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Abstract

CONTEXT:  Despite  the  possible  lack  of  validity  when  compared  with  other  science  areas,
Simulation-Based Studies (SBS) in Software Engineering (SE) have supported the achievement
of some results in the field. However, as it happens with any other sort of experimental study, it
is important to identify and deal with threats to validity aiming at increasing their strength and
reinforcing results confidence. OBJECTIVE: To identify potential threats to SBS validity in SE
and suggest ways to mitigate them. METHOD: To apply qualitative analysis in a dataset resulted
from the aggregation of data from a  quasi-systematic literature review combined with  ad-hoc
surveyed information regarding other science areas. RESULTS: The analysis of data extracted
from 15 technical papers allowed the identification and classification of 28 different threats to
validity concerned  with SBS in SE according Cook and Campbell’s  categories.  Besides,  12
verification and validation procedures applicable to SBS were also analyzed and organized due
to their ability to detect these threats to validity. These results were used to make available an
improved set of guidelines regarding the planning and reporting of SBS in SE. CONCLUSIONS:
Simulation based studies add different threats to validity when compared with traditional studies.
They are not well observed and therefore,  it  is not easy to identify and mitigate all of them
without explicit guidance, as the one depicted in this paper. 
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1 Introduction

Simulation-Based Studies (SBS) consist of a series of activities aiming at observing a phenomenon instrumented by a
simulation  model.  Thomke  [1]  reported  the  adoption  of  this  sort  of  study  as  an  alternative  strategy  to  support
experimentation in different areas, such as automotive industry and drugs development. Criminology is another field
where researches have taken place with the support of SBS [2]. 

In  the  direction  of  these  potential  benefits,  Software  Engineering  (SE)  community  has  also  presented  some
initiatives in using SBS to support  investigation in the field.  Indeed, apart from some interesting results,  the SBS
presented in the context of SE [3] allowed us to observe its initial maturity stage when compared with SBS concerned
with the aforementioned areas. Lack of research protocols, ad-hoc experimental designs and output analysis, missing
relevant information in the reports are some examples of observed issues into this context. 

Based on the findings of our previous review [3] and on existing Empirical Software Engineering (ESE) guidelines
for other investigation strategies, such as case studies and experiments, and simulation guidelines from other research
areas, we proposed a preliminary set of guidelines aiming at providing guidance to researchers when reporting SBS into
the SE context [4]. Later, we performed a first assessment of this set of reporting guidelines based on the approach
presented in [5]. As a result, these guidelines have evolved to comprehend planning issues such as the problem, goal,
context and scope definitions; model description and validation; experimental design and output analysis issues; the
supporting environment and tools; and reporting issues such as background knowledge and related works, applicability
of results, conclusions and future works. 

One expected contribution of the guidelines’ application is the identification of potential threats to validity that
may bias a SBS in software engineering. The identification of threats and their mitigation from the initial problem and



CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 1, PAPER 4, APRIL 2015

goals definition to  the output  analysis  is  one of  guideline's  concerns,  reducing the risks of  misinterpreted results.
However, in order to perceive such benefits we believe it can be worth organizing a body of knowledge concerned with
threats to validity already reported by the SE community when performing SBS. In addition, it is also important to
depict the differences between common threats to validity (as those usually observed at in vivo and in vitro studies), and
highlight those ones specifically identified at in virtuo and in silico studies. Therefore, we have conducted a secondary
analysis of the data collected in [3] under the perspective of potential threats to validity found in SBS, which we are
now presenting in this paper. As far as we are aware, there is no other work like this into the context of Experimental
Software Engineering involving SBS. Such threats to validity compose the body of knowledge, organized as the new
version of the proposed guidelines. Additionally, we have related these threats to Verification and Validation (V&V)
procedures for simulation models previously identified in the technical literature in order to illustrate how to deal with
such threats in SBS. Finally, we deliver some recommendations for using such body of knowledge when planning and
reporting SBS, which also are going to compose a bigger set of guidelines (in progress). 

The remaining sections of this methodological paper are organized as follows. Section 2 presents the background
for  our  research.  Section  3 presents  the  adopted  research  methodology.  Section 4  presents  the  threats  to  validity
identified through a qualitative analysis performed on a set of SBS, both in the SE technical literature and papers from
other areas discussing this subject. Section 5 presents a list of technical V&V procedures applicable for simulation
models. Section 6 presents the analysis on how the threats and the V&V procedure relate in order to provide more
reliable SBS and deliver some recommendations in this sense. Finally, section 7 presents the final remarks and the way
ahead.

2 Background

The work presented in this paper comprehends a broader effort in trying to organize a body of knowledge regarding
SBS in the context of SE. Apart from earlier motivations and previous work on simulation models [6][7], we undertook
a systematic literature review aiming at characterizing how different simulation approaches have been used in SE
studies [3] following the guidelines proposed by [8] and adopting the PICO [9] strategy to structure the search string. In
this review, population, intervention and outcome dimensions are considered to support the answer of the research
question.  The  comparison  dimension  is  not  used  because,  as  far  as  we  are  aware,  there  is  no  baseline  to  allow
comparison. Therefore, this secondary study is classified as quasi-systematic literature review [34]. The search string
had been calibrated by using nine control papers, previously identified through an ad-hoc review.

We searched for simulation-based studies in SE (population), using simulation models as instruments based on
different simulation approaches (intervention). From them, we expected to obtain characteristics (outcome) from both
the simulation models and studies in which they were used as instruments.

This way, we applied the search string in three digital search engines due the high coverage they usually offer:
Scopus, EI Compendex and Web of Science. After applying the selection criteria by reading the titles and abstracts, we
selected 108 studies including two other secondary studies regarding SBS. So, our inclusion criteria encompassed only
papers  available  in  the  Web;  written  in  English;  discussing  simulation-based  studies;  belonging  to  a  Software
Engineering domain; and mentioning one or more simulation models. Papers not meeting one of these criteria were
excluded.

The  information  extracted  from these  research  papers  included  the  simulation  approach,  model  purpose  and
characteristics, tool support, the Software Engineering domain, verification and validation procedures used to evaluate
the simulation model, the study purpose and strategy (controlled experiment, case study, among others), output analysis
procedure and instruments, and main results including applicability of the approach and accuracy of results. Such
information has been organized with the JabRef tool [10].

After full papers reading, from the selected 108 relevant research papers, only 57 SBS were found, distributed over
43 research papers. The remaining papers rely on simulation model proposals. In other words, it was not possible to
identify an investigation context, with a well-defined problem and research questions for them. A quality assessment
took place and the main criteria regarded the existence or not of relevant information in the reports. The overall quality
assessment indicated a poor quality of reports regarding SBS due the lack of relevant information such as research
goals, study procedures and strategy, and the experimental design.

