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Abstract

The information from social media is emerging as a valuable source in decision-making,
unfortunately the tools to turn these data into useful information still need some work.
Using Support Vector Machines for polarity detection in short texts are popular among
researchers for their good results, but parameter optimization to train classification mo-
dels is a complex and costly process. This article compares two algorithms for automated
parameter optimization in the process of creating classification models for polarity de-
tection: the recently created Grey Wolf Optimizer and the Grid Search, using accuracy

and f-score metrics.

Keywords: Support vector machines, Polarity detection, Grid search, Grey wolf optimizer.

1. Introduction

Since the creation of the World Wide Web in the 90’s the humanity has changed the way it collaborates,
creates and shares information. The point of view of the collectivity of people often has more impact on the
others than expert’s opinion [I].

According to Cambria et al:

”Today millions of web-users express their opinions about many topics through blogs, wikis,
fora, chats and social networks. For sectors such as e-commerce and e-tourism, it is very useful
to automatically analyze the huge amount of social information available on the Web, but the

extremely unstructured nature of these contents makes it a difficult task.” [1]

Automatic analysis of social text requires the combination of techniques from the fields of Natural Lan-
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Figura 1: Differences between Grey Wolf Optimizer and Grid search when exploring parameter space. Light
grey spot mark the result of the algorithms

guage Processing (NLP) and Machine Learning (ML) to identify, process and classify opinions according
to different criteria. In particular, to classify text according to its polarity (negative or positive), Support
Vector Machines (SVM) are popular among researchers [2], [3]. It is noteworthy, SVM performance greatly
depends upon the parameter optimization [4]. That process is known as model selection [5] which uses one
of three different mechanisms: default values, expert criteria and automated selection [6].

This research compares two algorithms for automating parameter optimization on SVM using RBF kernel
to identify polarity of short texts (coming from the Twitter social network) in Spanish. Those algorithms are:
grid search and the recently created Grey Wolf Optimizer (GWO). Differences in the way both algorithms

explore the parameter space can be better understood when displayed in a chart (see figure [1)).

2. Related work

2.1. Sentiment analysis

Sentiment analysis, often known as opinion mining, is a research field which works with analysing the
opinions in texts [7]. What others think of a person or product becomes important to us. We ask our friends
for opinions and recommendations about products, politicians, and even home appliances. In this field, as
in many others the internet through blogs, forums, discussions groups and social media has dramatically
changed the way we express our opinions. We are no longer limited to ask family and friends for their opinion
about an specific item, even companies no longer need big focus groups or external consulting to obtain and
understand the users opinion about marketed product [7]. However, using these publicly available opinions

is a complex process [8] because manually extracting, processing and visualizing this immense amount of
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data becomes prohibitively expensive making this a challenging problem for the fields of Natural Language
Processing (NLP) and Machine Learning (ML) [1].

It’s important to notice that opinion is a broad concept divided in two types:
= Direct opinion: can be defined as a quintuple (ej, ks SOkl h;, tl) where:

e ¢; is the entity upon which the opinion is given.
e aj is the aspect or specific feature of the entity.

® 5051, is the orientation or polarity of the opinion on the specified feature. This can be positive,

negative or neutral with different opinion strengths.
e h; is the opinion holder.

e t; is the emission date.

= Comparative opinion: Expresses similarities or differences between two or more object. This type

is not used in this article

B
Being a little less formal, we can say that sentiment analysis can be divided in three different subtasks:
opinion extraction, polarity detection and opinion subject relationship. Polarity detection presents particular

challenges that need to be addressed [9].

2.2. Polarity detection

Polarity detection is a open research problem considered a subtask of the sentiment analysis field focused
in evaluating texts and identifying if those texts contains a negative, positive or neutral orientation[10].
This orientation identified within a large document collection can be useful to competitive analysis, brand
management, market analysis, risk management and public opinion analysis for politicians [I1].

Notably, from the Machine Learning field, three algorithms used for texts classification receive are applied

to identify the polarity value of text. This algorithms are:

= Naive bayes: probabilistic classifier, characterized by the assumption that the absence or presence of a

particular feature isn’t related to the other feature.
= Maximun entropy: predicts the class of an instance based in function of the independent variables.

