 〈S, s0, LI , LU , T 〉 be an IOLTS, with L = LI ∪LU , and let s ∈ S. We say that
s is: (i) a sink state if init({s}) = ∅; (ii) a single-input state when | inp({s})| ≤ 1; (iii) a input-state when
inp({s}) 6= ∅; (iv) an input-complete state if inp({s}) = LI or inp({s}) = ∅; and (v) an output-complete
state when out({s}) = LU or out({s}) = ∅. We say that the IOLTS S is single-input, input-complete, or
output-complete if all states in S are, respectively, single-input, input-complete, or output-complete. We also
say that S is initially-connected if every state in S is reachable from the initial state, and we say that S is
progressive if it has no sink state and for any cycle q0

x1→ q1
x2→ q2

x3→ · · · xk→ qk, with q0 = qk we have xj ∈ LI
for some 1 ≤ j ≤ k. Let IOIP(LI , LU ) ⊆ IO(LI , LU ) denote the class of all IOLTSs which are deterministic,
input-complete, progressive and initially-connected.

Note the difference in the notions of input-completeness that appear in Definitions 23 and 21.
In Definition 14, the terms test case and test suite refer to words and languages over LI∪LU , respectively.

To avoid confusion in this section we will use the terms schemes and scheme suites, respectively, when
referring to words and languages, as in Definition 3 of Simão and Petrenko [10]. Note that, contrary to
the notion of a test purpose in Definition 18, test schemes in Simão and Petrenko’s approach do not have
their sets of input and output symbols reversed with respect to the sets of input and output symbols of
specifications and IUTs.

Definition 24 Let LI and LU be sets with LI ∩ LU = ∅ and L = LI ∪ LU . A scheme over L is an acyclic
single-input and output-complete IOLTS T ∈ IO(LI , LU ) which has a single sink state, designated fail. A
scheme suite SS over L is a finite set of schemes over L.

Proceeding, recall Definition 19, of the cross-product operator S× I. Simão and Petrenko [10] denote the
exactly same operator by S∩ I, with the proviso that internal τ -moves are not considered. In this section we
will continue to use S× I to denote synchronous execution. We also remark now that Definition 20, saying
when an IUT I passes a scheme suite SS, exactly matches Definition 4 of Simão and Petrenko. So, we also
have the same notion of ioco-completeness, as stated in our Definition 20 and their Definition 4.

In what follows we want to show that our approach can also be used to construct ioco-complete scheme
suites, but with the advantage that we do not need to further constrain specification and IUT models.

Theorem 17 Let S ∈ IO(LI , LU ) with L = LI ∪LU , and let m ≥ 1. We can effectively construct a scheme
suite SS over L which is m-ioco-complete for S.
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Proof If needed, use Proposition 5 to transform S into an equivalent deterministic IOLTS. From Proposi-
tion 10 we get a scheme suite SS which is ioco-complete for S relatively to IO(LI , LU )[m], and such that
all schemes in SS are deterministic and acyclic, and have a single fail state, which is also a sink.

Let T = 〈ST, t0, LI , LU , RT〉 in SS and let s ∈ ST. From that proof, we know that there is at most
one transition (s, `, p) in RT, for any ` ∈ LU ∪ LI and any p ∈ ST. If ` ∈ LI , from Definition 23, we get
| inp(s)| ≤ 1 and out(s) = ∅, and so s is single-input and output-complete. If ` ∈ LU then s is already
single-input. If |LU | = 1, then s is also output-complete. Else, we construct T′ by adding a new pass state
and, for any x ∈ LU with x 6= `, we add (s, x,pass) to RT. Clearly, s is now output-complete in T′.

Fix any IUT I = 〈SI, q0, LI , LU , RI〉 ∈ IO(LI , LU ). Since pass is a sink in T′, we get (t0, q0)
?⇒ (fail, q)

in T × I if and only if (t0, q0)
?⇒ (fail, q) in T′ × I. Thus, I passes T if and only if I passes T′.

Apply transformation to all T in SS to get a new scheme suite SS′. Since SS is m-ioco-complete for S

then so is SS′. Clearly, SS′ satisfies all the requirements in Definition 24. 2

A similar result follows if we constrict all specifications and IUTs to the more restricted subclass
IOIP(LI , LU ).

Corollary 6 Let S ∈ IOIP(LI , LU ) with L = LI ∪LU , and let m ≥ 1. We can effectively construct a scheme
suite SS over L which is m-ioco-complete for S relatively to IOIP(LI , LU ).

Proof Note that IOIP(LI , LU ) ⊆ IO(LI , LU ) and use Theorem 17. 2

Simão and Petrenko [10] consider specifications and IUTs that are further restricted to be input-state-
minimal, in the sense that any two distinct input-states are always distinguishable. In their work, two states
r and p are said to be distinguishable when there are no sink state in the cross-product S/r× S/p, where S/p
is the as S, but now with p being the initial state.

Definition 25 ([10]) Let S = 〈SS, s0, LI , LU , RS〉 and Q = 〈SQ, q0, LI , LU , RQ〉, and let s ∈ SS, q ∈ SQ. We
say that s and q are distinguishable if there is a sink state in S/s×Q/q , else we say that they are compatible.
We say that S is input-state-minimal if any two distinct input-states r, s ∈ SS are distinguishable. Also,
IOMIN(LI , LU ) ⊆ IOIP(LI , LU ) denotes the subclass of all models which are input-state-minimal.

Recall Definition 23. IUTs are yet further constrained by Simão and Petrenko [10] to have at most as
many input-states as the specification. Let k ≥ 1, and let IMP(LI , LU ) ⊆ IO(LI , LU ). We denote by
IMP(LI , LU , k) the subclass of IMP(LI , LU ) comprised by all models with at most k input-states. The
main result in [10] is their Theorem 1, which shows that for any S ∈ IOMIN(LI , LU ) we can construct
scheme suites that are ioco-complete for IUTs in IOMIN(LI , LU , k), where k is the number of input-states
in S. This result also follows easily from Theorem 17.

Corollary 7 Let m ≥ 1 and S ∈ IOMIN(LI , LU ) with k ≥ 0 input-states. We can effectively con-
struct a finite scheme suite SS over LI ∪ LU which is m-ioco-complete for S relatively to the sub-class
IOMIN(LI , LU , k).