We identified  a  number  of  issues  regarding  reporting  concerns,  which  led  us  to  propose  a  set  of  reporting
guidelines for simulation studies in SE  [4]. Besides, we also observed issues regarding the methodological aspects
involving the lack of  (1)  definition of research protocols  for  SBS, since aspects  of research planning are usually
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overlooked when performing SBS; (2) proposals and application of V&V procedures for simulation models (Ahmed et
al  [11]  also  mention  this  topic  in  a  survey  involving  modeling  and  simulation  practitioners  regarding  software
processes); (3) analysis and mitigation of threats to validity in SBS, which is strongly related to the validity of SE
simulation models;(4) definition of criteria for quality assessment of SBS and the type of evidence we can acquire from
it; (5) replication in simulation-based studies, given the absence of relevant information on studies reports.

Given these methodological issues and challenges, we moved forward SBS planning needs for research protocols
by starting with the basics, like the context, problem, and research goals and questions definition. However, as we
advanced,  some issues  about  how to  deal  with  the  model  validity and  potential  threats  to  validity  in  simulation
experiments  came up.  So,  it  made  clear  to  us  the  need  to  identify the  main  and  recurrent  threats  to  validity  in
simulation-based studies and to understand how such threats can be mitigated. For that, we primarily based our search
in the outcomes from the quasi-systematic literature review. However, as previously observed in [3], the terminology is
not consensual and authors in this field rarely discuss threats to validity using terms such as “threats to validity” or
related  ones.  Thus,  we decided to  apply a systematic  approach to  handle the  threats  descriptions under the same
perspective. For that, we adopted the qualitative procedures that are going to be described in the next section.

3 Research Methodology

During the execution of the  quasi-systematic  literature review [3],  our  interests  were in characterizing simulation
models and how SE researchers and/or practitioners use to organize, execute and report SBS. So, there was no focus on
threats to validity at that moment.

Systematic  Literature  Reviews  (SLR)  appeared  in  Software  Engineering  in  the  early  2000s,  inspired  on  the
Evidence-Based paradigm [35]. Earlier works on this topic used to name all reviews performed with some systematic
process as Systematic Reviews. However, many of them did not follow specific fundamental aspects or characteristics
usually expected in systematic reviews, such as comparison among the outcomes w.r.t. their quality and possibilities of
synthesis or aggregation. In this context, the term quasi-systematic review [34] appeared as a definition for reviews
following SLR guidelines, but not covering at least one aspect, which is the case for our review. So,  the “quasi” term
stands  for  the  unfeasibility of  comparing outcomes  due  to  lack  of  knowledge on the field or  specific  domain of
investigation, also limiting the definition of quality profile for the available evidence, based on a hierarchy for evidence
in Software Engineering.

After analyzing the content of 57 SBS, we proposed a preliminary set of reporting guidelines for SBS in Software
Engineering, with the purpose of orientating researchers in such simulation studies activities [4]. In addition, we expect
these guidelines can help researchers to identify (a priori) potential threats to the study validity. For that, in the current
paper, we performed a secondary analysis over the 57 studies (distributed over 43 research papers), making use of some
qualitative approach's procedures, namely the Constant Comparison Method [13] to identify common threats of validity
across the studies. Additionally, we performed an additional ad-hoc review in order to identify whether other research
areas outside SE have already discussed threats to validity in SBS, since we perceived the necessity for additional
sources due to the terminology in SE simulation studies rarely refer to threats to validity using such terminology. In this
opportunity, we identified and included in our analysis two research papers [2][26] discussing threats to simulation
studies validity. 

The Constant Comparison Method (CCM) [13] is  represented by many procedures intercalating both the data
collection and analysis to generate a theory emerging from such collected and analyzed data. It is important to note we
have no ambition at this work in generating theories, but to use the analysis procedures from CCM to support the
identification of threats to simulation studies validity.

Concepts are the basic unit of analysis in CCM. To identify concepts, the researcher needs to break down the data
and to assign labels to it. The labels are constantly revisited in order to assure a consistent conceptualization. Such
analytic process is called coding, and it appears in the method in three different types: open coding, axial coding and
selective coding.

Open coding  is the analytic process by which data is break down and conceptually labeled in codes. The codes
may represent actions, events, properties, and so on. It makes the researcher to rethink about the collected data under
different interpretations. In  open coding, the concepts are constantly compared to each other to find similarities and
then grouped together to form categories. On a higher level of abstraction, in axial coding, categories are associated to
their subcategories and such relationships are tested against the collected data. This is also constantly done as new
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categories  emerge.  Finally,  the  selective coding consists  in  the  unification of  all  categories  around a  central  core
category and other categories needing more explanation are filled with descriptive detail.

For data collection, it  was necessary to define an additional information extraction form, containing the study
environment, whether in virtuo or in silico [12], and the potential threats description (identified in the research papers
as limitations, assumptions or threats to validity). The environment is important since in virtuo contexts are supposed to
be risky, mainly by the involvement of human subjects. 

This way, first we extracted the threats to validity descriptions and grouped them by paper. Only 13 out of 43
research  papers  contain  relevant  information  regarding  threats  to  validity.  For  the  two additional  research  papers
concerned with threats to simulation studies, we performed the data collection intercalated with the analysis of the ones
obtained  through  the  quasi-systematic  literature  review.  Different  from  the  SE  studies,  we  observed  a  shared
consistency between the terminology used in these papers and the current terminology as presented in [14], leading us
to constantly review back the adopted SE terminology and search for discussions where it is possible to recognize
threats to validity, limitations or assumptions.

After that, we performed an initial (open) coding, assigning concepts to chunks of the extracted text. So, for each
new code, we compare to the other ones to understand whether it was or not about the same concept.

In Figure 1, we present the example of two threats descriptions (A and B). 

Figure 1. Open coding example, including repeated codes.

In the right side of Figure 1 are the codes assigned to chunks of text describing relevant aspects of the threats. For
both descriptions, there is a common code assigned “Poorly defined constructs and metrics”. This codes lead to a threat
defined in the axial code (highlighted text bellow the text description). The main idea in this part of the analysis relates
to the surrogate measures defined for the interested constructs not really representing the concepts under investigation.
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Figure 2. Example of axial coding.

Furthermore, we reviewed the codes and then started to establish relationships among codes through reasoning
about the threat description to generate the categories, which are the threats to validity. This way, each reasoning is
written as a threat to validity, which the category represents the name of the threat in the next section. For instance, in
Figure 2, we present an example of an emerged code from the interaction of three other codes.

For the threat presented in Figure 2, the inconclusive results for software development and the use of the model as
object of study limit the results to the model by itself, not allowing extrapolating behaviors from the model to explain
the real phenomena. It shows one of the implications of not having information regarding the model validity.

