
CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 1, DECEMBER 2012

Parallel Adaptive Simulation of Coupled
Incompressible Viscous Flow and Advective-Diffusive

Transport Using Stabilized FEM Formulation
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Abstract

In this work we study coupled incompressible viscous flow and advective-diffusive trans-
port of a scalar. Both the Navier-Stokes and transport equations are solved using an
Eulerian approach. The SUPG/PSPG stabilized finite element formulation is applied for
the governing equations. The implementation is held using the libMEsh finite element
library which provides support for parallel adaptive mesh refinement and coarsening.
The Rayleigh-Bénard natural convection and the planar lock-exchange density current
problems are solved to assess the adaptive parallel performance of the numerical solution.
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1 Introduction

The numerical simulation of current engineering problems would not be feasible without the advent of parallel
computing. Even with the development of techniques for mesh adaptation, the fastest available processors
are not able to solve, within a practical period of time, problems that have large amounts of degrees of
freedom. High-performance computing (HPC) have enabled the solution of problems with a large number of
unknowns and high complexity (often involving multiple scales and multiple physics) by clusters of computers
installed in universities as well in industry research centers.

To make HPC be efficiently used, a set of algorithms and computational methods have been developed
over the last decade that made possible high fidelity solutions of complex problems. Processors with multiple
cores with shared memory, clusters of personal computers in which each processor has its own memory
(distributed memory) and more recently, the hybrid memory architectures are present on the daily work of
engineers and researchers.

Although improving processing capacity, parallel computation have added complexity to computer codes
programing. According to [1] scaling performance is particularly problematic because the vision of seamless
scalability cannot be achieved without having the applications scale automatically as the number of processors
increases. However, for this to happen, the applications have to be programmed to exploit parallelism
efficiently. Therefore, parallel computing resources should be used rationally in order to obtain compatible
performances.

Good simulation practice suggests that the applications and algorithms employed in HPC should be
optimized for this purpose. Currently there are available (mostly freely distributed) several programs to
perform different tasks inherent to parallel computing. The domain partitioning and load balancing, in-
formation exchange between processors, algebraic operations and linear preconditioned systems solving are
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some of the necessary operations and have specific computational libraries that can be incorporated into the
implementation of a numerical simulator.

In order to keep the focus on the issues related to the numerical problem, we use the libMesh framework,
which is a C++ library for parallel adaptive mesh refinement/coarsening numerical multiphysics simulations
based on the finite element method [2]. The library has been developed since 2002 by a group of researchers
from CFDLab, Department of Aerospace Engineering and Engineering Mechanics, University of Texas at
Austin, and is available as open source software (http://libmesh.sourceforge.net/).

In this work we implement stabilized finite element formulations for the Navier-Stokes and advective-
diffusive transport in libMesh. Parallel adaptive simulations of coupled problems confirm the mesh size
reduction potential and the ability to capture the solution small scales as well the development of the
interface between the fluids in evolution problems.

The remainder of this work is organized as follows. In the next section the dimensionless governing
equations for the coupled viscous flow and transport is presented together with correspondent stabilized
SUPG/PSPG finite element method (FEM) formulation. Details of the adaptive mesh refinement/coarsening
(AMR/C) in the context of the libMesh library as well some aspects of the parallel solution of precondi-
otioned linear systems are presented in Section 3. Section 4 presents the results of the parallel adaptive
simulation of the Rayleigh-Bénard natural convection and a density current in a planar lock-exchange con-
figuration. The paper ends with the main conclusions.

2 Mathematical Formulation

2.1 Governing Equations

Assuming an unsteady incompressible viscous flow and the Bousinessq approximation, the dimensionless
Navier-Stokes, continuity and scalar transport equations1 can be written in a non conservative form following
a Eulerian description as

∂u

∂t
+ u∇u− 1

Re
∇2u +∇p =

Gr

Re2φe in Ω× [0, t] , (1)

∇ · u = 0 in Ω× [0, t] , (2)

∂φ

∂t
+ u · ∇φ− 1

D
∇2φ = 0 in Ω× [0, t] . (3)

defined in the simulation domain Ω with a smooth boundary Γ. The time is t, u = (u, v, w)
T

is the velocity
field, p is the pressure and φ the scalar being transported and e is an unit vector aligned with the gravity.