Proof We have IOMIN(LI , LU ) ⊆ IO(LI , LU ) and IOMIN(LI , LU , k)[m] ⊆ IO(LI , LU )[m]. Now apply
Theorem 17. 2

The complexity of the generated test suites were not analyzed by Simão and Petrenko [10]. However, as
we argued in Subsection 5.3 and in Theorem 16, we cannot, in general, avoid scheme suites to asymptoti-
cally grow very large, even when specifications are confined to the subclass IOMIN(LI , LU ), and IUTs are
restricted to the subclass IOMIN(LI , LU , k), where k is the number of input-states in S. The next result
establishes a worst case exponential asymptotic lower bound on the size of the test schemes that can be
generated using their Theorem 1 of [10] or, equivalently, using our Corollary 7.

Theorem 18 Let 3 ≤ m ≤ k, LI = {0, 1} and LU = {a, x}. There is a deterministic S ∈ IOMIN(LI , LU )
with k input-states such that any m-ioco-complete scheme suite for S, relatively to IOMIN(LI , LU , k), must
be of size Ω(Φm), where Φ = (1 +

√
5)/2.

Proof We argue almost exactly as that in the proof of Theorem 16, with a few adjustments to appear later
on.

Note that S, as used in the proof of Theorem 16 and depicted in Figure 10, is deterministic, input-
complete, progressive and initially-connected, that is, S ∈ IOIP(LI , LU ). Also, the IUT Iα, constructed in
that proof and illustrated in Figure 11, is also deterministic and in the class IOIP(LI , LU ). Recall that
we write y = 0 when y = 1 and y = 1 when y = 0. The argument now proceeds just as in the proof of
Theorem 16, and we get a scheme Tα = 〈Sα, t0, LI , LU , Tα〉 in SS and that Iα does not pass Tα.
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Figure 12: Specification S′ modifying Figure 10.
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Figure 13: A modified implementation Iα.

We continue as in Theorem 16. Now we have (t1, x1, t2) and (t1, x2, t
′
2) in Tα, with x1 6= x2, and

x1, x2 ∈ {0, 1} = LI . The input alphabet for Tα is LI = {0, 1} but, according to Definition 24, any scheme
must be single-input. This forces x1 = x2 and we reach a contradiction again, as in the proof of Theorem 16.
As, before, this will imply Tα = Tβ when α, β ∈ R, and α 6= β, with |α| = |β| = r ≤ m− 3. From this point
on, the argument follows the proof of Theorem 16, establishing that SS must be of size Ω(Φm).

We would be done if S ∈ IOMIN(LI , LU ) and Iα ∈ IOMIN(LI , LU , k)[m], where k is the number of input-
states in S. We will now extend Figures 10 and 11 to meet these conditions, while preserving the validity of
the previous argument. First note that S has 3 input-states, whereas Iα has r + 3 ≤ (m − 3) + 3 = m ≤ k
input-states. Next, extend the specification in Figure 10 as in Figure 12, with states s3, . . . , sk.

State s0 is repeated to avoid the clutter. Note that transitions on 0 and 1 out of states s0 and s1, as well
as the transition on x out of state s1 were not touched, so that the argument above is still valid when we
consider this new specification.

Call this new specification S′. States si, 0 ≤ i ≤ k − 1, are the input-states, so S′ has k input-states.
It is also easy to check that S′ is deterministic, input-complete and initially-connected. Moreover, S′ is also
progressive, since any cycle in S′ must go through a transition on an input. In order to assert that S′ is in
IOMIN(LI , LU ), we need to check that any two input-states in Figure 12 are distinguishable. As indicated
therein, states can be partitioned into blocks B1 and B2. Consider two distinct states si, sj ∈ B2 with

2 ≤ i < j ≤ k, and let w = 0k−j . We see that (si, sj)
w⇒ (s`, sk) where ` = k− (j − i) and 2 ≤ i ≤ ` ≤ k− 1.

Since init(s`)∩ init(sk) = ∅, any two distinct states in B2 are distinguishable. Then, since (s0, s1)
a⇒ (s2, s3),

it follows that s0 and s1 are also distinguishable.
We now argue that s0 and s1 are distinguishable from any state si ∈ B2, 2 ≤ i ≤ k. Let w = 0k−i, so

that (s0, si)
w⇒ (s0, sk). Since we already know that s0 is distinguishable from sk, we conclude that s0 is

distinguishable from any state in B2. Likewise, with w = 0k−ix we see that (s1, si)
w⇒ (s2, sk), so that s1 is

also distinguishable from any state in B2. Hence, any pair of states in B1 ×B2 are distinguishable, and we
conclude that any two distinct states in B1 ∪ B2 are distinguishable, that is, S′ is input-state-minimal. So,
S′ ∈ IOMIN(LI , LU ) with k input-states, as desired.

We now turn to the IUT. In the proof of Theorem 16, we noted that both transitions from state qr to
state pass, together with the self-loops at state qr+1 could have been removed, with no prejudice to the
argument given therein. See Figure 13, which we also designate by Iα. From the proof of Theorem 16 we
have 1 ≤ r ≤ m − 3. By inspection, we see that Iα is deterministic, input-complete, progressive, initially-
connected, and has r + 3 ≤ (m − 3) + 3 = m ≤ k states. Also, all states, except for qr and qr+1, are
input-states, so that I has at most k input-states, as needed.

Finally, we show that every pair of distinct input-states of Iα are distinguishable. Fix some qj , 0 ≤ j ≤
r − 1, and define w = yj+1 · · · yr. Clearly, qj

w⇒ qr and, since pass
w⇒ pass, we get (qj ,pass)

w⇒ (qr,pass).
Since init(qr) ∩ init(pass) = ∅ we conclude that pass is distinguishable from any state qj , 0 ≤ j ≤ r − 1.

Lastly, take a state qi distinct from qj with 0 ≤ i < j ≤ r − 1. Now we get qi
w⇒ q` where ` = r − j + i =

r − (j − i) ≤ r − 1. Hence, (qi, qj)
w⇒ (q`, qr) and, because ` ≤ r − 1, we see that init(q`) ∩ init(qr) = ∅,

thus proving that qi and qj are also distinguishable. Putting it together, we see that any pair of distinct
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input-states of Iα are distinguishable, that is, Iα is input-state-minimal. 2

Theorem 18 clearly also applies to any specification S in which the model depicted in Figure 12 appears
as a sub-model with state s0 being reachable from the initial state of S. This is in contrast to Theorem 9
which says that, for a deterministic S over L, we have an algorithm of time complexity O(km) for checking
m-ioco-completeness, where k = nSnL, nL = |L| and nS is the number of states in S, and IUTs have at
most m states.

We also remark that in Theorem 1 of Simão and Petrenko [10], implementations are further restricted to
be “input-eager”, although they do not precisely define this notion in that text. On the other hand, in none of
their proofs the input-eager hypothesis explicitly used, leading us to infer that constraining implementations
to also be input-eager is a practical consideration to render the testing process more controllable. Since input-
eagerness is not strictly necessary to establish their Theorem 1, we conclude that Theorem 18 expresses a
valid worst case exponential asymptotic lower bound on the size of the test suites claimed by Theorem 1
in [10].