Finally,  we grouped these  open  codes  into four  major  categories  (axial  coding),  namely conclusion,  internal,
construct and external validity, based on the classification for threats to experimental validity proposed by[14], but that
could be extended in case we understand that it was needed. We did not perform selective coding, since the main goal
was to identify and categorize the threats to validity.

This way, the main result of this secondary analysis is a list containing the potential threats to SBS validity, labeled
using the grounded codes and organized according the classification proposed by Cook and Campbell, as presented in
[14].
Additionally, we performed an analysis by matching threats to validity and V&V procedures for simulation models. 
The bases for the matching analysis are both the input and focus of each V&V procedure and threat to validity. The 
goal of such analysis is to identify whether the procedures can fully prevent from threats occurrences. Finally, deliver 
some recommendations on how to avoid them, all grounded on the findings of the systematic review and additional 
information collected from the literature on Simulation.
4 Threats to Simulation Studies Validity

The identified  threats  to  validity are  organized  according to  the  classification presented in  [14],  in  the  following
subsections. The title (in bold) for each threat to validity reflects the generated codes (categories) in the qualitative
analysis. It  is important to notice that we did not analyze threats of validity for each study, but only collected the
reported ones. Indeed, it is possible to observe other potential threats to validity in each study, but we decided not to
judge them based  on the  research  paper  only.  For  sake  of  avoiding repeating threats  already discussed  in  others
Experimental  Software Engineering forums, we will  concentrate on threats more related to  in virtuo  and  in silico
studies and not discussed on SE papers yet.

From the 28 identified threats to validity, we can distribute them into the subsets of conclusion validity (four),
internal validity (ten), construct validity (ten) and external validity (four). We have not found nor were able to classify
any threat to a different subset.  The SE technical literature has already discussed most of the identified threats to
validity regarding in virtuo studies, which strongly relates to the presence of human subjects “disturbing in some sense”
the study. The expression “disturbing in some sense” concerns with the not controllable aspects of human behavior that
we typically address in internal validity issues. On the other hand, threats to in silico experiments concentrate more on
construct validity. This way, one may be tempted to point out this perspective as more critical. However, some threats
can be more severe depending on the simulation goals.
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4.1 Conclusion Validity

This  validity  refers  to  the  statistical  confirmation  (significance)  of  a  relationship  between  the  treatment  and  the
outcome, in order to draw correct conclusions about such relations. Threats to conclusion validity involve the use of
inappropriate instruments and assumptions to perform the simulation output analysis, such as wrong statistical tests,
number  of  required  scenarios  and  runs,  independence  between  factors,  among  others.  For  instance,  stochastic
simulations always deal with pseudo-random components representing uncertainty of elements or behaviors of the real
world. Therefore, experimenters need to verify whether the model is able to reproduce such behavior across and within
simulation scenarios due to the actual model configuration or caused by internal and natural variation. The main threats
to conclusion validity identified in SBS are:

 Considering only one observation when dealing with stochastic simulation, rather than central tendency
and dispersion measures [2]: different from the threats previously mentioned, we observed it into in silico
context,  where  the  whole  experiment  happens  into  the  computer  environment:  the  simulation  model.  It
involves the use of a single run or measure to draw conclusions about a stochastic behavior.  Given such
nature, it has some intrinsic variation that may bias the results if not properly analyzed. We present an example
of this  threat  from [2],  where  the  authors  say,  “If  the simulation contains  a stochastic  process,  then the
outcome of each run is a single realization of a distribution of outcomes for one set of parameter values.
Consequently,  a single outcome could reflect  the stochastic process,  rather than the theoretical  processes
under study. To be sure that the outcome observed is due to the process, descriptive statistics are used to show
the central tendency and dispersion of many runs”.

 Not using statistics when comparing simulated to empirical distributions [2]: also observed into the  in
silico context, this threat involves the use of inappropriate procedures for output analysis. It should be avoided
comparing single values from simulated to empirical outcomes. It is recommended to use proper statistical
tests or measures to compare distributions with a certain level of confidence.

We also observed other threats to conclusion validity at  in virtuo environments, for instance, a small population
sample hampering the application of statistical tests [16], which is similar to the one mentioned by Wohlin et al [14] as
“Low statistical power”. Besides, we identified the uneven outcome distribution (high variance) due to purely random
subjects assignment [16-17], which is mentioned in [14] as “Random heterogeneity of subjects”.

4.2 Internal Validity

This validity refers to the assurance that the treatment causes the outcome, rather than an uncontrolled external factor,
i.e., avoid the indication of a false relationship between treatment and outcome when there is none. As the experimental
setting in SBS often relies on different input parameters configurations, the uncontrolled factors may be unreliable
supporting data, human subjects manipulating the model when performing in virtuo experiments or bias introduction by
the simulation model itself. Events or situations that may impose threats in these inputs are to skip data collection
procedures or to aggregate different context data, not giving an adequate training for subjects or lacking knowledge
regarding the simulated phenomenon, and the lack of explanation for the phenomenon occurrence, respectively. Thus,
the main internal validity identified threats in SBS are:

 Inappropriate  experimental  design  (missing  factors)  [16-19]:  apart  from  disturbing  factors,  the
experimental design plays an important role on the definition of which variables (both in virtuo and in silico
experiments) are relevant to answer the research questions. We observed this threat occurring only into  in
virtuo context, all of them from replications of the same research protocol, regarding to unexpected factors
related to human subjects manipulating the simulation models. It is not common to miss factors on in silico
studies,  especially  in  SE  simulations  where  models  are  mainly  limited  in  number  or  input  parameters.
However, it is important to be caution when dropping out factors to simplify the experimental design, as in
fractional factorial designs.

 Simulation model simplifications (assumptions) forcing the desired outcomes [2,20,21,22,23,24]: this is
the most recurrent threat reported in the analyzed papers. Always identified into the  in silico context, it is
concerned  with  the  simulation  model  itself.  In  this  threat,  the  simulation  model  contains  assumptions
implemented  in  a  way that  they impact  directly  on  the  response  variables.  Or  establishing  the  intended
behavior or hypothesis as truth directly from the input to output variables, or giving no chance to alternative
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results to occur. For instance, in one of the six studies we observed this threat (reported as an assumption) the
authors say 

“In order to  introduce the Test-First  Development  practice into the FLOSS simulation model,  we make the
following assumptions: (1) The average time needed to write a line of production code increases; (2) The number
of defects injected during coding activities decreases; (3) The debugging time to fix a single defect decreases”. 

In this case, it is possible to observe that the hypotheses (or beliefs) that Test-First Development productivity
for coding decreases, the quality increases, and the maintenance time decreases are directly introduced in the
model  as  assumptions.  It  goes  in  the  wrong  direction  of  SBS,  where  there  is  a  theory  with  a  defined
mechanism that explains a phenomenon, i.e., how these interactions between variables occur. In such case,
there is no room for simulation, since the outcomes are predictable without run the simulations. Such a black
box (without mechanisms) approach is the typical situation where in vitro experiments are more applicable.