In (1) Re and Gr are the Reynolds and Grashof numbers. The inverse of the parameter D in equation
(3) represents a dimensionless diffusive constant depending on the nature of the scalar being transported
(e.g., the Peclet number for the temperature transport).

The essential and natural boundaries conditions (BCs) are:

u = g on Γg ,

n ·
[

1

Re

(
∇u + (∇u)

T
)
− pI

]
= h on Γσ ,

φ = φ on Γφ,

−n ·
(

1

D
∇φ
)

= q on Γq

(4)

where g and φ are functions with prescribed values for the velocity vector and scalar defined on the regions
Γg and Γφ of the boundary where the essential BCs are imposed. Furthermore h and q represent the natural
BCs acting on the regions Γσ and Γq. Generally Γi ⊂ Γ. n is the unit outward normal vector on the
boundary and I is the 3× 3 identity matrix.

The initial conditions are:

u (x, 0) = u0 ,

φ (x, 0) = φ0

(5)

where the initial velocity field u0 is divergent free.

1Details on how the physical quantities may be normalized in order to arrive at dimensionless equations can be found at [3].
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In gravity current problems, the concept of buoyancy velocity ub is largely used (see [4]). It may be
defined as

ub :=
√
g′hv (6)

where hv is a scale length related to the vertical dimension of the simulation domain (usually taken as the
domain height) and g

′
is called the reduced gravity given by

g
′

:= g
ρ1 − ρ2

ρ∞
(7)

where g is the absolute value of the gravitational acceleration, ρ∞ is the reference density, ρ1 is the density
of the “heavy” fluid and ρ2 is the density of the “light” fluid.

When one uses the buoyancy velocity as a reference velocity and hv as the scale length, the Reynolds
number may be computed directly from the Grashof as follow

Re =
√
Gr . (8)

For particle-driven problems (a class of gravity current phenomenon), where the transported scalar is the
density ρ, the diffusivity constant is given by the product of the Schmidt Sc and Grashof numbers. Taking
it into account, the Navier-Stokes and advective-diffusive equations may be rewritten as

∂u

∂t
+ u∇u− 1√

Gr
∇2u +∇p = ρe , (9)

∂ρ

∂t
+ u · ∇ρ− 1

ScGr
∇2ρ = 0 . (10)

2.2 Stabilized Finite Element Formulation

Given a suitably defined finite-dimensional trial solution and weight functions spaces for velocity and pressure

Shu =
{

uh | uh ∈
[
H1h (Ω)

]3
, uh

.
= gh em Γg

}
,

V hw =
{

wh | wh ∈
[
H1h (Ω)

]3
, wh .

= 0 em Γg

}
,

Shp = V hp =
{
qh | qh ∈ H1h (Ω)

} (11)

where H1h (Ω) is the finite-dimensional space function square integrable into the element domain, the sta-
bilized SUPG/PSPG FEM formulation for the non-dimensional Navier-Stokes and continuity equations (1)
and (2) can be written as: Find uh ∈ Shu and ph ∈ Shp such as, ∀wh ∈ V hw and ∀qh ∈ V hp ,∫

Ω

wh ·
[(

∂uh

∂t
+ uh∇uh

)
− lh

]
dΩ +

1

Re

∫
Ω

(
∇wh

)T · ∇uhIdΩ−∫
Ω

∇whphIdΩ−
∫

Γ

wh · hhdΓ +

∫
Ω

qh∇ · uhdΩ+

nel∑
e=1

∫
Ωe

(
τSUPGuh∇wh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe+

nel∑
e=1

∫
Ωe

(
τPSPG∇qh

)
·
[(

∂uh

∂t
+ uh∇uh

)
+∇ph − lh

]
dΩe = 0 .