7 Related Works

IOLTS models are largely used to describe the syntax and the semantics of systems where input and output
actions can occur asynchronously, thus capturing a wide class of systems and communication protocols.
Several works have studied different aspects of (complete) test suite generation for families of IOLTS models,
under various conformance relations. We comment below on some works that are more closely related to
our study.

de Vries and Tretmans [14] presented an ioco-based testing theory to obtain e-complete test suites. This
variant of test suite completeness is based on specific test purposes that share particular properties related
to certain testing goals, and they consider only observable behaviors based on some objective criteria when
testing black-box IUTs. It turns out that such specific test purposes somewhat limit the fault coverage
spectrum, e.g., producing inconclusive verdicts. Large, even infinite, test suites can be produced by their
test generation method. Some test selection criteria need to be used to avoid this problem, at least when
applied in practical situations. On the other hand, our approach allows for a wider class of IOLTS models,
and a low degree polynomial time algorithm are devised for efficiently testing ioco-conformance in practical
applications.

Petrenko et al. [15] studied IOLTS-testing strategies considering IUTs that cannot block inputs, and also
testers that can never prevent an IUT from producing outputs. This scenario calls for input and output
communication buffers that can be used for the exchange of symbols between the tester and the IUTs. This
leads to an entirely different class of testing strategies, where arbitrarily large buffer memories (queues) are
allowed.

Tretmans [5] studied the classic ioco-conformance relation for IOLTS models, and developed the foun-
dations of an ioco-based testing theory for these models [16], where IUTs are treated as black-boxes, and
with a testing architecture where the tester, having no access to the internal structure of IUTs, is seen as an
artificial environment that drives the exchange of input and output symbols with the IUT. In this case, some
restrictions must be observed by the specification, the IUT and the tester models, such as input-completeness
and output-determinism. The algorithms developed therein, however, may in general lead to infinite test
suites, making it more difficult to devise solutions for practical applications. In our work we described a
method that, considering the exact same restrictions to the IOLTS models, does in fact generate finite sets
of test purposes that can be used in practical situations. In rare situations, the algorithm may lead to
exponential sized testers. If the same restrictions are to be obeyed by the specification, the IUT and the
tester IOLTS models, we established an exponential worst case asymptotic lower bound on the size of the
testers. This shows with those restrictions in order, generating exponential sized testers is, in unavoidable
general, being rather an intrinsic to the problem when one requires ioco-completeness.

Simão and Petrenko [10] also described an approach to generate finite ioco-complete test suites for a
class of IOLTS models. They, however, also imposed a number of restrictions on the specification and IUT
models in order to obtain ioco-complete finite test suites. They assumed the test purposes to be single-
input and also output-complete. Moreover, specifications and IUTs must be input-complete, progressive,
and initially-connected, so further restricting the class of IOLTS models that can be tested according to
their fault model. They also did not study the complexity of their method for generating ioco-complete test
suites under those restrictions. In contrast, we applied our approach to a testing architecture that satisfies
the same restrictions, and showed how to generate ioco-complete test suites in a more straightforward
manner. Further, we examined the complexity of the problem of generating ioco-complete test suites under
the same restrictions, and established an exponential worst case asymptotic lower bound on the size of any
ioco-complete test suite that can be generated in this situation.
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Noroozi et al. [17] presented a polynomial time reduction from a variation of the SAT problem to the
problem of checking ioco-completeness, thus establishing that, under very general assumptions about the
IOLTS models — including non-determinism, — that checking ioco-completeness is a PSPACE-complete
problem. In a more restricted scenario, treating only deterministic and input-enabled IOLTS models, they
proposed a polynomial time algorithm, based on a simulation-like preorder relation. This is the same
complexity bound that our method attains but, in contrast, our approach treats a wider class of conformance
relations not being restricted to ioco-conformance only. In another work, Noroozi et al. [18] also studied the
problem of synchronous and asynchronous conformance testing, when allowing communication channels as
auxiliary memories. They treated a more restricted class of IOLTS, the so-called Internal Choice IOLTSs,
where quiescent states must be also input-enabled. The notions of ioco-conformance and of traces are also
more restricted. When the structure of IUTs are accessible, algorithms to generate test cases are shown
to be sound and exhaustive. However, in a setting where IUTs are black-boxes these algorithms are not
applicable, thus limiting their practical use.

Roehm et al. [19], in a more recent work, introduced a variation of conformance testing, related to safety
properties. Despite being a weaker relation than trace-inclusion conformance, it allows for tunning a trade-
off between accuracy and computational complexity when checking conformance of hybrid systems. Instead
of verifying the whole system, their approach searches for counter-examples. They also proposed a test
selection algorithm that uses a coverage measure to reduce the number of test cases. However, since the
models are hybrid, the continuous flow of time forces discretizations to reduce the test generation problem to
discrete models. This imposes a trade-off between accuracy and computational load, which must be tuned
by appropriate choices related to some over-approximations.

Other works have considered ioco-based testing for compositional systems, where components of a more
complex system can be formally tested using composition operators to capture the resulting behavior of
multiple components. Benes et al. [20] have proposed merge and quotient operators in order to check con-
sistency of more complex parts of systems under test. Following a similar line, Daca et al. [21] proposed
compositional operators, friendly composition and hiding, applied to an ioco-testing theory in order to min-
imize the integration of testing efforts. The result of the friendly composition is an overall specification that
integrates the component specifications while pruning away any inputs that lead to incompatible interac-
tions between the components. The friendly hiding operation can prune inputs that lead to states which are
ambiguous with respect to underspecified parts of the system. In a similar vein, Frantzen and Tretmans [22]
presented a method when complete behaviors of components of a system are not available, and applied a
parallel operator when integrating different components. They proposed a specific conformance relation for
the components and devised an algorithm that constructs complete test suites.

8 Conclusions

Conformance of an IUT to a specification often needs to be checked, in order to establish a mathematical
guarantee of correctness of the IUTs. The ioco framework has been the conformance relation of choice for
verifying IOLTS models in several testing architectures.

We addressed the problem of conformance testing and test case generation for asynchronous systems that
can be described using IOLTS models as the base formalism. A new notion of conformance relation was
studied, one that is more general and encompasses the classic ioco-conformance. It opened the possibility for
a much wider class of conformance relations, all uniformly treated under the same formalism. In particular,
it allows for properties or fault models to be specified by formal languages, e.g., regular languages. Very
few restrictions over the IOLTS models must be satisfied when generating finite and complete test suites
under any notion of conformance that fits the more general setting studied herein. We also proved correct a
polynomial algorithm to test general conformance in a “white-box” architecture. With a fixed specification,
the algorithm runs in linear time on the size of the IUTs.