 Different datasets (context) for model calibration and experimentation [25]: it is difficult to realize how
external or disturbing factors may influence a controlled computer environment (in silico). Nevertheless, the
supporting  dataset,  often  required  by  the  simulation  models,  may disturb  the  results  whether  data  from
different contexts have been compared. This is the case when calibrating the simulation model with a specific
dataset, reflecting the context of a particular project, product, or organization and using the same calibration to
run experiments for another (different) context. For example, try to use cross-company data to simulate the
behavior of a specific company.

We also observed other seven threats to internal validity, regarding in virtuo studies, similar to the ones already
mentioned in [14]. It  is the case of lack of SE knowledge hiding possible implications due to unknown disturbing
factors  [16-19],  insufficient  time  to  subjects’ familiarization  with  the  simulation  tool  and  premature  stage  of  the
simulation tool (instrumentation effect) [16-19]. Also, non-random subjects’ dropout after the treatment application
(mortality) [16-19], different number of simulation scenarios (instruments) for each treatment [16-19] and available
time to their performing [16-19], maturation effect by the application of same test both before and after treatments [16-
19] and different level of expertise required by the instruments for both control and treatments groups (instrumentation
effect) [16-19].

4.3 Construct Validity

This validity refers to the assurance that experimental setting (simulation model variables) correctly represents the
theoretical concepts (constructs), mostly observed into the in silico context, where the simulation model plays the main
role in the study. Threats to construct validity may occur due to the lack of model variables precision and relationships
definition  (and  their  respective  equations),  representing human properties,  software  products  or  processes,  so  the
collected  measures  do not  actually represent  the  desired characteristics.  Davis  et  al  [26]  claim that  the  nature of
simulation  models  tends  to  improve  construct  validity,  since  it  requires  formally  defined  constructs  (and  their
measurement) and algorithmic representation logic for the theoretical mechanism, which explains the phenomenon
under investigation. However, we could observe some threats to construct validity into the context of SBS, which are:

 Naturally  different  treatments  (unfair)  comparison  [16-19]:  this  happens  when  comparing  simulation
models to any other kind of model not only in terms of their output variables, but also in nature, like analytic
models. We observed this threat occurring only into in virtuo context, all of them from replications of the same
research protocol.

 Inappropriate application of simulation [16-19]: in the in virtuo context, it is possible to identify situations
where the model building can be more effective than the model usage, considering that SBS involves both
parts. We observed this threat occurring only into in virtuo context, all of them from replications of the same
research protocol.

 Inappropriate  cause-effect  relationships  definition  [20]:  this  threat  is  associated  to  the  proper
implementation of the causal relationships between simulation model constructs explaining the mechanism
under study.
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 Inappropriate real-world representation by model parameters [20]: the choice of input parameters should
reflect real-world situations, assuming suitable values that can be observed in practice and are worthy for the
analysis.

 Inappropriate model calibration data and procedure [20]: it involves, as the previous one, data used to
perform the study, mainly to instantiate the simulation model, i.e., to calibrate the model using data from the
corresponding real world. It may cause unrealistic distributions or equations, scaling the effects up or down.

 Hidden underlying model assumptions [20]: if assumptions are not explicit in model description, results
may  be  misinterpreted  or  bias  the  conclusions,  and  may  not  be  possible  to  judge  at  what  extent  they
correspond to the actual phenomena. 

 Invalid  assumptions  regarding  the  model  concepts  [27]:  this  threat  regards  to  the  validity  of  the
assumptions made in the model development. Once they are invalid, the conclusions may also be corrupted.
Every assumption made on a simulation model must be checked later, it is not an adequate “device” by which
one can reduce model complexity or scope.

 The simulation model does not capture the corresponding real world building blocks and elements [20] :
this threat concerns with model compliance with real world constructs and phenomenon representation. If
there is no evidence of theoretical mechanism’s face validity, it is possible that the simulation model has been
producing right outcomes, through wrong explanations.

 The lack of evidence regarding model validity reduces the findings only to the simulation model [28]:
This threat regards to simulation studies where a simulation model is chosen without proper information about
its validity. Therefore, no conclusion can be draw about the phenomenon, but only about the model itself.
Hence, the simulation model plays the role of an object of study, rather than an instrument. As an example, the
authors in [28] say: “Though the experimentation described herein was originally undertaken with the idea
that it  might reveal something about the software production systems modeled, the results do not support
conclusions  about  software  development  [inconclusive  results].  Therefore,  we  refrained  from  making
inferences  about  software  development  and drew  conclusions  only  about  the  models.  Since  our  findings
pertain  only  to  the  models,  no  particular  level  of  model  validation  has  been  assumed  [lack  of  validity
evidence].”

We can also identify inappropriate measurements for observed constructs in SBS [27].  Wohlin et  al.  [14] has
already reported it as “inadequate preoperational explication of constructs”, and it was the only threat observed in both
in virtuo and in silico contexts.

4.4 External Validity

This validity involves the possibility of generalization of results outside the experimental settings scope. In simulation
studies,  it  is  particularly  interesting  to  know  if  different  simulation  studies  can  reproduce  similar  results  (called
simulated external validity [2]) or it can predict real-world results (called empirical external validity [2]). For instance,
a software process simulation model not being able to reproduce the results observed in one organization or not being
able to obtain consistent results across different calibration datasets. Thus, the five identified (all concerned with the in
silico context) threats to external validity are:

 Simulation results are context-dependent, since there is a need for calibration [20]: simulation modeling
involves the definition of both conceptual and executable models. Therefore, to run simulations, the model
needs to be calibrated using data representing the context in which the experimenter will draw conclusions.
Results are as general as the supporting data. In other words, simulation results are only applicable to the
specific organization, project, or product data.

 Simulation may not be generalizable to other same phenomena simulations [2]: this threat refers to the
emulation of a theoretical mechanism across different simulations. Such simulations may differ in terms of
calibration and input parameters, but the results are only generalizable if they appear in such different settings.
In other words, the mechanism has to explain the phenomenon under different configurations to achieve such
external validity.
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 Simulation results differ from the outcomes of empirical observations [2,20]: when simulation outcomes
sufficiently differ from empirical outcomes, we may say that simulated results have no external validity. One
example of such threat in [20]: “First, the results are only partly consistent with empirical evidence about the
effects of performing V&V activities. While code quality can always be improved by adding V&V activities, it
is  not  always  true that  adding V&V activities  in  earlier  development  is  better  than adding them in later
phases”.