= Support Vector Machines: Given a geometric space, the algorithm tries to find the best possible hy-

perplane to separate the different classes.
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2.3. Support Vector Machines

Current formulation of the Support Vector Machines (SVM), also known as soft margin support vector
machines are supervised learning models[I2]. Created in 1995 [13], used for classification and regression
analysis. Above all, in polarity detection SVM is used for its capabilities as a text classifier where the SVM
divides the dataset in two different categories by assigning them a tag y; (see Equation to a feature vector

x.

Jyi | yi € {—1,+1} (1)

The class separation is given by an unknown hyper-plane which is approximated based on a training

dataset (see Equation

h(z) =wlz+b (2)

Where w is a weight vector, b a threshold value and x an instances of the training dataset (see Equation

3)-

Jz € Xz = (x4, ;) (3)

Given the approximate hyperplane function, the tag for the instance can be obtain from the sign of the

result (see Equation [4)).

yi ~ sign(w’x +b) (4)

However, is impossible to work with non-linear separable datasets for linear classifiers, this is why kernel
functions needs to be incorporated in order to allow the classifier to be really useful. Some of the most
popular kernel functions are mentioned in the next section, nonetheless only RBF kernel function is used in

this research.

2.4. Kernel functions

Usually to apply linear classifiers to non-linear data existing on an arbitrary X dimensional space, the
data needs to be transformed to a higher dimensional space Z where the data can be classified using a linear
classifier [14, [T5]. Even so, the transformation process is quite expensive in terms of computational resources.
Alternatively a kernel trick can be applied. The kernel trick or kernel function [16][17], executes the essential
classifier operation (a dot product) in the Z dimensional space without transforming the instances from one
dimensional space to another.

All kernel function must meet with the Mercer’s condition [Ig], to be valid. In the case that a kernel

function does not meet the Mercer’s condition there is a risk of not finding a solution[I9].
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Common kernel functions are[20]:
Lineal

K(u,v) = u-v" (5)

Polynomial

K(u,v) = (1+u-vT)? (6)

Where d is the degree of the kernel function.
Radial Basis Functions (RBF)

K (u,v) = e~ (lu=vT)?
Sigmoid function

K(u,v) = tanh(y - u-v" + 1) (8)

Assuming u and v feature vectors belonging to a dimensional space X.

Furthermore, even when the kernel functions result in SVM capable of classifying non-linear data, they
introduce the difficulty of parameter optimization for the kernel functions.[21], a problem also known as
model selection [5] directly impacts the performance of the classifier [21] .

For SVM with RBF kernel two configuration parameters are needed: C which will control the influence
of the outlier instances in the final classifier and it’s part of the SVM formulation, and Gamma, only RBF
Kernel parameter, which will change the way the classes are separated by controlling the dimension of the

hyperplane.

2.5. Parameter optimization

For parameter optimization different algorithms are used, grid search [22] is the easiest to implement but
it consumes with a high amount of resources[21]. For this reason algorithms with different approximations
are constantly tested. For example: genetic algorithms [23] and Simulated annealing [24]. Other algorithms

used for parameter selection can be seen in Table [I]

2.6. Grid search

The Grid search algorithms is widely used by the researchers [38], 34] 2T], 22| 24], 31 35], considered the
default approach for tuning the parameters SVM [38] is characterized by being exhaustive and providing a
high precision but at a cost of time and computing resources. It consist of generating a matrix A, x,, where
Q;; = (C’i, ’)/j) determine the accuracy value by 10-fold cross validation for each a; ;. The pair with the
biggest accuracy value will be selected as the best parameters.

Considering
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Cuadro 1: Algorithms used in parameter optimization
* Leave One Out [25].
* Xi - Alpha (¢/a) bound [25]
* VC bound [25]
* Sequential Minimal Optimization (SMO) [26] 27], [28].
* Genetic algorithms [23].
* Particle Swarm Optimizer[29] [30].
* Gradient descent [31].
* Simulated annealing. [24].
* Evolutionary multi-objective Optimization (EMO) [32].
* Grid Search [22], [31], [33], [34], [35], [21], [36].
* Automatic parameter selection[30].
* Distance between classes [37].

