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Abstract

Cooperative coevolutionary evolutionary algorithms differ from standard evolutionary
algorithms’ architecture in that the population is split into subpopulations, each of them
optimising only a sub-vector of the global solution vector. All subpopulations cooperate
by broadcasting their local partial solutions such that each subpopulation can evalu-
ate complete solutions. Cooperative coevolution has recently been used in evolutionary
multi-objective optimisation, but few works have exploited its parallelisation capabil-
ities or tackled real-world problems. This article proposes to apply for the first time
a state-of-the-art parallel asynchronous cooperative coevolutionary variant of the non-
dominated sorting genetic algorithm II (NSGA-II), named CCNSGA-II, on the injection
network problem in vehicular ad hoc networks (VANETs). This multi-objective optimi-
sation problem, consists in finding the minimal set of nodes with backend connectivity,
referred to as injection points, to constitute a fully connected overlay that will optimise
the small-world properties of the resulting network. Recently, the well-known NSGA-
II algorithm was used to tackle this problem on realistic instances in the city-centre of
Luxembourg. In this work we analyse the performance of the CCNSGA-II when using
different numbers of subpopulations, and compare them to the original NSGA-II in terms
of both quality of the obtained Pareto front approximations and execution time speedup.

Keywords: Multi-objective optimisation, VANETs, small-world, topology control.

1 Introduction

Real-world optimisation problems are typically hard and multi-objective by nature, since different conflict-
ing criteria have to be considered. This means that in such problems improving one objective will imply
decreasing (some of) the others. Contrary to single-objective optimisation which aims to a unique solution,
multi-objective optimisation consists in finding a set of so-called non-dominated solutions in the objective
space, referred to as Pareto-front. A solution is said to dominate another one if it is better on one objective
and similar or better on the other objectives. A multi-objective algorithm then aims to find a limited set
of non-dominated solutions as close as possible to the optimal Pareto-front, both in terms of diversity and
convergence.

Since many years, Evolutionary algorithms (EAs) have proven to be an efficient approach for multi-
objective optimisation [1]. However standard multi-objective EAs have shown some limits when dealing with
large and complex problems, which motivated research in faster and more accurate methods. One promising
approach is cooperative coevolution as introduced originally by Potter for single-objective optimisation [2], in
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which the solution vector is decomposed and each subset of solution is evolved in a separated subpopulation.
These cooperate by exchanging their local representative(s) in order to create a complete solution to be
evaluated on the global problem.

Some recent works have also demonstrated the advantages of cooperative coevolution in the multi-
objective context [3, 4], most of them focused on improving the solutions quality. As originally stated
by Potter, cooperative coevolution has some good potential for parallelism, but only few works have studied
this capability. Most lately, Nielsen et al. proposed a new parallel asynchronous cooperative coevolution-
ary non-dominated sorting genetic algorithm II (CCNSGA-II) [5] that demonstrated promising speedup
capabilities but limited their study to well-known multi-objective benchmark functions.

In this work we thus propose to apply for the first time this state-of-the-art algorithm on a real-world
problem, i.e., the injection network problem in vehicular ad hoc networks (VANETs). This topology control
problem consists in finding the minimum set of vehicles, called injections points, chosen to provide backend
connectivity and compose a fully-connected overlay network such that small-world properties of the resulting
network are optimised. Additionally, we study the impact of the number of subpopulations used on the
performance of the algorithm. Experiments are conducted on realistic VANET networks snapshots from
Luxembourg city, generated with the VehILux mobility model [6]. This paper is an extension of our previous
work [7].

The remainder of this article is organised as follows. The next section presents a brief state-of-the-art
on cooperative coevolutionary multi-objective EAs. Then the NSGA-II algorithm and its asynchronous
cooperative coevolutionary variant (CCNSGA-II) are presented in detail in section 3. The injection network
problem is described in section 4. Section 5 then provides the experimental setup and results analysis in
terms of execution time speedup and solution quality. Finally our conclusions and perspectives and given in
section 6.