 Simulation model not based on empirical evidence [26,29]: if the model constructs and propositions are all
conjectural, i.e.,  with no ground in field studies or empirical experiments, integrally or partially, it is very
important to invest effort on validation procedures, since the model itself cannot show any external validity
[26].

4.5 Lifecycle Perspective

A different perspective for the discussed threats to validity in simulation studies can be assumed according to the
lifecycle  of  SBS.  Such studies  are  often  [30-31]  organized  in  an  iterative  process  (Figure  3)  comprehending  the
phenomenon observation (or  data  collection),  the simulation  model  (conceptual  and  executable)  development  and
validation,  model  experimentation  (planning  and execution  of  simulation experiments)  and  output  analysis.  Other
activities may appear in specific processes, but these are the traditional ones.

Figure 3. Simulation studies lifecycle and threats to validity.

For instance, consider a software process simulation model (SPSM) aiming at identifying process bottlenecks that
can compromise the project schedule and containing pseudo-random variables to define the probability of success for a
certain verification activity (review or test), The likelihood of success is based on an empirical distribution of historical
effectiveness and efficiency records of the applied verification technique. In case of any verification activity succeed
(i.e., identify defects on the verified artifact) there will be a correction effort to be added. An experimental design for
the analysis of how verification effectiveness and efficiency impact on the project schedule will require more than one
single simulation run for each scenario, in order to capture the internal variation of verification success rate, and the
output analysis have to use proper statistical instruments to perform comparisons among scenarios considering the
multiple runs.

Construct
Validity

Conclusion
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External 
Validity

Internal 
Validity
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In general, the effects of any threat are perceived in the output analysis stage. However, some of them can be
identified in steps before. 

Threats to conclusion validity tend to show up at downstream activities, more specifically on experimental design
and output analysis (see Figure 3). The statistical expertise plays an important role for their occurrence, since design of
the simulation experiment and the output analysis are strongly related [32]. For the previously mentioned case, a threat
to conclusion validity can be the use of a single run for each of two scenarios (using high and low success rates). This
choice will not allow the experimenter to determine which scenario performs better, since the results depend on the
amount of variation in the empirical distribution defining the pseudo-random variables.

Planning of simulation experiments may also impose threats to internal validity.  This type of threat has many
possible causes, and it may be avoided or identified at all stages of the lifecycle (see Figure 3). Since data collected for
calibration is one of the sources regarding threats to internal validity, the first stage of the simulation lifecycle should be
performed systematically and with caution, allowing triangulation of data from different sources in order to assess data
quality and validity.  We observed threats to  internal  validity mainly into the  in  virtuo context,  e.g.,  when human
subjects  pilot  simulation  models.  Actually,  all  identified  threats  came  from  one  single  study protocol,  which  is
replicated across different populations [16-19]. In this case, it is clear that the experimental design impacts negatively
on the study results, since every threat to internal validity is identified in all replications. Besides, different parts of the
design have contributed to this scenario, from the selection of a software process simulator and an analytical model
(COCOMO)  to  represent  levels  of  the  learning  instrument  factor,  which  are  not  comparable  from  a  learning
perspective, to several instrumentation effects, for instance the premature stage of the simulation tool.

At  in silico perspective, we can use our fictional SPSM to illustrate a potential threat to internal validity. Such
threat regards the simulation model uses a historical dataset for its calibration, including the generation of the pseudo-
random variables for verification effectiveness and efficiency, and consequently the generation of an executable model,
but the simulation experiment  uses data from a new project  involving a new team with different  background and
expertise, for the input parameters. To compare such distinct contexts do not allow the determination of what is really
causing the main effect, since the context may influence the outputs.

Threats to construct validity are all associated with the model development and validation activities (see Figure 3).
In  this  phase,  the  conceptualization  of  constructs  into  model  variables  and  propositions  in  terms  of  relationships
between variables  represents  the  translation of  observations to  a  simulation  language.  Such translation should  be
carefully performed, using as much as possible domain experts to verify the lack of important real world variables. As
an example, we expose the threat to construct validity regarding the inappropriate observed constructs measurement in
the  SPSM  case.  This  threat  concerns  the  alignment  of  the  measurement  program  with  the  simulation  model
development.  The model  variables,  such as  the  verification effectiveness  and  efficiency,  need to  be associated  to
metrics defined in the measurement plan for the software projects under investigation. It supports that every model
variable and relationship can be tracked to the collected data,  also avoiding attempts to incorrectly tie a different
surrogate metric for a model variable, under the risk of biasing or hiding contextual information in the output analysis.

Apart from the lack of empirical evidence to support the simulation model development, threats to external validity
are difficult to be identified before output analysis (see Figure 3). From the four threats we identified, three of them can
be identified when analyzing the simulation output. On the other hand, if the model development is broken down into
multiple iterations, the model developer can detect model increment that is inserting the unexpected behavior. For
instance, if the fictional SPSM has been developed under multiple iterations, and in the second iteration the model does
not replicate the reference behavior from the organization dataset, the second increment variables and relationships (or
their equations) are assuming or implementing a wrong construct or relationship.

5 Verification and Validation of Simulation Models

Among possible approaches to avoid the occurrence of the threats to validity mentioned in previous section, we have
the procedures adopted to verify and validate the simulation model and the experimental design. It is reflection of the
nature  of  computer-based  controlled  environment,  where  the  simulation  model  execution  enables  observing  the
phenomenon under investigation. This way, the only possible changes are in the input data or the simulation model.
Consequently, the validity aspects concentrate on both the simulation model and data validities. For the scope of this
paper, we are considering mainly the issues regarding the model validity affecting the study validity. In addition, it is
relevant to mention that we made no analysis regarding the possible interaction among these threats to validity, in the
sense that mitigating one threat may impose on the occurrence of others. However, we believe that threats related to
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model validity,  specifically those that  can be mitigated by the use of V&V procedures,  do not present this sort of
property, since these procedures when performed together increase the level of validity, having no impact in the results
of applying any of them. Maybe other kind of threats, like the one caused by issues on the experimental design or
supporting data may present side effects.

Since the SBS validity is highly affected by the simulation model validity, using a model that cannot be considered
valid will bring invalid results, regardless the mitigation actions applied to deal with other possible validity threats. In
other words, the simulation model itself represents the main threat to the study validity.

In [3], we identified nine verification and validation (V&V) procedures applied to simulation models in the context
of SE, in 52 different research papers (included in Appendix A [3]). Besides, we merged these procedures with the ones
existing in [15], which are twelve V&V procedures often performed for discrete-event simulation models in several
domains. In fact, Sargent [15] presents fifteen procedures for V&V. However, we understand that three of them are
useful instruments to perform verification and validation activities, rather than procedures or techniques. These three
procedures regard the use of animations to graphically display the model behavior, operational graphics to present
values for the model variables and outputs, and traces of the simulation runs to describe the whole variables changing
in every cycle. This way, Table 1 presents the merge from the remaining thirteen procedures with the ones identified in
the systematic literature review. The merge process was based on the reasoning about the procedures’ descriptions,
where some of them were grouped together.