Equipped with this new notion of conformance, we specialized the test generation process in order to cover
other special cases of conformance relations, such as classical ioco-conformance. Complexity issues related
to complete test suite generation for verifying ioco-conformance in settings where the IOLTS models were
under several specific restrictions were also discussed. For some sets of restrictions we showed that the state
explosion problem cannot be avoided, in general, forcing ioco-complete test suites to grow exponentially
with the size of the IUTs. In these cases, we proved correct general algorithms with time complexities that
attained such lower bounds, while still generating complete test suites. This indicates that other families of
specialized IOLTS models could be considered by our approach, leading to similar results.

Other research areas that might be inspired by these ideas are symbolic test case generation, where data
variables and parameters are also present [23, 24], as well as conformance relations and generation methods
for real-time systems [25, 26].
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Appendix

Here we discuss, in detail, the relationship between the ioco relation described in this work and a classical
ioco relation used in the literature [5]. We want to establish that both of these variations describe the same
ioco relation. Since the precise definitions of several notions in this work and in the original proposal [5]
differ slightly, we need to proceed step by step, comparing the same notions as defined in both texts. The
differences are most marked when the notion of quiescence is treated in both texts, and so, special care must
be taken when comparing notions related to quiescence.

From now on, if X denotes any object defined both in [5] and in this work, we let XT be the variation
of X as defined in [5], and we use XA for the same object X as defined in this work. For instance, →T is
the trace relation in LTSs as defined in [5], and →A is the trace relation as defined in this work. In many
cases they will be exactly the same, but in some other cases there might be a slight variation between the
two relations.

8.1 The general model

We first note that an LTS model as defined in [5] is denoted by 〈S,L, T, s0〉, whereas an LTS model is here
denoted as 〈S, s0, L, T 〉. Further, in [5] LTS models can be infinite objects, whereas we deal only with finite
models. We will from now on restrict ourselves to finite models only.

Hypothesis 19 We assume that all LTS models are finite.

The notions of a path, →, and of an observable path, ⇒, appear as Definitions 3 and 4 in [5]. Here see
also Definition 4. The following is immediate.

Proposition 12 →T =→A and also ⇒T =⇒A.

Proof Follows from the definitions. 2

We now write → for both →T and →A. Likewise, we write ⇒ for both ⇒T and ⇒A.
The function after appears in Definition 5(3) in [5]. See our Definition 13(2).

Proposition 13 Let S = 〈S, s0, L, T 〉 be an LTS. For all p ∈ S, σ ∈ L?τ we have

p afterT σ = {q | p σ⇒ q} = p afterA σ.

Proof Immediate from Proposition 12. 2

From now on we may write after for both afterT and afterA.
In order to leave no room for confusion we let LTSA(L) be the class of all LTS models over the alphabet

L as defined here. We designate by LTST (L) the class of all LTS models according to Definition 5(12) [5].
As a refinement, the class of all models S = 〈S, s0, L, T 〉 in LTST (L) where all states are reachable from the
initial state, that is, s0 → s for all s ∈ S, will be designated as LTSRT (L).

Each model in LTST (L) is assumed to be image finite and strongly converging (Definition 5(12) [5]),
where an LTS S = 〈S, s0, L, T 〉 is said to be

1. image finite when p after σ is finite, for all p ∈ S and all σ ∈ L?τ (see its Definition 5(10)).

2. strongly converging if there is no state that can perform an infinite sequence of internal transitions
(see its Definition 5(11)).

We readily have the following result.

Proposition 14 Assume hypothesis 19. Then

1. LTSA(L) ( LTST (L) (properly contained)

2. LTSRT (L) = LTSA(L)

Proof Let S = 〈S, s0, L, T 〉 be an LTS in LTSA(L). Under Hypothesis 19, S is image finite. According to
Remark 1, there is no transition (s, τ, s) in T , and so S is also strongly converging. This proves (1).

For (2), let S = 〈S, s0, L, T 〉 be an LTS in LTSRT (L). Since S is strongly converging, there can be no
transition (s, τ, s) in T . From the definition of the class LTSRT (L) we know that for all s ∈ S we must have
s0 → s. We conclude that Remark 1 is satisfied and so S ∈ LTSA(L). Hence, LTSRT (L) ⊆ LTSA(L). Using
item (1) we conclude the proof. 2
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8.2 Models with inputs and outputs

Let L = LI ∪ LU with LI ∩ LU = ∅ be alphabets. Then, Definition 10 says that (S, s0, LI , LU , T ) is an
IOLTS with input alphabet LI and output alphabet LU when (S, s0, L, T ) ∈ LTSA(L), that is, an IOLTS
is a LTS where the alphabet has been partitioned into disjoint sets of input and output action symbols.
In this appendix we will designate the class of IOLTSs over LI and LU by IOA(LI , LU ). Likewise, in [5],
Definition 6 says that a labeled transition system with inputs and outputs is a system (S,LI , LU , T, s0),
where (S,L, T, s0) ∈ LTST (L), and we will here denote the class of all such models by LTST (LI , LU ).

Proposition 15 Again, assume hypothesis 19. Then

1. IOA(LI , LU ) ( LTST (LI , LU ) (properly contained)

2. LTSRT (LI , LU ) = IOA(LI , LU )

Proof Immediately from the definitions and from the Proposition 14. 2

8.3 Quiescent states

First we introduce some notation. Let A be any alphabet, and define A+δ = A ∪ {δ} and A−δ = A− {δ}.
Let S = (S, s0, LI , LU , T ) ∈ LTST (LI , LU ) be an IOLTS. In [5], Definition 8.1 says that a state s ∈ S is

quiescent (in S), denoted δST (s), if for all x ∈ LU∪{τ} we have s 6x→ in S. When the model is clear from the con-
text we may write only δT instead of δST . Further, given an IOLTS S = (S, s0, LI , L

−δ
U , T ) ∈ LTST (LI , L

−δ
U ),

Definition 9 [5] creates a new model Sδ = 〈S, s0, LI , L
+δ
U , T ∪Tδ〉, where Tδ = {(s, δ, s) | δST (s)}. We designate

this new class of IOLTSs by LTSδT (LI , L
−δ
U ) = {Sδ | S ∈ LTST (LI , L

−δ
U )} to stress that these models were

constructed from IOLTSs whose output alphabet did not contain δ (so L−δU in the notation), but the output

alphabet of the extended model always contains δ (so LTSδT () in the notation.) If the original model was
from the class LTSRT (LI , L

−δ
U ), meaning that all states are reachable from the initial state, then the new

class of models will be designated by LTSRδT (LI , L
−δ
U ).