2 Related Work

Cooperative coevolutionary evolutionary algorithms (CCEAs) mainly differ from standard EAs by their
fitness evaluation that requires interactions with individuals from other so-called subpopulations. In the
original cooperative coevolution framework proposed by Potter et al. in [2], the decision vector is split such
that each decision variable is evolved in different subpopulations. In order to evaluate their partial solutions,
each subpopulation exchanges periodically some representative (e.g. best) with all other subpopulations.
This coevolutionary framework was initially proposed for single-objective optimisation but more recently
several multi-objective versions proved to be efficient [1]. The following proposes a brief survey of cooperative
coevolutionary MOEAs, a more comprehensive one can be found in [8].

The first CCMOEA was proposed in [9] as an extension of the Genetic Symbiosis Algorithm (GSA)
for multi-objective optimisation problems. The multi-objective GSA (MOGSA) differs from the standard
GSA with a second symbiotic parameter, which represents the interactions of the objective functions. One
main drawback of this algorithm is that it requires knowledge of the search space, which highly reduces its
application possibilities.

Then, Keerativuttitumrong et al. proposed the Multi-objective Co-operative Co-evolutionary Genetic
Algorithm (MOCCGA) in [10]. It combines Fonseca and FlemingÕs multi-objective GA (MOGA) and Pot-
ter’s Co-operative Co-evolutionary Genetic Algorithm (CCGA). Each subpopulation evolves using MOGA
and assigns a fitness to its individuals based on their rank in the subpopulation local Pareto front. However
this local Pareto optimality perception is a limiting factor for the performance of MOCCGA. A parallel
implementation of MOCCGA was empirically validated using 1, 2, 4 and 8 cores, but limited to well-known
benchmark functions (ZDT [11]).

MOCCGA was extended in [12], with other MOEAs and a fixed size archive that stores the non-dominated
solutions. Another variant was introduced by Tan et al. [4] proposed, in addition to adding an archive, a
novel adaptive niching mechanism. A parallel version was also experimented but still limited to the ZDT
benchmark. Finally, [3] presented a non-dominated sorting cooperative coevolutionary algorithm (NSC-
CGA), which is essentially the coevolutionary extension of NSGA-II.

Most lately, Dorronsoro et al. proposed a parallel synchronous CCMOEA framework with three different
MOEAs [8]: NSGA-II, Strength Pareto Evolutionary Algorithm (SPEA2) [13] and Multi-objective Cellular
Genetic Algorithm (MOCell) [14]. They demonstrated that super-linear speedup is possible on a scheduling
problem, compared to the original MOEAs. Finally, a new variant with asynchronous communications
between the subpopulations was proposed in [5] which further improved the speedup without degrading the
solutions quality on standard benchmarks (i.e., DTLZ [15] and ZDT).

This article proposes to apply for the first time this parallel asynchronous CCMOEA with NSGA-II on
a real-world problem, i.e., the optimisation of small-world properties in VANETs.
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3 Algorithms

The following subsections present the two multi-objective algorithms considered in this work, the well-
known Non-dominated Sorting Genetic Algorithm II (NSGA-II) and its cooperative coevolutionary variant
CCNSGA-II.

3.1 Non-dominated Sorting Genetic Algorithm (NSGA-II)

The NSGA-II [16] algorithm is the reference algorithm in multi-objective optimisation. A pseudocode is
given in Algorithm 1. NSGA-II does not implement an external archive of non-dominated solutions, but the
population itself keeps the best non-dominated solutions found so far. The algorithm starts by generating
an initial random population and evaluating it (lines 2 and 3). Then, it enters in the main loop to evolve
the population. It starts by generating a second population of the same size as the main one. It is built by
iteratively selecting two parents (line 6) by binary tournament based on dominance and crowding distance (in
the case the two selected solutions are non-dominated), recombining them (two-point crossover in our case)
to generate two new solutions (line 7), which are mutated in line 8 (here bit flip mutation) and added to the
offspring population (line 9). The number of times this cycle (lines 5 to 10) is repeated is the population size
divided by two, thus generating the new population with the same size as the main one. This new population
is then evaluated (line 11), and merged with the main population (line 12). Now, the algorithm must discard
half of the solutions from the merged population to generate the population for the next generation. This is
done by selecting the best solutions according to ranking and crowding, in that order. Concretely, ranking
consists on ordering solutions according to the dominance level into different fronts (line 13). The first
front is composed by the non-dominated solutions in the merged population. Then, these solutions in the
first front are removed from the merged population, and the non-dominated ones of the remaining solutions
compose the second front. The algorithm iterates like this until all solutions are classified. To build the new
population for the next generation, the algorithm adds those solutions in the first fronts until the population
is full or adding a front would suppose exceeding the population size (line 14). In the latter case (lines 15
to 17), the best solutions from the latter front according to crowding distance (i.e., those solutions that
are more isolated in the front) are selected to complete the population. The process is repeated until the
termination condition is met (lines 4 to 18).