The procedure “Comparison to Other Models” was identified in both the review and the list presented at [15].
Besides, we merged the software testing related procedures together in the procedure “Testing structure and model
behavior”, where we grouped “Degenerate Tests” and “Extreme Condition Tests”, from [15].

Face validity is an expert-based evaluation approach. However, it does not have a systematic script or a set of
steps. A review, an interview or even a survey may work in the same way, asking the expert about how reasonable that
model and its outputs are. 

Most of comparisons among simulated and actual data rely on historical or predictive validation. Sargent [15] also
mentions a group called “Historical Methods”, which is composed by three V&V approaches for simulation models:
Rationalism; Empiricism, that  “requires  every assumption and outcome to be empirically validated”;  and Positive
Economics, that “requires that the model be able to predict the future, rather than concerned with model’s assumptions
or causal relationships (mechanism)”.

We agree that Rationalism may contribute in V&V of simulation models. However, for the empiricism, it has a
general description and seems to be just a characteristic or a type of verification, since it  can be reworded as the
Historical Validation or Predictive Validation procedures, for instance. It is also true for the Positive Economics, being a
matter of perspective or abstraction. Finally,  Sargent [15] also presents the “Multistage Validation” procedure that
consists  in  performing  the  “Historical  Methods”,  namely,  Rationalism,  Empiricism  and  Positive  Economics
sequentially.

As an example of application of such V&V procedures, Abdel-Hamid [21] submitted his model to several of them.
The basis for developing his Software Project Integrated Model, using the System Dynamics (SD) approach, was field
interviews with software project managers in five organizations, supplemented by an extensive database of empirical
findings  from  the  technical  literature.  Additionally,  the  author  performed  tests  to  verify  the  fit  between  the
rate/level/feedback structure of the model and the essential characteristics of the real software projects dynamics. The
project managers involved in the study confirmed this fit. However, the paper does not contain procedure descriptions
for the tests and reviews. Besides, the results were not reported either. So, one may ask among other questions, “What
kinds of test were performed? How many discrepancies were identified by the project managers?”

Another performed procedure is the comparison against reference behaviors. In this case, the author textually and
graphically  describes  the  behavior  and  presents  the  model  representation  using  System Dynamics  diagrams.  The
reference behavior in this case is the 90% syndrome, where developers use to miscalculate the required effort for a task
and always underestimate it.

In addition, the simulation results in [21] were plotted in sequence run charts to compare against the expected
behavior. Thus, the results seem to indicate the fit between the reference behavior and simulation results. Reference
behaviors reproduced by the model included a diverse set  of behavior patterns observed both in the organizations
studied as well as reported in the literature. 

The author also reports extreme condition simulations, i.e., to “test whether the model behaves reasonably under
extreme conditions or extreme policies” [21]. 
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Table 1: Verification and Validation Procedures for Simulation Models

Procedure Description

Face Validity Consists of getting feedback from knowledgeable individuals about the phenomenon of interest
through reviews, interviews, or surveys, to evaluate whether the (conceptual) simulation model
and its results (input-output relationships) are reasonable. 

Comparison to 
Reference Behaviors 

Compares the simulation output results against trends or expected results often reported in the 
technical literature. It is likely used when no comparable data is available.

Comparison to Other 
Models

Compares the results (outputs) of the simulation model being validated to results of other valid 
(simulation or analytic) model. Controlled experiments can be used to arrange such 
comparisons.

Event Validity Compares the “events” of occurrences of the simulation model to those of the real phenomenon
to determine if they are similar. This technique is applicable for event-driven models.

Historical Data 
Validation

If historical data exist, part of the data is used to build the model and the remaining data are 
used to compare the model behavior and the actual phenomenon. Such testing is conducted by 
driving the simulation model with either sample from distributions or traces, and it is likely 
used for measuring model accuracy.

Rationalism Uses logic deductions from model assumptions to develop the correct (valid) model, by 
assuming that everyone knows whether the clearly stated underlying assumptions are true. 

Predictive 
Validation

Uses the model to forecast the phenomenon’s behavior, and then compares the phenomenon’s 
behavior to the model’s forecast to determine if they are the same. The phenomenon’s data may
come from the real phenomenon observation or be obtained by conducting experiments, e.g., 
field-tests for provoking its occurrence. Also, data from the technical literature may be used, 
when there is no complete data in hands. It is likely used to measure model accuracy.

Internal Validity Several runs of a stochastic model are performed to determine the amount of (internal) 
stochastic variability. A large amount of variability (lack of consistency) may cause the model’s
results to be questionable, even if typical of the problem under investigation.

Sensitivity Analysis Consists of changing the values of the input and internal parameters of a model to determine 
the effect upon the model output. The same relationships should occur in the model as in the 
real phenomenon. This technique can be used qualitatively— trends only — and quantitatively
—both directions and (precise) magnitudes of outputs. 

Testing structure and 
model behavior

Submits the simulation model to tests cases, evaluating its responses and traces. Both model 
structure and outputs should be reasonable for any combination of values of model inputs, 
including extreme and unlikely ones. Besides, the degeneracy of the model’s behavior can be 
tested by appropriate selection of values of parameters. 

Based on empirical 
evidence

Collects evidence from the technical literature (experimental studies reports) to develop the 
model’s causal relationships (mechanisms). 

Turing Tests Individuals knowledgeable about the phenomenon are asked if they can distinguish between 
real and model outputs.

Additionally, the author conducted a case study at NASA. According to him, the DE-A project case study, which
was conducted after the model was completely developed, forms an important element in validating model behavior as
NASA was not part of the five organizations studied during model development. [21]

It  is important to note, as also pointed out by the author, that one of these procedures alone may not provide
enough validity for this model. However, taking them together can represent a solid group of positive results [21].

6 Recommendations for the improvement of Simulation Studies

Considering the V&V procedures mentioned in the previous section, now we relate them to the threats to validity
identified in the context of SE simulation studies (section 4). The goal of such matching is (1) to provide explanation
about how to avoid different bias imposed by the threats through performing specific V&V procedures and (2) to
highlight  the  using  of  such  procedures  cannot  avoid  all  the  threats  to  simulation  studies  validity.  From  these
explanations, we make some recommendations to guide researchers for SBS planning.

One general threat, not directly related to any specific recommendation given on this section, concerns the lack of
evidence regarding the model validity that reduces the findings only to the simulation model. Obviously, one can avoid
such threat by successfully applying a subset of the V&V procedures presented in Table 1. The main issue is that every
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attempt to validate a simulation model should be available to enable a proper output analysis from the experimenter
perspective.