Cit1 =Cr+dy

Where d; € R chosen by the researcher and C}, € [a, b] such as a and b are chosen by the researcher.

Vet1 = Vi + da

Where dy € R chosen by the researcher and 7y € [CL, b] such as a and b chosen by the researcher.

It is important to notice that the values for d; and dy must guarantee a low dimensionality of the
matrix to avoid a rise in the time needed to complete the calculations but maintaining the result precision
unaffected.

Acording to [22] grid search presents the following advantages:
= Allows parallel execution.

» Has complexity of O(n?)

= High precision

With the disadvantage of needing a significant amount of calculation implying a valuable time and

resources.

3. Swarm intelligence

Swarm intelligence, according to [39] is inspired by animal behavior when in herds, flocks or colonies. Two
fundamental concepts identify algorithms belonging to this category: Self organization and task separation.
Self organization refers to individuals capacity to evolve within a system without external stimulus. On
the other side, tasks separation corresponds to simultaneous simple task execution by different individuals.
Usually these algorithms don’t follow leaders command, or a global strategy plan, instead, their global

behavior is determined by the agents tasks.
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Based in the literature review by [40] and [41] belongs to this category the following algorithms:
= Genetic algorithms (GA)

= Ant colony optimizer(ACO)

= Particle swarm optimizer(PSO)

= Differential evolution (DE)

= Artificial Bee Colony(ABC)

= Glow-worms optimizer GSO)

= Cuckoo search algorithm (CSA)

= Genetic programming (GP)

= Evolutionary strategy (ES)

= Evolutionary programming (EP)

= Firefly algorithm(FA)

= Bat algorithm (BA)

= Grey wolf optimizer. (GSO)

= Honey bee mating algorithm (MBO)

= Artificial Fish Swarm Algorithm (AFSA)
= Termite algorithm.

= Wasp swarm algorithm.

= Monkey search.

= Bee Collecting Pollen Algorithm (BCPA)
= Dolphin partner optimizer (DPO)

= Bird Mating Algorithm (BMO)

« Krill Herd (KH)

= Fruit Fly Optimization Algorithm (FOA)

Even when the application of these algorithms to the parameter optimization problem is straightforward,
only a few has been applied on Support vector machines [42] 30} [29]. Notably, one of the newest algorithms,
the Grey Wolf Optimizer [41], which will explained with some detail in the next section, has an interesting

characteristics set [43]:
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= Simplicity.

Flexibility.

= Good local optima avoidance.

= Simple implementation.

= Only two parameters to adjust behavior.

= Fast convergence.

3.1. Grey wolf optimizer

Grey Wolf Optimizer (GWO) [41] and Ant Lion Optimizer [44], both belonging to the newest swarm
intelligence algorithms, has already been used to explore solutions to multiple problems [45] 43} [46] [47].
GWO has only two parameters: wolves who will work as search agents and a number of iterations, which will
indicate to the algorithms when to stop. Usage of this parameters can bee appreciated in the pseudo-code
(see figure [4)).

The concept of this algorithm is based in the hierarchical behavior of the grey wolves (Canis lupus
lupus) when hunting [48]. The hierarchy is made up individuals located in different levels that meet specific
functions within the pack [49]. The main wolf pack hierarchy levels used by the algorithm can be summarized

as follows:
= Alfa wolfa: Current best parameter optimization.
= Beta wolf: Second best parameter optimization.
= Delta wolf §: Third best parameter optimization.
= Omega wovesw: Work as search agents exploring the parameter space.

Wolf pack hunting process is described in [48], this process includes several actions performed by the

wolves. In brief this actions can be separate in three different phases:

1. Tracking and approaching the prey.
2. Pursuing and encircling.

3. Attack towards the prey.
This phases are mathematically model by the algorithm and briefly explained as follows:

1. Encircling the prey
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Figura 2: Hunting process, image taken from [41]

To emulate wolf behavior when encircling the prey the following equations were defined:
. N -
D=[C- Xp(t) = X(1)|

X(t+1)=X,t)— A D (10)

Where t indicates the current version, A and C are coefficient vector used to balance exploration and

exploitation, process that can be seen in figure [2]

. Hunting:

In nature, the alpha wolf is the first to approach the prey, followed by the beta. Nonetheless, for the
algorithm the prey’s position is unknown so it needs to be approximated by using the positions of the

alpha, beta and delta wolves as describe by the Equations [I1] and [12]

—_ = — — =
Dyoif = |C1 - Xworf — 7| (11) X1 = .