1: //Algorithm parameters in ‘nsga’
2: InitialisePopulation(nsga.pop);
3: EvaluatePopulation(nsga.pop);
4: while ! StopCondition() do
5: for index ← 1 to nsga.popsize/2 do
6: parents←SelectParents(nsga.pop);
7: children←Crossover(nsga.Pc,parents);
8: children←Mutate(nsga.Pm,children);
9: nsga.pop’←Add(children);

10: end for
11: EvaluatePopulation(nsga.pop’);
12: union←Merge(nsga.pop, nsga.pop’);
13: fronts←SortFronts(union);
14: (nsga.pop’, lastFront)←GetBestCompleteFronts(fronts);
15: if size(nsga.pop’) < nsga.popsize then
16: nsga.pop’←BestAccToCrowding(lastFront,nsga.popsize-size(nsga.pop’));
17: end if
18: end while

Algorithm 1: Pseudocode for NSGA-II

3.2 Asynchronous Cooperative Coevolutionary NSGA-II

As previously mentioned, cooperative coevolution splits the solution vector and evolves each subset of the
solution using a genetic algorithm, in our case NSGA-II, in so-called subpopulations. In the single-objective
case, each subpopulation then broadcasts its representatives to all the other subpopulations after each gener-
ations following a selection scheme (e.g., best individual). This fully connected broadcast of representatives
enables each subpopulation to assemble and evaluate the resulting global objective function which is essential
for the local genetic algorithm.
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To apply the coevolutionary paradigm in the multi-objective context, several changes to the single-
objective framework must be operated. The CCNSGA-II is based on the asynchronous cooperative coevo-
lutionary framework which pseudo-code is given in Algorithm 2 and described in the following. A first
difference is the merge of the local Pareto-front from each sub-population to generate an archive of best
combined Pareto-fronts, as can be seen in line 16. This merging process of the solutions sets is done by
choosing one of the sets and adding to it all the other solutions. If the resulting approximation set ex-
ceeds the archive size, the crowding policy is used to remove solutions based on the distance to surrounding
individuals belonging to the same rank.

A second difference induced by the multi-objective design lies in the construction of complete solutions for
evaluation. As previously mentioned, in the single-objective case a partial solution from one subpopluation
is evaluated by composing a complete solution with the best partial solutions received from all the other
subpopulations. Whereas, in the multi-objective case, there will be most of the time more than a single best
solution, i.e., a set of non-dominated solutions. In the CCNSGA-II, every subpopulation shares a number
Ns of solutions randomly chosen from the non-dominated ones found so far. An example of how one sub-
population, P1, shares four of its best solutions (i.e., Ns = 4) with the other two populations is presented
in Fig. 1. In case the local Pareto-front contains less than Ns non-dominated solutions, randomly chosen
individuals are taken from the rest of the population to complete the set of Ns solutions.

In this asynchronous variant, contrary to the original synchronous model, there is no synchronisation point
before the broadcasting of the solutions (i.e., synchronisation would be inserted in line 12). Subpopulations
keep evolving independently even when the other subpopulations are still busy with the current generation.
This means that the subpopulations will not share the total number of available objective function evaluations
equally between them. A fast executing subpopulation might perform more evaluations and thus ’steal’
evaluations from the slower subpopulations. Even if all subpopulations do ’consume’ the same amount of
total function evaluations, the asynchronous version should remove delays and allow the algorithm to finish
faster. Another possible consequence of the asynchronicity is that a subpopulation may start evaluating its
individuals before the other subpopulations have transmitted their own individuals, i.e., old individuals are
used. However this effect was shown to have no statistical significant impact on the results quality compared
to the synchronous model [5].