Next proposition states a simple result.

Proposition 16 LTSδT (LI , L
−δ
U ) ( LTST (LI , L

+δ
U ) and LTSRδT (LI , L

−δ
U ) ( LTSRT (LI , L

+δ
U ) (properly con-

tained).

Proof Immediate from the definitions. 2

Now we turn to Definition 17 where quiescence in δ-IOLTS models is introduced in this work. To
emphasize that δ is always a symbol in the output alphabet of an δ-IOLTS, in this appendix we designate
this class of models by IOδA(LI , L

+δ
U ) (in the main text it was designated simply by IOδ(LI , LU )). Let

S = (S, s0, LI , L
+δ
U , T ) ∈ IOδA(LI , L

+δ
U ) be a δ-IOLTS. If q ∈ S is quiescent according to Definition 17, we

write δSA(q), and may omit the index S when no confusion can arise.
Proposition 17 is important because it gives the exact relationship between the class of all δ-IOLTS

models and the class of all models after they are extended in order to include quiescence, as defined in [5].

Proposition 17 Assume hypothesis 19, then we have that

1. IOδA(LI , L
+δ
U ) ( LTSδT (LI , L

−δ
U ) (properly contained)

2. LTSRδT (LI , L
−δ
U ) = IOδA(LI , L

+δ
U )

Proof To prove item (1), assume S ∈ IOδA(LI , L
+δ
U ). From the definition of the class IOδA(LI , L

+δ
U ) we obtain

S = 〈S, s0, LI , L
+δ
U , T 〉, where

S ∈ IOA(LI , L
+δ
U ); and (1)

(s, δ, q) ∈ T if and only if (2)

(a) s = q;

(b) when s
x→ with x ∈ LI ∪ L+δ

U ∪ {τ},
then x ∈ LI ∪ {δ}.

From the definition of the class LTSδT (LI , L
−δ
U ), we need to show that S = Tδ for some T ∈ LTST (LI , L

−δ
U ).

Take T = 〈S, s0, LI , L
−δ
U , R〉, where

R = T − {(s, δ, q) | s, q ∈ S}. (3)
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Since there are no δ-transitions in R, the output alphabet of T can be taken as L−δU . Since S ∈ IOδA(LI , L
+δ
U ),

we get T ∈ IOA(LI , L
−δ
U ). From Proposition 15 we have T ∈ LTST (LI , L

−δ
U ). It remains to show that S = Tδ.

From the definitions we have Tδ = 〈S, s0, LI , L
+δ
U , R ∪ Rδ〉, where Rδ = {(s, δ, s) | δTT (s)}. In order to

complete the proof of item (1), we need show that R ∪Rδ = T .
Let (s, x, q) ∈ R. From the Eq. (3) we have (s, x, q) ∈ T − {(s, δ, q) | s, q ∈ S}, and then (s, x, q) ∈ T .
Let (s, x, q) ∈ Rδ. From definition of the class LTSδT (LI , L

−δ
U ) we have that s = q and x = δ. So, δTT (s)

in T. Now assume s ∈ S and s
y→ with y ∈ LI ∪L+δ

U ∪ {τ}. Since we have δTT (s) in T, we get y 6∈ L−δU ∪ {τ}.
Hence y ∈ LI ∪{δ}. From Eq. (2), we obtain (s, x, q) = (s, δ, s) ∈ T and then we conclude that R∪Rδ ⊆ T .

In order to prove T ⊆ R ∪Rδ, take (s, x, q) ∈ T with x 6= δ. From Eq. (3) we get (s, x, q) ∈ R, and then
(s, x, q) ∈ R ∪ Rδ. Now assume that (s, δ, q) ∈ T . From Eq. (2) we have s = q and the following condition

is satisfied in s: if s
x→ with x ∈ LI ∪L+δ

U ∪ {τ} then x ∈ LI ∪ {δ}. Next, we show that δTT (s) is in T, which
gives (s, δ, s) ∈ Rδ, and then (s, δ, q) = (s, δ, s) ∈ R ∪Rδ. This will imply T ⊆ R ∪Rδ, so that T = R ∪Rδ,
completing the proof.

So, assume that we do not have δTT (s) in T. From the definition we would have s
x→ with x ∈ L−δU ∪ {τ}.

Therefore, x ∈ LI ∪ L+δ
U ∪ {τ}. From Eq. (2) we have x ∈ LI ∪ {δ}, which contradicts with x ∈ L−δU ∪ {τ}.

Hence, δTT (s) in T, and the proof is complete.

Now we turn to item (2). Let S ∈ IOδA(LI , L
+δ
U ). From item (1) we get S ∈ LTSδT (LI , L

−δ
U ). Since every

state of S is reachable from its initial state, it follows that S ∈ LTSRδT (LI , L
−δ
U ), and we can conclude that

IOδA(LI , LU ) ⊆ LTSRδT (LI , L
−δ
U ).

Now we prove that LTSRδT (LI , L
−δ
U ) ⊆ IOδA(LI , L

+δ
U ). Let S ∈ LTSRδT (LI , L

−δ
U ) be an IOLTS. We want

to show that S ∈ IOδA(LI , L
+δ
U ). From the definition of LTSRδT (LI , L

−δ
U ) we know that S = Tδ for some T =

〈S, s0, LI , L
−δ
U , T 〉 ∈ LTSRT (LI , L

−δ
U ). From the definition we also know that Tδ = 〈S, s0, LI , (L

−δ
U )+δ, T ∪

Tδ〉, where Tδ = {(s, δ, s) ∈ T | δTT (s)}. We want to show that S = Tδ ∈ IOδA(LI , L
+δ
U ). From the definition

of the class IOδA(LI , L
+δ
U ), this is equivalent to show that

Tδ ∈ IOA(LI , L
+δ
U ); and (4)

(s, δ, q) ∈ T ∪ Tδ if and only if (5)

(a) s = q;

(b) if s
x→ with x ∈ LI ∪ L+δ

U ∪ {τ},
then x ∈ LI ∪ {δ}.

Since T = 〈S, s0, LI , L
−δ
U , T 〉, and (L−δU )+δ = L+δ

U , we have that Tδ ∈ LTSRT (LI , L
+δ
U ). From Proposi-

tion 15(2) we obtain Tδ ∈ IOA(LI , L
+δ
U ) and the Eq. (4) holds.