Xwolf — A1 (Dwolf) (12)

Where wol f is one of alpha, beta or delta.

- = ==
- X1+ Xg + X9
X = =

Figure [3] shows the effect of the equations in the position of the search agents or omega wolves.



CLEI ELECTRONIC JOURNAL, VOLUME 20, NUMBER 1, PAPER 6, APRIL 2017

B

1}

w
or any
other
hunters

Estimated
position
of the
prey

¥ 1

Figura 3: position changing during the execution of the algorithm, taken from [4T]

3. Search for prey (exploration):

The search begin with the creation of a randomly place omega wolves population (search agents). After
every iteration of the algorithm alpha, beta and delta wolves are move to the best possible positions
found by the omegas. Initially the exploration is driven by the A values provoking wolves dispersion

supporting exploration and avoiding local optima.

Notably, c (see Equation is not linearly decrease as /f, instead it always provides random values

encouraging exploration.

4. Attack (Exploitation):

The attack toward the prey is model by the vector A (present in Equation , which constantly
decreases during the iterations of the algorithm. When |A| < 1 the wolf will move closer to the
approximated position of the prey; otherwise if |A| > 1 the search agent will explore other areas away

from the prey.

Some examples of successful GWO implementation are the two-stage assembly flow shop scheduling [45]
which compares GWO to particle swarm optimizer (PSO) and Cloud theory-based Simulated Annealing

(CSA), results of this research shows that GWO got an slightly lower precision but a better performance

10



CLEI ELECTRONIC JOURNAL, VOLUME 20, NUMBER 1, PAPER 6, APRIL 2017

Initialize the grey wolf population X; (i=1, 2, ..., n)
Initialize a, A, and C
Calculate the fitness of each search agent
X,=the best search agent
Xg=the second best search agent
Xs=the third best search agent
while (t < Max number of iterations)

Jor each search agent

Update the position of the current search agent

end for
Update a, A, and C
Calculate the fitness of all search agents
Update X, Xg, and X;
t=t+1
end while
return X,

Figura 4: GWO Algorithm pseudo-code, adapted from figure 6 in [41]

than the other algorithms. Also in [43], GWO is used for parameter estimation to calculate dispersion
curves in surface waves. Good results were obtain thanks to its characteristics, for instance the balance
between exploration, fast convergence and the low amount of configuration parameters of the algorithm finally
Mirjalili also uses the algorithm to train multi-layer perceptrons (MLP) comparing its performance with PSO,
genetic algorithms (GA), Ant colony optimization (ACO), evolutionary strategy (ES) and population based
incremental learning (PBIL).[47]

4. Methodology

4.1. Corpus

To compare both parameter optimization algorithms we base our dataset in the TASS corpus. This corpus
contains 7220 Tweets messages written in Spanish. Each message is tagged with its global polarity, indicating
whether the text expresses one of 6 different possible polarities (categories) : strong positive (P+), positive
(P), neutral (NEU), negative (N), strong negative (N+) and no sentiment (NONE). In addition, there is also
an indication of agreement or disagreement between annotators. The corpus were pre-processed, merging
both positive classes P and P+ into a single category P, same for the negative categories N and N+ which
merged into single category N. After that, instances with classed NONE and NEU were deleted and finally
all remaining tweets (5068) were turned into vectors of numbers by using a polarity dictionary.

Sixty sets were created using the pre-processed corpus, every set contains two subsets (see ﬁgure. Train:
with 3040 records (60 %), for parameter optimization using grid search and GWO and model generation and
test: containing 2028 records (40 %), for model validation. Subset size selection was made to ensure metrics

get a better chance to catch overfitting problems. Then text classifiers models were generated as explained

11



CLEI ELECTRONIC JOURNAL, VOLUME 20, NUMBER 1, PAPER 6, APRIL 2017

Corpus

@ stance 1 N Subset

Train
3040 Tweets

—

e 2028 Tweets

Figura 5: Randomize subset creation for training and evaluation purposes

in the next section.