4 Problem Description

The injection network problem considered in this work was originally introduced in [17]. Provided a snapshot
of a VANET, the objective is to determine the best set of vehicles to join the overlay network in order to
unpartition the corresponding network graph and maximise its small-world properties. In the first subsection
the injection network problem is defined together with the small-world metrics used. The second subsection
defines the corresponding multi-objective optimisation problem.

4.1 Injection Networks

This problem considers hybrid VANETs where each vehicle can potentially have both vehicle-to-vehicle and
vehicle-to-infrastructure (e.g., using Wi-Fi hotspots) communications. Nodes elected as injection points (i.e.,

1: //Algorithm parameters in ‘ccnsga’
2: {` means parallel run}
3: ` i ∈ [1, I] :: InitialisePopulation(ccnsga.pop0 , i) {Initialise every subpopulation}
4: Sync() {Synchronisation point}
5: {∀ means sequential run}
6: ∀ i ∈ [1, I] :: BroadcastRepresentatives(ccnsga.pop0, i) {Send random local partial solutions to all

subpopulations}
7: ` i ∈ [1, I] :: EvaluatePopulation(ccnsga.pop0 , i) {Evaluate solutions in every subpopulation}
8: Sync()
9: ` i ∈ [1, I] :: {

10: while ! StopCondition( ) do
11: generation(ccnsga.popt, i ) {Perform one generation to evolve the population}
12: broadcast(ccnsga.popt, i ) {Share best local partial solutions in every subpopulation}
13: end while
}

14: mergeParetoFronts( ) {Merge all subpopulations Pareto fronts into a single one}
Algorithm 2: Asynchronous CCNSGA-II framework
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Figure 1: In the CCMOEA, every population (for example, P1) shares with the other coevolving populations
(P2 and P3) its four best partial solutions (bdv11 to bdv14). The partial solutions are evaluated by building
complete solutions with random partial solutions of the other two subpopulations (bdv2X and bdv3Y )

nodes connected to the infrastructure) form a fully connected overlay network, that aims at increasing the
connectivity and robustness of the VANET. Injection points respectively permit to efficiently disseminate
information from distant and potentially disconnected nodes and prevent costly bandwidth overuse with
redundant information. An example network is presented in Figure 2.

In this problem, we consider small-world properties as indicators for the good set of rules to choose
injection points. Small-World networks [18] are a class of graphs that combines the advantages of both
regular and random networks with respectively a high clustering coefficient (CC) and a low average path
length (APL). The APL is defined as the average of the shortest path length between any two nodes in a
graph G = (V,E), that is APL = 1

n(n−1)

∑

i,j d(vi, vj) with d(vi, vj) the shortest distance between nodes vi,

vj ∈ V . It thus indicates the degree of separation between the nodes in the graph. The local CC of node v

with kv neighbours is CCv = |E(Γv)|
kv(kv−1) where |E(Γv)| is the number of links in the relational neighbourhood

of v and kv(kv−1) is the number of possible links in the relational neighbourhood of v. The global clustering
coefficient is the average of all local CC in the network, denoted as CC = 1

n

∑

v CCv. The CC measures
to which extent strongly interconnected groups of nodes exist in the network, i.e., groups with many edges
connecting nodes belonging to the group, but very few edges leading out of the group.

We here consider Watts original definition of the small world phenomenon in networks with APL ≈
APLrandom and CC ≫ CCrandom, where APLrandom and CCrandom are, respectively, the APL and CC of
random graphs with similar number of nodes and average node degree k. In addition, the number of chosen
injection points has to be minimised as they may induce additional communication costs.

4.2 Optimisation Problem

The proposed optimisation problem can be formalised as follows. The solution to this problem is a binary
vector s of size n (number of nodes in the network), s[1..n] where s[i] = 1 if node vi is an injection point,
and s[i] = 0 if vi is not an injection point. The decision space is thus of size 2n.