It remains to prove Eq. (5). Let (s, δ, q) ∈ T ∪ Tδ. Since T = 〈S, s0, LI , L
−δ
U , T 〉 and δ 6∈ L−δU , it follows

that (s, δ, q) 6∈ T and so (s, δ, q) ∈ Tδ. We then have s = q and δTT (s) in T. Therefore, Eq. (5a) holds. Now

we assume s
x→ with x ∈ LI ∪ L+δ

U ∪ {τ}. Since (s, δ, s) ∈ Tδ and δTT (s) in T = 〈S, s0, LI , L
−δ
U , T 〉, we should

have x 6∈ L−δU ∪ {τ}. Then, x ∈ LI ∪ {δ} and Eq. (5b) also holds. 2

Now Proposition 18 states quiescence and relate them between the approaches.

Proposition 18 Let S = 〈S, s0, LI , L
+δ
U , T 〉 ∈ IOδA(LI , L

+δ
U ). We then have that S = Tδ where T =

〈S, s0, LI , L
−δ
U , R ∪Rδ〉 ∈ LTSRT (LI , L

−δ
U ). Further, for all s ∈ S we get δSA(s) in S if, and only if, δTT (s) in

T.

Proof From Proposition 17(2) we have that IOδA(LI , L
+δ
U ) = LTSRδT (LI , L

−δ
U ). The definition of the class

LTSδT (LI , L
−δ
U ) gives S = Tδ, where T = 〈S, s0, LI , L

−δ
U , R〉 ∈ LTSRT (LI , L

−δ
U ), with T = R ∪ Rδ and

Rδ = {(p, δ, p) | δTT (p) in T}.
Assume that δSA(s) holds in S and δTT (s) does not hold in T. Definition of δTT (·) gives that s

x→ in T with

x ∈ L−δU ∪ {τ}. So, (s, x, p) ∈ R for some p ∈ S, and then (s, x, p) ∈ T . Therefore, s
x→ in S. Since we have

δSA(s) in S, the definition of δSA(·) together with s
x→ in S gives that x ∈ LI∪{δ}, contradicting x ∈ L−δU ∪{τ}.

On the other direction, we assume δTT (s) em T. From the definition of Rδ we have (s, δ, s) ∈ Rδ. Hence

(s, δ, s) ∈ T , i.e., s
δ→ in S. From the definition of δSA(·) we also have δSA(s), concluding the proof. 2
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8.4 The out relation

In [5], Definition 11 introduces the out relation, here denoted outT , thus: Let S = 〈S, s0, LI , LU , T 〉 ∈
LTST (LI , LU ). Then, for all s ∈ S and all Q ⊆ S,

outT (s) = {x ∈ LU |s
x→} ∪ {δ|δST (s)}, and

outT (Q) =
⋃
{outT (s)|s ∈ Q}.

In this work, we define the same relation, denoted outA, as follows: Let S = 〈S, s0, LI , LU , T 〉 ∈ IOA(LI , LU ).
Then, for all Q ⊆ S

outA(Q) =
⋃
s∈Q
{x ∈ LU | s

x⇒}.

See Definition 13.
Next we show that both definitions of out coincide.

Proposition 19 Let S = (S, s0, LI , L
+δ
U , T ) ∈ IOδA(LI , L

+δ
U ) be an IOLTS. Then, we have that outA(Q) =

outT (Q) for all Q ⊆ S.

Proof We show that outA(s) = outT (s) for all s ∈ S.
From Proposition 12 we have ⇒T = ⇒A, and so the indexes may be omitted. Likewise, we can write →

instead of →T or →A.
First assume x ∈ outA(s) and x 6∈ outT (s). Since S ∈ IOδA(LI , L

+δ
U ) it is clear that S ∈ IOA(LI , L

+δ
U ).

Hence, from the definition of x ∈ outA(s) we obtain s
x⇒ and x ∈ L+δ

U . So, we also have s
x→. From Proposi-

tion 17(1) we have IOδA(LI , L
+δ
U ) ( LTSδT (LI , L

−δ
U ). Hence, from Proposition 16 we get S ∈ LTST (LI , L

+δ
U ).

Since s
x→ and x ∈ L+δ

U , from the definition of outT we obtain x ∈ outT (s), contradicting x 6∈ outT (s).
Then outA(s) ⊆ outT (s).

Now assume that x ∈ outT (s) and x 6∈ outA(s). Since S ∈ LTST (LI , L
+δ
U ), from x ∈ outT (s) we get:

(i) δST (s), or (ii) s
x→ and x ∈ L+δ

U . First assume (i). From the definition of δST (·) we know that for all

x ∈ LI ∪ L+δ
U ∪ {τ}, if (s, x, p) ∈ T then x 6∈ L+δ

U ∪ {τ}, i.e., we must have x ∈ LI . Since S ∈ IOδA(LI , L
+δ
U ),

Definition 17 for δ-IOLTS models implies s = p and (s, δ, s) ∈ T . But such transition contradicts δ 6∈
L+δ
U ∪ {τ}. Then hypothesis (i) does not hold. Next, assuming (ii) we must have s

x→ and x ∈ L+δ
U . Thus

s
x⇒ and x ∈ L+δ

U . Since S ∈ IOA(LI , L
+δ
U ), the definition of outA results in x ∈ outA(s), contradicting

x 6∈ outA(s). Hence hypothesis (ii) does not hold. We conclude that outT ⊆ outA. 2

8.5 Input-enabledness property

In [5], Definition 7 says that the class of all input-output transition systems with inputs in LI and outputs
in LU is a restricted subclass of LTST (LI ∪ LU ). More specifically, (S,LI , LU , T, s0) ∈ LTST (LI ∪ LU ) is
an input-output transition system if any reachable state s is input-enabled, that is, there is a transition
out of s for all input symbols. More formally, in Definition 5(6) we have derT (p) = {q | p ⇒ q}. Then
Definition 7 decrees that (S,LI , LU , T, s0) ∈ LTST (LI ∪ LU ) is an input-output transition system when for

all p ∈ derT (s0) we have p
a⇒ for all a ∈ LI . The class of all input-output systems is here denoted by

IOTST (LI , LU ). The subclass of all input-output systems S where all states are reachable from the initial
states, that is when S is in the subclass LTSRT (LI , LU ), will be designated by IOTSRT (LI , LU ).

In our work, Definition 21 says that an IOLTS (S, s0, LI , LU , T ) ∈ IOA(LI , LU ) is input-enabled when

inp(s) = LI for all s ∈ S. In the same definition we find that inp(s) = {` ∈ LI | s
`⇒}. In this appendix we

designate by IOEA(LI , LU ) the class of all input-enabled IOLTS models over input alphabet LI and output
alphabet LU .