(12)

The first four integrals in (12) arise from the classical Galerkin weak formulation for the Navier-Stokes
equations. The fifth integral represents the classical Galerkin formulation for the continuity equation. The
summations over the elements are the SUPG and the PSPG stabilizations for the Navier-Stokes equation.
The parameters adopted for both stabilizations were obtained from [5] and are defined as follows

τSUPG = τPSPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Reh2

)2
− 1

2

. (13)

The dimensionless stabilizations parameters are local (element level) so, the velocity modulus
∥∥uh∥∥ is

calculated for each element e and h is an element length measure based in its volume V as shown bellow
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h =
3

√
6V

π
. (14)

The discretized dimensionless body force are represented by lh.
For the dimensionless advective-diffusive transport we adopt the same assumptions, so given the following

finite-dimensional trial solution and weight functions spaces for the scalar

Shφ =
{
φh | φh ∈ H1h (Ω) , φh

.
= φ

h
in Γφ

}
,

V hw =
{
wh | wh ∈ H1h (Ω) , wh

.
= 0 em Γφ

} (15)

the stabilized FEM formulation can be written as: Find φh ∈ Shφ such as, ∀wh ∈ V hw ,∫
Ω

wh ·
(
∂φh

∂t
+ uh · ∇φh

)
dΩ +

1

D

∫
Ω

(
∇wh

)T · ∇φhdΩ−
∫

Γ

whqdΓ+

nel∑
e=1

∫
Ωe

(
τSUPGuh · ∇wh

)
·
[(

∂φh

∂t
+ uh · ∇φh

)]
dΩe = 0 .

(16)

The three first integrals in (16) come from the Galerkin weak formulation. The integral into the summa-
tion over the elements is the SUPG stabilization. The non-dimensional stabilization parameter is computed
similarly to (13), that is:

τSUPG =

(2

∥∥uh∥∥
h

)2

+ 9

(
4

Dh2

)2
− 1

2

. (17)

In the stabilized formulations (16), an additional stabilization is added to handle instabilities in the
numerical solution of flows with presence of strong gradients of the scalar being transported. In [6] is
presented a discontinuity capturing term which is calculated as follows:

nel∑
e=1

∫
Ωe

δ
(
φh
)
∇wh · ∇φhdΩe . (18)

Because the δ parameter is a function of the scalar, (16) can be understood as a nonlinear diffusion
operator. In this work, the δ parameter was adapted from [6] as follows in dimensionless form

δ
(
φh
)

=

∣∣∣∣ 1

φ∗
R
(
φh
)∣∣∣∣
(

3∑
i=1

∣∣∣∣ 1

φ∗
∂φh

∂xi

∣∣∣∣2
)β/2−1

h

2

β

(19)

where φ∗ is a dimensionless value of the scalar (usually taken as 1) and R
(
φh
)

is an approximation for the
actual residual defined as:

R
(
φh
)

=
∂φh

∂t
+ uh · ∇φh . (20)

The β parameter can be set as 1 or 2.

2.3 Discretized Systems

Adopting the implicit backward Euler scheme for the time discretization together with a fixed point lin-
earization, the final discrete system of (12) and (16) results in

(M + Mτ ) un+1,k+1 + ∆t
(
N
(
un+1,k

)
+ Nτ

(
un+1,k

)
+ K

)
un+1,k+1−

∆t (G−Gτ ) pn+1,k+1 = ∆t (f (φn) + fτ (φn)) + (M + Mτ ) un ,
(21)

∆tGTun+1,k+1 + Mξu
n+1,k+1 + ∆t

(
Nξ

(
un+1,k

)
un+1,k+1 + Gξp

n+1,k+1
)

=

∆tfξ (φn) + Mξu
n ,

(22)
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(M + Mτ )φn+1,k+1+

∆t
(
N
(
un+1

)
+ Nτ

(
un+1

)
+ K + Kδ

(
φn+1,k

))
φn+1,k+1 =

(M + Mτ )φn .