It is possible to divide the V&V procedures presented in the previous section into two perspectives: black and
white box. The Face Validity procedure is the only one from Table 1 with a white box perspective. Such procedure
enables the investigation of internal properties and behaviors of a simulation model, rather than dealing with it as a
black box, in which just the combinations of input and output are evaluated. Usually, experts review the simulation
model  using  their  own  knowledge  using  both  conceptual  (cause-effect  diagrams,  process  descriptions,  and  other
notations  or  languages)  and  executable  models  (calibrated  models,  simulation  tools  and  outputs)  to  discuss  their
understandings with the model developers in terms of variables,  relationships, and behaviors.  Among the expected
results,  we  can  point  out  unrealistic  model  assumptions  and  simulation  scenarios,  misfit  between  concepts  and
measurements,  unexpected  output  patterns  and  behaviors,  and  others.  It  can  be  worthwhile  to  perform this  V&V
procedure in two different moments: one still in the conceptual model development to avoid bias of desired results and
when analyzing  the  matching  between  input  and  output  values.  Thus,  threats  to  construct  validity,  involving  the
mechanisms explaining the phenomenon captured by the simulation model,  are potentially identifiable by domain
experts in advance. Examples of such threats are the failure on capturing the corresponding real world building blocks
and elements, and inappropriate definition of cause-effect relationships.

Recommendation  1.  Make  use  of  Face  Validity  procedures,  involving  domain
experts,  to  assess  the  plausibility  of  both  conceptual,  executable  models  and
simulation outcomes, using proper diagrams and statistical charts as instruments
respectively.

To ground the model propositions or  causal  relationships on empirical  evidence can also help to mitigate the
second threat, what sounds good to have at least one empirical evidence report regarding the embedded cause-effect
relationships, showing some external validity [26].

Araújo  et al [6] performed a set of systematic literature reviews aiming at reinforcing the validity of their SD
model for  observation of  software evolution. In  that  opportunity,  the reviews supported the identification of sixty
reports  of  evidence  for  different  relationships  among  the  characteristics  (e.g.,  eight  reports  of  evidence  for  the
relationship between characteristics Complexity and Maintainability) defined in their model.

Recommendation 2. Try to support model (causal) relationships, as much as possible,
with empirical evidence to reinforce their validity and draw conclusions that are more
reliable.

Using  Face Validity in  combination with  Sensitivity  Analysis can assist  the proper selection of  model’s  input
parameters. Sensitive parameters should be made accurate prior to using the simulation model. 

Recommendation 3. Use results from Sensitivity Analysis to select valid parameters’
settings when running simulation experiments, rather than model “fishing”.

In  the  same sense,  Face  Validity can  be  used  along with  the  Rationalism to  assess  the  model’s  assumptions
regarding the underlying concepts. The concern with assumptions verification tends to make them explicit. However,
when the  model  assumptions  are  hidden  or  not  clearly stated,  no  Face  Validity can  be  applied.  For  these  cases,
procedures like Comparison to Reference Behaviors and Testing Structure and Model Behavior are more suitable. The
baseline  or  expected  behaviors  can  give  insights  about  the  hidden  model  assumptions  are  affecting  its  results.
Additionally, when using these two black box approaches, the design for the validation experiments need to involve the
most sensitive parameters regarding the specific model assumptions. For instance, a SPSM assumes that requirements
are always independent from each other (see [23] for a concrete example). In this case, validation experiments need to
involve scenarios, and consequently input parameters, that enable the experts to observe whether outcomes are similar
enough to expected behaviors in which they are confident about the dependency between requirements, so that they can
accept such assumption.
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The use of Rationalism to develop or verify the simulation model can be hampered due to lack of proved (or
assumed as truth) assumptions, particularly in Software Engineering context. Thus, this procedure should be combined
with empirical evidence, which is a similar approach to the “Historical Methods” mentioned by Sargent in [15].

In discrete-event models, it is usual to assume theoretical distributions to define how often events are dispatched.
Such kind of assumption can be tested using the Event Validity procedure to verify if occurrences of the simulation
model are similar to those of the real phenomenon, like events representing defect detection rates, requirements change
requests, and others. 

Recommendation 4. Always verify model assumptions, so the results of simulated
experiments can get more reliable.

From the black box perspective,  Comparison to Reference Behaviors can also help to identify situations where
simulation results differ from the outcomes of empirical observations. However, for those cases in which there is a
mismatch between the simulated and empirical outcomes, procedures like  Historical Data Validation and  Predictive
Validation are more suitable, as long as enough data is available and both simulation output and empirical data share a
common measurement context.

Black  box  approaches  may  also  assist  on  data  validity  issues.  Often,  simulation  models  have  a  calibration
procedure, and using it inappropriately may cause strange behaviors or invalid results. Turing tests may help with these
situations, once these simulated results should resemble the actual ones. If a phenomenon expert cannot identify such a
difference,  the  results  have  an  acceptable  degree  of  confidence.  Another  possibility  is  to  use  other  models  as  a
comparison baseline instead of experts, for that Comparison to Other Models. Specific for event-driven simulation,
Event Validity procedure can help on improving data validity of input distributions or pseudo-random variables.

Recommendation 5. When comparing actual and simulated results, be aware about
data  validity  and  that  data  under  comparison  came  from  the  same  or  similar
measurement contexts. 

For stochastic simulations, these models have their particularities and the main difference to be validated is the
amount of  internal  variation on the outcomes.  The threat  of  considering only one observation when dealing with
stochastic simulation, rather than central tendency and dispersion measures can bias or blind the user or experimenter
on the interpretation of results. The V&V procedure “Internal Validity” (the term adopted by Sargent [15] is overloaded
with the Cook and Campbell as presented in [14] classification of threats to validity, but they have complete different
meanings) helps on the understanding and measuring the amount of internal variation of stochastic models by running
the model with the same input configuration and calculating both central and dispersion statistics. The results should be
compared to real phenomenon observations to understand whether the both amounts of variation are proportional. 

Performing one procedure or another can bring some validity to the study. The simulation models should be valid,
based  on  evidence  regarding  its  validity.  It  is  important  for  not  reducing  the  findings  only  to  the  simulations
themselves.

Recommendation  6. Make  use  of  proper  statistical  tests  and  charts  to  analyze
outcomes from several runs, compare to actual data and to quantify the amount of
internal  variation  embedded  in  the  (stochastic)  simulation  model,  augmenting  the
precision of results. 