Proposition 20 Under Hypothesis 19 we have

1. IOEA(LI , LU ) ( IOTST (LI , LU ) (properly contained)

2. IOTSRT (LI , LU ) = IOEA(LI , LU )

Proof First note inp(p) = LI if and only if p
a⇒ for all a ∈ LI . With this observation, we prove item (1)

using Proposition 15(1), and prove item (2), using Proposition 15(2). 2
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Now we are in position to compare the definitions of the ioco relation. In [5], the definition of the ioco
relation depends on the notion of Straces, as stated in its Definition 9. It proceeds as follows: Let S =
(S, s0, LI , LU , T ) ∈ LTST (LI , LU ) and let Sδ = T ∈ LTSδT (LI , L

+δ
U ) be its extension to include quiescence.

Definition 9 says that, for all s ∈ S and all σ ∈ (LI ∪ LU ∪ {δ})?, we have σ ∈ Straces(s) if s
σ⇒
T

.

So, strings in Straces(S) are just the observable traces of T, i.e., Straces(S) = otr(T), the observable
traces of T. With the notion of Straces, Definition 12 in [5] specifies the iocoT relation thus: Let I =
(Q, q0, LI , LU , R) ∈ IOTST (LI , LU ) ⊆ LTST (LI , LU ) and let Q = Iδ ∈ IOTSδT (LI , L

+δ
U ) be its extension.

Also let S = (S, s0, LI , LU , T ) ∈ LTST (LI , LU ) with T = Sδ ∈ LTSδT (LI , L
+δ
U ) being its extension. Then,

I iocoT S if, and only if, for all σ ∈ Straces(S), we have

outQT (q0 afterQ σ) ⊆ outTT (s0 afterT σ).

Here outQT indicates that the set outT is being obtained in S and, similarly, afterQ indicates that the set
after is being calculated in the S, according to previous definitions.

Since Straces(s0) = otr(T), we then rewrite the definition of iocoT as follows. Assume I =
(Q, q0, LI , LU , R) ∈ IOTST (LI , LU ) ⊆ LTST (LI , LU ) and S = (S, s0, LI , LU , T ) ∈ LTST (LI , LU ). We say
that I iocoT S if, and only if, for all σ ∈ otr(Sδ), we have

outT (q0 after σ) ⊆ outT (s0 after σ),

where outT and after are obtained over the corresponding extended models Iδ and Sδ.
In this work, when S = (S, s0, LI , LU , T ) and I = (Q, q0, LI , LU , R) are in IOA(LI , LU ), we say that

I iocoA S if, and only if, for all σ ∈ otr(S), we have

outA(q0 after σ) ⊆ outA(s0 after σ).

See Definition 13.
Next proposition establishes the relationship between relations iocoT and iocoA.

Proposition 21 Let I ∈ IOTSRT (LI , L
−δ
U ) and let S ∈ LTSRT (LI , L

−δ
U ), with Q = Iδ and T = Sδ being

their corresponding extended models. Then, I iocoT S if and only if Q iocoA T.

Proof Let S = (S, s0, LI , L
−δ
U , T ) and I = (Q, q0, LI , L

−δ
U , R). From the definitions we get immediately

T = (S, s0, LI , L
+δ
U , T ∪ Tδ) ∈ LTSRδT (LI , L

−δ
U ) and Q = (Q, q0, LI , L

+δ
U , R ∪ Rδ) ∈ LTSRδT (LI , L

−δ
U ), where

Tδ = {(s, δ, s)|δST (s)} and Rδ = {(s, δ, s)|δIT (s)}.
We first show that I iocoT S implies that Q iocoA T. From Proposition 17(2) we have T,Q ∈

IOδA(LI , L
+δ
U ), and so the relation iocoA is also defined for Q and T. Assume that we have I iocoT S,

but Q iocoA T does not hold. From the definition we have some σ ∈ otr(T) and some x ∈ L+δ
U such that

x ∈ outQA(q0 afterQ σ) and x 6∈ outTA(s0 afterT σ).

Since Q ∈ IOδA(LI , L
+δ
U ), using Proposition 19 we have outQA(q0 afterQ σ) = outQT (q0 afterQ σ) and

then x ∈ outQT (q0 afterQ σ). Since I iocoT S holds we should have x ∈ outTT (s0 afterT σ). Like-
wise, T ∈ IOδA(LI , L

+δ
U ) and Proposition 19 now gives outTA(q0 afterT σ) = outTT (q0 afterT σ). Hence,

x ∈ outTA(s0 afterT σ) and we have reached a contradiction. Therefore, if I iocoT S then Q iocoA T.
On the other direction, we need to show that if Q iocoA T then I iocoT S. Now, assume that we have

Q iocoA T, but I iocoT S does not hold. The reasoning is entirely analogous and again we would reach a
contradiction. 2

8.6 Determinism

We also show that the notion of determinism defined in [5] coincides with our definition of determinism. In
[5], Definition 5(9) characterizes determinism as follows: S = (S,L, T, s0) ∈ LTST (L) is deterministic if, for
all σ ∈ L?, s0 after σ has at most one element. We indicate this by writing determT (S).

In our work, Definition 5 says that S = (S, s0, L, T ) ∈ LTSA(L) is deterministic if s0
σ⇒ s1 and s0

σ⇒ s2

imply s1 = s2, for all s1, s2 ∈ S and all σ ∈ L?. If that is the case, we write determA(S).
The next proposition shows that these notions coincide for every element in LTSA(L).

Proposition 22 Let S = (S, s0, L, T ) ∈ LTSA(L). Then determT (S) if and only if determA(S).

Proof Note that from Proposition 15(1) we also have S ∈ LTST (L).

Assume that determT (S) holds. We have that s0 afterT σ has at most one element if and only if s0
σ⇒T s1

and s0
σ⇒T s2 imply s1 = s2, for all s1, s2 ∈ S, and all σ ∈ L?. From Proposition 12 we get that s0

σ⇒A s1

and s0
σ⇒A s2 imply s1 = s2, so that determA(S) also holds.

For the other direction just reverse the argument. 2
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8.7 Test cases and test purposes

When defining the class of all test cases with inputs LI and outputs LU , [5] starts, at Definition 10, with a

model T = (S, s0, L
−δ
U , L+θ,−δ

I , T ) in the class IOTST (L−δU , L+θ,−δ
I ), that is, T is already input-enabled with

respect to L−δU . Further restrictions apply, namely:

1. T is finite state and deterministic as defined in [5]. We recall that according to Definition 2 all our
models are finite state.

2. S contains two distinct states, pass and fail, and out(pass) = out(fail) = L+θ,−δ
U .

3. T has no cycles, except at states pass and fail, that is s
σ⇒ s implies s = pass or s = fail for any σ 6= ε

and σ ∈ (L−δU ∪ L
+θ,−δ
I )?.