This problem is a three objectives one, defined as:

f(s) =







min {inj}
max {cc} ;
min {apldiff}

s. t. component = 1 (1)

where inj is the number of chosen injection points, cc is the average clustering coefficient of the resulting
network, and apldiff is the absolute difference between the APL of the resulting network and the APL of the
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Figure 2: Network with 248 nodes including 6 injections points composing the overlay network in Luxembourg
city.

equivalent random graph: apldiff = |apl − aplrandom|. For each overlay network instance evaluated in this
work, the aplrandom and ccrandom is obtained by averaging the APL and CC of 30 corresponding random
graphs using Watts random rewiring procedure with probability p = 1 [18]. Each random graph is created
based on the number of devices and average network degree. Since the initial objective is to unpartition the
network, a constraint is set on the number of connected components in the created network, i.e., component
must be equal to 1.

5 Experiments

This section first describes the methodology we followed for our experiments, i.e., the algorithms and problem
instances parameters. In the second subsection the obtained results considering both solutions quality and
speedup are presented and analysed.

5.1 Experimental setup

The configuration of the NSGAII algorithm used in the subpopulations is the same as for the ‘standard’
NSGAII, except the length of the decision vector. Indeed, for the NSGAII, the length is equal to the
total number of nodes in the problem instance, whereas for the CCNSGAII it is divided by the number of
subpopulations.

The parameters of the algorithms are presented in Table 1. The configuration of the NSGAII is the one
originally suggested by the authors [16]. However, some parameters were adapted because a binary represen-
tation was used, in which each gene (i.e., bit) represents one car. Genes set to 1 mean that the corresponding
cars act as injection points, while a 0 value indicates the contrary The two-point crossover operator (DPX)
with probability pc = 0.9 and the bit-flip mutation operator with probability pm = 1/number of variables
were used. In two-point recombination, two crossover positions are selected uniformly at random in both
parents, and the values between these points are exchanged to generate two new offspring solutions. The
bit-flip mutation is to change a 1 into a 0, or vice-versa. The algorithm evolves until 50, 000 fitness function
evaluations are performed, and 30 independent runs were executed for every problem instance.

The CCNSGAII uses 4, 8, and 12 subpopulations, each of them is run in a separate thread running
on a different core of the same multi-processor machine. The population size for the NSGAII is 100, and
every subpopulation also has 100 individuals in the studied CCNSGAII. Islands are exchanging 20 randomly
chosen local non-dominated solutions, and to evaluate a given solution, it is built with random sub-solutions
from those shared by the other subpopulations, as proposed in [8].
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Table 1: Algorithms configuration
Numb. of subpop.∗ 4, 8, 12

Cores used 4, 8, 12 (1 for NSGAII)

Number of threads 1 per subpopulation

Population size 100

Final archive size 100, from all subpops.

Migration policy ∗ 20 random

Max. evaluations 50, 000

Pop. initialisation Random

Selection Binary tournament

Recombination DPX

Probability 0.9

Mutation Bit Flip

Probability 1

number of variables

Independent runs 30
∗ Not applicable for NSGAII

Table 2: Network instances
Surface 0.6 km2

Coverage radius 100 m

6
a
.m

. Network Number 21900 22200 22500

Number of Nodes 40 62 60

Partitions 10 8 6

Solution space size 112 4.6118 1.1518

7
a
.m

. Network Number 25500 25800 26099

Number of Nodes 223 248 301

Partitions 10 6 7

Solution space size 1.3467 4.5274 4.0790

Table 3: Average computation times (seconds)
Instance NSGAII CCNSGAII 4 Speedup CCNSGAII 8 Speedup CCNSGAII 12 Speedup

21900 569.62 121.18 4.70 64.84 8.78 41.05 13.87

22200 2159.40 479.35 4.50 248.36 8.69 157.89 13.68

22500 1892.97 450.23 4.20 241.12 7.85 152.41 12.42

25500 141387.52 29676.34 4.76 14112.51 10.02 10463.56 13.51

25800 192580.75 42622.23 4.52 20394.53 9.44 14661.82 13.13

26099 386924.15 83420.32 4.64 40249.31 9.61 28336.06 13.65

Average 4.55 9.07 13.38

For the problem instances, we have used snapshots from realistic VANET scenarios in the city centre of
Luxembourg, simulated using the VehILux mobility model [6]. VehILux accurately reproduces the vehicular
mobility in Luxembourg by exploiting both realistic road network topology (OpenStreetMaps) and real traffic
counting data from the Luxembourg Ministry of Transport. The 6 studied networks represent snapshots of
a simulated area of 0.6 km2, the first three small snapshots are taken between 6:00 a.m. and 6:15 a.m. and
the three large ones between 7:00 a.m. and 7:15 a.m. The properties of the instances are shown in Table 2.