4.2. Classifiers generation

Cuadro 2: Different treatment settings for algorithms used. In parenthesis the number of SVM trainings
realized by the algorithm
Algorithm Setting description

Default Models trained using LIBSVM default parameters
Grid Search | Models trained using grid search
GWO 56 Models trained using GWO with 4 wolves and 14 iterations.

GWO 112 Models trained using GWO with 4 wolves and 28 iterations.
GWO 168 Models trained using GWO with 4 wolves and 42 iterations.

To generate the classifiers and evaluate them, all 60 sets were through a 3 step process:

1. Step 1: Parameter optimization, Train subsets were used by all different algorithms treatments
(see table [2)), using the accuracy value and 10-fold cross validation, resulting in 60 (C, ) pairs, one for

each train subset.

2. Step 2: Model generation, Using parameter pairs selected in step 1, a classification model is gene-

rated using accuracy and 10-fold cross validation .

3. Step 3: Model validation, All classifiers are evaluated using the test subsets. Accuracy and Fj-measure

metrics were calculated in this step.

12



CLEI ELECTRONIC JOURNAL, VOLUME 20, NUMBER 1, PAPER 6, APRIL 2017
4.3. Evaluation metrics
All classifiers were evaluated using the Accuracy (Equation and Fjscore (Equation

T, +T,
T,+F,+F,+T,

accuracy = (14)

where T}, are true positives, F}, false positives, F;, false negatives y T;, true negatives.

F= 2. prt'sc'ision - recall (15)
precision + recall

5. Results

Results were summarized using box plots created with GNU Octaveﬂ (see figures @ and [7) for visual
comparison. Each box represents an algorithm treatment with the top side of the box representing 75"
percentile and bottom side 25" percentile, lines coming out of the boxes correspond to maximum (top) and

minimum (bottom) values, also the line within represents the average value. See tables [3| and 4] for exact

values.

Cuadro 3: F-Score: minimum, maximum, average and standard deviation values

Default Grid Search GWO 56 GWO 112 GWO 168
Minimum 0,5753 0,5894 0,5911 0,5853 0,5909
Maximum 0,6350 0,6382 0,6428 0,6380 0,6409
Average 0,6005 0,6159 0,6173 0,6171 0,6171
Standard deviation | 0,0118 0,0126 0,0108 0,0123 0,0114

Fi-measure values were consistently between 0.57 and 0.64 with very small standard deviation indicating
that no treatments was considerably better than the others. Also accuracy values behave in a similar way

with values between 67.6 and 72.23 also with small standard deviation values.

Lhttps://www.gnu.org/software/octave/

Cuadro 4: Accuracy: minimum, maximum, average and standard deviation values
Default Grid Search GWO 56 GWO 112 GWO 168

Minimum 67,5542 68,3925 68,4911 68,4911 68,2939
Maximum 71,5483 71,9428 72,2387 71,9428 71,7949
Average 69,2365 69,9030 69,8997 69,8948 69,8882
Standard deviation | 0,8322 0,9038 0,8810 0,8931 0,8620

13
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6. Discussion and Conclusions

All algorithms perform within the same value range, even the models trained using LIBSVM default
values, for both metrics. We tend to think that this may happened due to several reasons: feature extraction
used may result in records dificult to classify or a possible class superposition. Using corpus from different
fields like medicine or natural sciences and exploring different feature extraction algorithms may help to
clarify this issue.

Notably, the GWO 56 treatment used only half the trainings used by grid search. The other two GWO
treatments (GWO 112 and GWO 168) seems to indicate that after a certain amount of iterations there is
little or none difference in the results, but further experimentation is needed, specially a parameter sensibility
analysis for the grey wolf optimizer is recommended to explore GWO parameters on the results.

Even when our research is focused in global polarity detection for sentiment analysis problems the met-
hodology developed in this experiment can be applied to any field using support vector machines. Finally,
automatic parameter optimization is a time consuming and CPU intensive process, for example this experi-

ment took 144 hours, which make it a problem worth considering in future research.
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