4. For all state s ∈ S, we must have initT (s) = {x} ∪ L−δU , for some x ∈ L+θ,−δ
I .

For any model S = (S, s0, LI , LU , T ), Definition 5 in [5] says that for all s ∈ S we have initT (s) = {x ∈
LI ∪ LU ∪ {τ} | s

x→}. Hence, for any model T = (S, s0, L
−δ
U , L+θ,−δ

I , T ) condition 4 reduces to saying that
for all s ∈ S we must have

{x} ∪ L−δU = {y ∈ L+θ,−δ
I ∪ L−δU ∪ {τ} | s

y→},

for some x ∈ L+θ,−δ
I . We conclude that s

x⇒ for all x ∈ L−δU and all s ∈ S. Thus, when condition 4 holds we
know that T is already input-enabled.

In [5], Definition 16, the θ symbol in test cases synchronizes with the δ symbol that signals quiescence
in IUTs. Here we have used the same δ symbol in test purposes to synchronize with the δ symbol that
flags quiescence in IUTs, as made explicit in Definition 17. So, specifications and IUTs are models from
IOA(L−δI , L+δ

U ). When constructing test purposes from given specifications, the input and output alphabets
are interchanged. Accordingly, a test purpose over the input alphabet LI and output alphabet LU is defined
as a model T = 〈S, s0, L

+δ
U , L−δI , T 〉 in IOA(L+δ

U , L−δI ).
In our Definition 13, given any model S = 〈S, s0, LI , LU , T 〉 ∈ IOA(LI , LU ) we say that outA(s) = {x ∈

LU | s
x⇒} for all s ∈ S, and in Definition 21 we say that S is output-deterministic when |outA(s)| = 1 for all

s ∈ S. Also such a model S is input-enabled when inpA(s) = LI . Hence, a model T = 〈S, s0, L
+δ
U , L−δI , T 〉 is

output-deterministic when |{x ∈ L−δI | s
x⇒}| = 1 and it is input-enabled when inpA(s) = L+δ

U , for all s ∈ S.
Moreover, since in our models we substitute δ for θ, conditions (2), (3) and (4) should read as follows:

(2′) S contains two distinct states, pass and fail, and out(pass) = out(fail) = L+δ
U .

(3′) T has no cycles, except at states pass and fail, that is s
σ⇒ s implies s = pass or s = fail for any σ 6= ε

and σ ∈ (L+δ
U ∪ L

−δ
I )?.

(4′) For all state s ∈ S, we must have initT (s) = {x} ∪ L+δ
U , for some x ∈ L−δI .

Equivalently, condition (4′) can be written as

{x} ∪ L+δ
U = {y ∈ L−δI ∪ L

+δ
U ∪ {τ} | s

y→},

for some x ∈ L−δI .

The next result says that certain models T ∈ IOA(L+δ
U , L−δI ) satisfy conditions (1) and (4) above.

Proposition 23 Let T = 〈S, s0, L
+δ
U , L−δI , T 〉 ∈ IOA(L+δ

U , L−δI ) be deterministic, input-enabled and output-
deterministic. Then T satisfies conditions (1) and (4′) given above.

Proof Since T is deterministic, using Proposition 22 we conclude that T is also deterministic in the sense
defined in [5]. Thus, condition (1) holds.

By the preceding discussion, if T satisfies condition (4) then is is already input-enabled. Also from the
text above, it remains to show that for all s ∈ S we have

{x} ∪ L+δ
U = {y ∈ L−δI ∪ L

+δ
U ∪ {τ} | s

y→},

for some x ∈ L−δI . So, fix some s ∈ S. Since |outA(s)| = 1, we may choose x ∈ L−δI such that outA(s) = {x},
and now we have to show that

outA(s) ∪ L+δ
U = {y ∈ L−δI ∪ L

+δ
U ∪ {τ} | s

y→}.
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So, let y ∈ L−δI ∪ L
+δ
U ∪ {τ} with s

y→. Since T is deterministic, Proposition 1 says that T has no τ -labeled

transitions. Hence, y ∈ L−δI ∪ L
+δ
U . If y ∈ L+δ

U then y ∈ outA(s) ∪ L+δ
U . Now assume that y ∈ L−δI with

s
y→, so that y ∈ outA(s). Since |outA(s)| = 1 we have outA(s) = {y}, and again y ∈ outA(s) ∪ L+δ

U . We

have shown that {y ∈ L−δI ∪ L
+δ
U ∪ {τ} | s

y→} ⊆ outA(s) ∪ L+δ
U .

Now let y ∈ outA(s)∪L+δ
U . If y ∈ outA(s) then y ∈ L−δI and s

y⇒. Since T has no τ -labeled transitions

we get s
y→. Hence y ∈ {y ∈ L−δI ∪ L

+δ
U ∪ {τ} | s

y→}. Now assume y ∈ L+δ
U . Since inpA(s) = L+δ

U we get

y ∈ inpA(s), so that s
y⇒. Because T has no τ -labeled transitions we have s

y→. Hence, y ∈ L+δ
U and s

y→
give y ∈ {y ∈ L−δI ∪ L

+δ
U ∪ {τ} | s

y→}. We now have outA(s) ∪ L+δ
U ⊆ {y ∈ L

−δ
I ∪ L

+δ
U ∪ {τ} | s

y→} and the
proof is complete. 2

In Theorem 15 we showed that test purposes satisfying a number of restrictions can be constructed for
any given specification. We can now verify that those test purpose models are also test cases, in the sense
used in [5].

Proposition 24 Let S be a specification in IOA(L−δI , L+δ
U ), and let m ≥ 1. Then the set TP of test purposes

constructed in Theorem 15 is ioco-complete for S with respect to any implementation with at most m states.
Moreover, any test purpose in TP satisfies conditions (1), (2′), (3′) and (4′) listed above.

Proof By Theorem 15 we know that TP is m-ioco-complete for S.
Let T = 〈S, s0, L

+δ
U , L−δI , T 〉 ∈ IOA(L+δ

U , L−δI ) be a test purpose constructed in TP . By Theorem 15
we know that T is already deterministic, input-enabled and output-deterministic. So, by Proposition 23
conditions (1) and (4′) are satisfied.

By Theorem 15, T has two distinct pass and fail states, and it is acyclic except for self-loops at these states.
The proof of Theorem 15 starts with test purposes constructed at Proposition 10. A simple examination of
the proof of Proposition 10 shows that we explicitly add self-loops (fail, `, fail) and (pass, `,pass) to T, for
all ` ∈ L+δ

U . Hence, conditions (2′) and (3′) are also satisfied. 2
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