(23)

In the matrix systems (21), (22) and (23) u, p and φ are the nodal vectors of the correspondent unknowns
uh, ph and φh, and ∆t stands for the time-step size. The super indexes n+ 1 and n mean the current and
previous time-steps while k+ 1 and k are respectively the current and previous nonlinear iterations counter.

For the matrices where the advective operator appears, i.e., Galerkin advection, SUPG mass and ad-
vection, and PSPG advection, the velocity components are evaluated at each integration point. M is the
mass matrix, K is the viscous/diffusive matrix, N (u) is the nonlinear advection matrix, G and GT are
the gradient and its transpose (divergent) matrices. f is the body force vector. Kδ (φ) is the nonlinear
discontinuity capturing matrix. The matrices and vectors with the subscripts τ and ξ mean the SUPG and
PSPG terms.

3 Computational Aspects

3.1 Mesh Adaptivity

The mesh adaptivity together with high-performance computing (parallel processing) play a key role to
enable numerical simulations of actual engineering/industrial problems within an acceptable time without
exhausting the processing capacity of current computers.

Particularly for the density current problem, AMR/C is a important tool to capture and track the flow
structure at the front, where the Kelvin-Helmholtz billows occur. From an initial coarse mesh, the adaptivity
refinement process begins near the interface between the two fluids and it follows its development.

In libMesh the mesh refinement can be accomplished by element subdivision (h-refinement), increasing
the local polynomial degree (p-refinement) as well a combination of both methods (hp-refinement). Although
there is an extensive literature devoted to obtaining reliable a posteriori estimators that are more closely
linked to the operators and governing equations [7, 8], in libMesh the error indicator is focused on local
indicators that are essentially independent of the physics [2].

libMesh uses a statistical refinement/coarsening scheme based on the ideas presented in [9] where the
mean µ and the standard deviation σ of the error indicator “population” are computed. Using refinement
and coarsening fractions (rf and rc), the elements are flagged for refinement and coarsening as showed in
Fig. (1).

e

P(e)

Elements selected 

for refinement

Elements selected 

for coarsening

rf

rcm-s

m+s

m+sm-s m

Figure 1: Statistical refinement: elements in hatched areas are flagged to AMR/C process

This scheme is suitable for evolution problems where, in the beginning, a small error is evenly distributed.
Throughout the simulation the error distribution spreads and the AMR/C process starts. Whether the
solution approaches its steady-state, the distribution of error also reaches the steady-state, stopping the
AMR/C process.

The elements are refined through a “natural refinement” scheme: elements of dimension d, with the
exception of the pyramids, produce 2d elements of the same type after refinement. The degrees of freedom
are constrained at the hanging nodes on element interfaces. This approach yields a tree data structure
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formed by the “parents” and their “children” elements. An example of an element level hierarchy resulting
from the application of this scheme for a hexahedral mesh is presented in Fig. 2.

Level-0 Level-1 Level-2

Figure 2: Hierarchy levels of the refinement of an hexahedral element

The elements present in the initial mesh (level-0 elements) have no parents as well the active elements
(those that are part of the current simulation mesh) have no children, so the latter are the current high-level
elements. The element level is determined recursively from its parents and the user should determine the
maximum refinement level.

The frequency of refinement/coarsening is an user’s responsibility. When the mesh adapts it is optimized
for the state at the current time [10]. One should find a frequency of adaptivity which will balance the
computational effort and quality of results as there is a computational cost associated with the adaptivity
process. When the mesh is adapted, the field solution should be projected (interpolated) and a simulation
should be performed on the new mesh.

In this work we use a class of errors estimators based on derivative jump (or flux jump) of the transported
scalar calculated at the elements interface called Kelly’s Error Estimator [11] to perform the h-refinement.
The refinement and coarsening fractions for the statistical strategy as well the adaptivity frequency are set
independently for each simulation problem.