5.2 Experimental results

This section presents the results obtained in our experiments. These were run on the HPC facility of the
University of Luxembourg. The nodes used are HP Proliant BL2x220c G6 (10U) with 2 Intel L5640 CPU’s
having 6 cores each at 2.26 GHz.

The first part focuses on the analysis of the speedup obtained and the second part analyses the solutions
found by the algorithms according to the following two well-known quality measures (accounting for solutions
diversity and convergence): unary additive epsilon (I1ε+) and spread (IS).

5.2.1 Speedup.

The first objective of this work is to study the benefit of the parallel asynchronous CCNSGAII in terms of
computational time speedup and solutions quality with three different numbers of subpopulations, namely
4, 8 and 12, and compare them to the standard NSGAII. We call the algorithms CCNSGA 4, CCNSGA 8,
and CCNSGA 12 according to the number of subpopulations used. All numerical results obtained for the
execution time and speedup studies are given in Table 3.

Figures 3 and 4 presents the average execution times in seconds for the six problem instances and
the corresponding speedup factor, respectively. The execution times increase drastically together with the
problems instance sizes, from 121.18 seconds for the fastest with CCNSGAII on the smallest instance (21900),
to more than 107 hours with NSGAII on the largest instance (26099). This very large computational time
justifies the search for efficient parallel optimisation approaches. We can see how increasing the number
of islands leads to significantly shorter execution times for all problem instances (notice that time is in
logarithmic scale in Fig. 3).

Regarding the speedup (shown in Fig. 4), we can see that all coevolutionary algorithms perform super-
linear speedups for all problems, with respect to the original NSGAII algorithm. The only exception is
CCNSGAII 8 for problem 22500, for which the speedup achieved is almost linear. The average speedup
obtained is 4.55, 9.07, an 13.38 for CCNSGAII 4, CCNSGAII 8, and CCNSGAII 12, respectively. Therefore,
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Figure 3: Computation times of the NSGAII and CCNSGAII with 4, 8 and 12 subpopulations on each
problem instance.
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Figure 4: Speedup numbers of the CCNSGAII with respect to the NSGAII on each problem instance.

we can see that there are super-linear speedups if we compare the different CCNSGAII versions, in most
cases.

5.2.2 Solutions quality.

We saw in the previous section how increasing the number of subpopulations in the CCNSGAII algorithm
clearly benefits the computational time to solve the considered problems. Now, we here propose to analyse
the quality of the Pareto fronts obtained with the two algorithms, to verify that the super-linear speedups
obtained do not come to the price of lower solution quality.

Table 4 presents the results we obtained (as mean and standard deviation) with NSGAII and the three
CCNSGAII versions for the six considered problem instances according to the unary additive epsilon (I1ε+)
quality metric. The best obtained results are shadowed in with dark grey colour. We also computed the
Wilcoxon unpaired signed-ranks in order to look for significant differences between pairs of algorithms for
every single problem, at 95% confidence level. The results of this test are shown in Table 5, where N means
that the algorithm in the row is statistically better than the one in the corresponding column, ▽ is used in
the case it is worse, and ‘–’ stands for no statistical difference found. Each of the symbols in the comparison
between every two algorithms stands for one of the six problems.

We can see that NSGAII is the worst performing algorithm according to I1ε+ metric. The two best al-
gorithms are CCNSGAII 8 and CCNSGAII 12, providing the best results for 3 problems each, out of the
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Table 4: Comparison of the algorithms according to I1ε+ (Mean and standard deviation).