Once understood that V&V procedures may help to perform more confident simulation studies, it should also be
pointed out that they are not silver bullets. We still can mention a series of threats that do not directly relate to such
procedures, but to the adopted experimental design for the study and the output analysis procedures and instruments.
For instance, threats regarding conclusion validity like considering only one observation when dealing with stochastic
simulation and not using proper statistics when comparing simulated to empirical distributions (already considered in
Recommendation 6). To mitigate threats like these, the experimenter needs a clear understanding of what to observe in
the outcomes and the available statistical instruments to perform such analysis, since single values are neither able to
capture the real trends and variance in stochastic simulations nor difference between actual data and simulations.
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Recommendation 7. When designing the simulation experiment, consider as factors
(and levels)  not  only the  simulation model’s  input  parameters,  but  also internal
parameters,  different  sample  datasets  and  versions  of  the  simulation  model,
implementing alternative strategies to be evaluated. 

Additionally, threats to external validity like simulation results are context-dependent, since there is a need for
calibration and the possibility of not generalizing the results to other simulations of the same phenomena are other
examples of threats not handled by V&V procedures. In such cases, the experimental design should provide scenarios
exploring different situations that one behavior is consistent across different contexts, through different datasets in
which is  possible  to  observe the  phenomenon under  investigation,  and  scenarios,  using balanced combinations of
factors and levels in the adopted experimental design. 

Other threats still may not be mitigated using V&V procedures, but carefully planning the simulation experiments,
tying  the  goals  to  research  questions  and  to  design  and  also  verifying  the  feasibility  of  adopting  simulation  as
alternative support for experimentation. That is what happens for threats such as: missing factors; different datasets
(context)  for  model  calibration  and  experimentation;  naturally  different  treatments  (unfair)  comparison;  and
inappropriate use of simulation.

Table 2: Threats to validity associated to each recommendation 

Rmd. Threat to Validity V&V Procedure

1

- Simulation model simplifications (assumptions) forcing the desired
outcomes
-  The  simulation  model  does  not  capture  the  corresponding  real
world building blocks and elements
- Inappropriate cause-effect relationships definition

- Face Validity

2
- Inappropriate cause-effect relationships definition
- Simulation model not based on empirical evidence

- Based on empirical evidence

3
- Inappropriate real-world representation by model parameters - Face Validity 

- Sensitivity Analysis

4
- Hidden underlying model assumptions
- Invalid assumptions regarding the model concepts

- Comparison to Reference Behaviors 
- Testing Structure and Model Behavior
- Event Validity

5

- Inappropriate model calibration data and procedure
-  Simulation  results  differ  from  the  outcomes  of  empirical
observations

- Comparison to Reference Behaviors
- Historical Data Validation
- Predictive Validation
- Turing Tests
- Event Validity
- Comparison to Other Models

6

-  Considering  only one  observation  when dealing with  stochastic
simulation, rather than central tendency and dispersion measures 
-  Not  using  statistics  when  comparing  simulated  to  empirical
distributions

- Internal Validity

7

- Simulation results are context-dependent, since there is a need for
calibration
-  Simulation  may not  be  generalizable  to  other  same  phenomena
simulations

N/A

Other
Issues

- Inappropriate application of simulation
- Inappropriate experimental design (missing factors)
-  Different  datasets  (context)  for  model  calibration  and
experimentation
- Naturally different treatments (unfair) comparison

N/A
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At last, there is a recurrent threat to internal validity that is hard to identify: the simulation model simplifications
(assumptions) forcing desired outcomes, rather than producing them based on the determination of proper scenarios and
explained by a causal chain of events and actions. It configures a threat to internal validity since it reflects the model
developer embedding the desired behavior into the simulation model, not allowing different results to occur by setting
different  scenarios.  In  other  words,  there  is  now  way  of  assuring  that  the  treatment  (represented  by  the  input
parameters) is really causing the outcomes. It sounds like to know the answer for the research questions before running
the simulation model and having no explanation, from the simulation results, for why that behavior was observed. From
the viewpoint of simulation outputs compared to empirical observations, this one does not represent any threat. When
all empirical and simulated and values are statistically similar, everything seems to be perfect. The problem lies on such
limited black box view. The reason for reaching the desired output cannot be explained by a reasonable causal model or
mechanism, but an explicitly generation from the input parameters to the output variables. So, one is not able of explain
how to get such outcomes in real life, since there is no mechanism for a theoretical explanation. In summary, there is no
way of making interventions to reproduce such behavior in real world, because the reasoning is missing and the result
has probably occurred by chance. Comparison-based procedures cannot capture this type of threat.  Just  white box
procedures like Face Validity involving simulation experts may help to identify such threat.

The adoption of all these recommendations has an impact in the effort and costs of the simulation study. It gets
clear when realizing that the hours spent with domain experts in meetings for model reviews and also the effort demand
by some data collection procedures, for example in Predictive Validation, and gathering evidence to reinforce causal
relationships may be over. Thus, what is important is that both the goals for the simulation study and the expected
benefits should drive the balance between the efforts for mitigating threats to validity and the risk of not doing so. Such
benefits may be expressed in terms of meaningfulness (quality) of results and conclusions or amount the risks to take
actions for implementing results.

Although discussed in this section, we present the association among threats to validity, recommendations on how
to deal with them, and V&V procedures (Table 2). In addition, it is relevant to highlight that V&V procedures cannot
mitigate four threats, since they are related to other planning issues such as simulation feasibility, data collection and
experimental design definition.

7 Final Remarks

Taking simulation as a complementary research strategy for the evolution of Software Engineering knowledge, mainly
in contexts where in vivo or  in vitro experiments are unfeasible or risky, researchers should be aware about possible
threats involved in this sort of study. The results reported on this paper advance the current state in ESE, by exposing
such  threats  to  SBS  validity  and  matching  them  to  V&V  procedures  for  simulation  models.  Besides,  seven
recommendations, all of them grounded in technical literature acquired data, emerged for planning the tasks intending
to reduce the possibility of occurrence of threats to validity. 

We believe that the identification and compilation of such threats complemented by their discussion and analysis
offers an evolved perspective that can contribute for the maturity of SBS, where most of time the main tasks have been
performed ad-hoc due the lack of orientation, especially regarding model experimentation. Additionally, the possibility
of detecting some of these threats by using V&V procedures; the understanding of how to avoid them; and presenting a
set of recommendations configure an interesting contribution. As far as we are aware, there is no other work offering
this sort of discussion in the experimental software engineering technical literature. 

The organization of knowledge available in the technical literature regarding simulation studies in SE through
secondary  studies  has  directed  our  efforts.  This  organization  involves  synthesis  and  knowledge  representation  as
guidelines for the planning and reporting of SBS, which is not a simple task. 

As future directions, we are investigating how the Design of Experiments can contribute to improve the quality and
confidence of simulation based studies in SE. Not only in the perspective presented by [28] and [33], but also as an
enabler to explore more ambitious results than just anticipating in vitro and in vivo experiments.
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