3.2 Domain Decomposition

In this paper, we consider the standard partitioning domain without overlap, as shown in Fig. (3), where
the elements related to each of the sub-domains are assigned to different processors. That is, the simulation
domain Ωh is divided into a discrete set of sub-domains Ωhp such as

⋃
Ωhp = Ωh and

⋂
Ωhp = ∅.

In AMR/C computations at a new adaptation stage, regions of the domain will have an increase in mesh
element density while in others, the number of elements will decrease. These dynamic mesh adjustments
result for some processors in significant increasing (or decreasing) work therefore causing load unbalancing
[1].

Libraries such as METIS and ParMETIS were developed aiming implementing efficient partitioning mesh
schemes. The first is a serial mesh partitioning library, while the second is based on parallel MPI. Both
can also reorder the unknowns in unstructured grids to minimize the fill-in during LU factorization. The
ParMETIS extends the functionality provided by METIS and includes routines for parallel computations
with adaptive meshes refinement and large-scale numerical simulations.
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Figure 3: Simulation domain decomposition in 8 sub-domains

3.3 Parallel Solution of Preconditioned Linear Systems

The support for the numerical solution of the resulting system of linear equations in the parallel architecture
environment is provided by PETSc. It provides structures for efficient storage (vectors, arrays, for example),
as well ways to handle it. The libMesh uses compressed sparse row (CSR) data structure to store the sparse
matrices. PETSc has a number of methods for solving linear sparse system as GMRES and BiConjugate
Gradient method (BiCG) and several types of preconditioners as ILU(k) and Block-Jacobi. Options for
reordering the linear system as the Reverse Cuthill-McKee method (RCM, [12]) are also available.

In this work we use Block-Jacobi sub-domain preconditioning. It is one of the most widely used schemes
due to its easiness of implementation. There are no overlap between the blocks. The incomplete factorization
may be applied to each of them without extra communication costs. However, in adaptive simulations, the
new local factorization should be performed every time the mesh is modified since the adaptivity changes the
group of elements residing in each sub-domain [13]. It is usual to refer to the Block-Jabobi preconditioning
strategy in conjunction with the ILU factorization with a certain level k of fill-in by BILU(k) [14].

The communication between the processors, such as required for the algebraic operations or during
assembly of arrays of elements are supported by a set of PETSc library routines which is designed for
parallel computing using the MPI API.

4 Numerical Results

The simulations were performed in a SGI Altix ICE 8400 cluster with 640 cores (Intel Nehalem). This
machine has 1.28 TB of distributed memory. The processing nodes are connected by InfiniBand. The
cluster is located at the High-Performance Computing Center (NACAD) of the Federal University of Rio de
Janeiro, Brazil.

4.1 Parallel Adaptive Simulation of the Rayleigh-Bénard Problem

In this example we consider the Rayleigh-Bénard natural convection in a container with geometric domain
Ω = [0, 4]× [0, 1]× [0, 1]. This problem consists to solve a natural convection phenomenon of a fluid which
initially at rest (t = 0) produces a sequence of adjacent convection cells along the longitudinal direction (x
axis) due to the temperature difference between its upper (cold) and lower (hot) walls.

No-slip boundary conditions are imposed in all the walls and the pressure is prescribed as p(2.0, 0.5, 0.0) =
0.0. The dimensionless cold temperature is Tc = −0.5 and the hot Th = 0.5. The physical problem is defined
setting the Reynolds Number as Re = 4, 365, Grashof number as Gr = 41, 666.66, the Peclet number as
Pe = 3, 142.8 and Froude number2 as Fr = 0.6432.

2Besides not introduced in the Navier-Stokes equations presented in section 2.1, the Froude number is used here to take into
account the fluid’s weight in the calculation. More details about how to incorporate the Froude number in the dimensionless
Navier-Stokes equations may be found in [3].
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Only one refinement/coarsening level was allowed at every 25 time-steps. For the statistical adaptivity
scheme the refinement fraction is rf = 0.6 and coarsening fraction is rc = 0.01. The linear tolerance for
GMRES(30) together with the BILU(1) and reordering by RCM method is 1.0 × 10−6. The nonlinear
tolerance is 1.0× 10−5 and the constant time step size is ∆t = 5.0.