NSGAII CCNSGAII 4 CCNSGAII 8 CCNSGAII 12
21900 8.00e+ 000.0e+00 1.67e+ 002.1e−08 1.84e+ 000.0e+00 1.84e+ 000.0e+00

22200 5.00e+ 000.0e+00 2.00e+ 000.0e+00 1.35e+ 003.9e−08 1.35e+ 003.9e−08

22500 4.00e+ 000.0e+00 1.90e+ 002.9e−02 2.44e+ 008.4e−08 2.44e+ 008.4e−08

25500 2.07e+ 014.3e+00 7.63e+ 001.3e+00 2.39e+ 003.6e−03 2.68e+ 000.0e+00

25800 1.39e+ 014.1e+00 7.67e+ 001.7e+00 2.64e+ 001.2e−01 2.64e+ 002.0e−03

26099 2.36e+ 016.7e+00 1.18e+ 011.7e+00 2.62e+ 001.5e−01 2.60e+ 003.0e−04

Table 5: Comparison of the algorithms according to the Wilcoxon unpaired signed-ranks test for I1ε+ on all
instances.

CCNSGAII 4 CCNSGAII 8 CCNSGAII 12
NSGAII ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

CCNSGAII 4 N ▽ N ▽ ▽ ▽ N ▽ N ▽ ▽ ▽

CCNSGAII 8 – – – N N N

six studied ones. CCNSGAII 4 is the best algorithm for two out of the three smallest problems, while
CCNSGAII 12 is the best one for the two biggest instances, and the second smallest one. It can be seen
from the table that a low number of subpopulations is suitable for the smallest problems, while it should be
progressively increased with the problem size to get accurate solutions. The difference in terms of conver-
gence is very significant since all CCNSGAII versions outperform NSGAII in all instances with statistical
confidence. These results demonstrate that in average the CCNSGAII algorithms permit to improve the
quality of solutions of the NSGAII.

Regarding the diversity of solutions measured by ∆ (results are in Tables 6 and 7), the NSGAII is, again,
the worst performing algorithm. However, unlike in the case of I1ε+, the CCNSGAII 4 algorithm is the one
providing better values for spread in all problem instances. CCNSGAII 8 is the second best algorithm in 4
problems, while CCNSGAII 12 and NSGAII are the worst algorithms according to ∆.

6 Conclusion

This article has proposed to apply for the first time a parallel asynchronous cooperative coevolutionary NS-
GAII (CCNSGAII) on a real-world problem, i.e., the injection network problem in VANETs. Three parallel
CCNSGAII configurations were studied, just differing on the number of subpopulations. The performance
of the algorithms has been compared to the standard NSGAII in terms of execution time and solution qual-
ity. Experimental results have demonstrated that super-linear speedup has been obtained on all problem
instances, with all parallel configurations. In addition, the convergence of the obtained Pareto fronts could
be improved with statistical confidence for all cases as well as their diversity for some of them.

Future works will focus on new mechanisms to improve diversity of solutions when a high number of
subpopulations is used. Additionally, we will consider using other state-of-the-art MOEAs like SPEA2 and
MOCell on the same topology control problem in VANETs.
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Table 6: Comparison of the algorithms according to ∆ (Mean and standard deviation).
NSGAII CCNSGAII 4 CCNSGAII 8 CCNSGAII 12

21900 9.48e− 012.7e−02 6.39e− 013.7e−02 8.88e− 011.7e−02 8.19e− 014.2e−03

22200 8.42e− 014.5e−02 6.43e− 013.4e−02 7.26e− 013.5e−02 8.89e− 014.9e−02

22500 7.92e− 013.5e−02 6.12e− 012.4e−02 8.03e− 013.0e−02 8.47e− 012.2e−02

25500 8.42e− 011.0e−01 5.61e− 013.2e−02 6.47e− 013.4e−02 6.63e− 013.4e−02

25800 8.40e− 018.2e−02 5.52e− 013.3e−02 6.61e− 012.9e−02 6.66e− 013.7e−02

26099 6.98e− 011.2e−01 5.85e− 014.0e−02 6.86e− 014.5e−02 7.21e− 013.7e−02
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Table 7: Comparison of the algorithms according to the Wilcoxon unpaired signed-ranks test for ∆ on all
instances.

CCNSGAII 4 CCNSGAII 8 CCNSGAII 12
NSGAII ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ – ▽ ▽ – ▽ N N ▽ ▽ –
CCNSGAII 4 N N N N N N N N N N N N

CCNSGAII 8 ▽ N N – – N
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