The steady-state velocity vectors are shown in Fig.(4) and the temperature over the final adapted mesh
is plotted in Fig.(5).

Figure 4: Steady-state velocity vectors

Figure 5: Temperature at steady-state and final adapted mesh

The Fig. (6) presents the speedup for the total simulation time, the total time for solving the Navier-
Stokes and transport problems and the AMR/C procedure considering in the numerator the time spent with
16 CPU’s, i.e.,

Sp =
τ16

τp
. (24)

The AMR/C time does not reach 10% of the total simulation time. We may observe from the results of
Fig.(6) that the present simulation achieves a good parallel performance, that is, speed up around 3 for the
total simulation with 64-cores run with respect to 16-cores run (over 3 for the Navier-Stokes simulation).

Despite the good overall performance, it is observed that the adaptive procedure does not scale as well
as the linear solvers (S64 = 1.22). The poor performance of the AMR/C procedure in the current libMesh

release is due to the fact that all mesh data are replicated on all cores, which increases memory requirements
and communication per core.
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3,0

4,0

Sp
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d
u
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Total
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Transport

AMR/C

Ideal

1,0

2,0

16 32 48 64

Cores

Figure 6: Speedup for the Rayleigh-Bénard problem

4.2 Temperature-driven gravity current with AMR/C

For the simulation of a temperature-driven gravity current with mesh adaptivity, we consider a slice domain3

Ω = [0, L]× [0, H/8]× [0, H] where the nondimensional length and height are L = 0.8 and H = 0.1. The left
half of the channel is initially filled with the cold fluid and the right half is filled with hot fluid. The Fig.
(7) shows the initial configuration and a detail of the refinement at the center of the domain.

(a) (b)

Figure 7: Initial lock-exchange configuration: (a) View of the slice domain and (b) Mesh detail

The dimensionless cold temperature is set to Tc = −0.5 and the hot Th = 0.5. We consider no-slip
boundary conditions on the bottom, left and right walls. Free-slip boundary conditions are imposed on the
top one. Thus free and no slip fronts may be considered in the same simulation.

We do not consider the reduced gravity for the definitions for the dimensionless parameters and set the
Reynolds number as Re = 1.0 × 106 and the Grashof is set to Gr = 1.0 × 1010. For this simulation, we
disregard the diffusion term of the transport equation (3). So, the Peclet number does not need to be defined.
We set the exponent of the nonlinear diffusion operator (19) as β = 1 and the time step is set to ∆t = 0.025.

We compare the results from the present adaptive simulation with those obtained using fixed structured
mesh with characteristic length l = 0.00078125 (given by the hexahedron edge). The dimensionless distance

3To emulate a 2D simulation domain from a mesh composed of 3D elements, the slice domain is positioned parallel to the
xz plane and the perpendicular direction (0, y, 0) is discretized with only one element except at regions where the mesh adapts.
For all nodes on the mesh vy = 0.0 is imposed.
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of the front head between the two fluids X = |x− 0.4| is tracked over time t. The distance from the initial
position (x = 0.4) of both fronts using the fixed mesh is plotted in Fig. (8)

0,2

0,25

0,3

0,35

0,4

X

No‐slip

Slip

Hiester no‐slip

Hiester slip

0

0,05

0,1

0,15

0 5 10 15 20 25 30 35
t

Figure 8: Plot of the dimensionless distance of top and bottom fronts

As expected, free-slip front (top) reaches the vertical wall before the no-slip (bottom) does. Figure (8)
shows a good agreement between our results and those obtained by the reference [10]. The results from [10]
were obtained using a fixed 2D mesh formed by triangles which characteristic length is l = 0.00025.

The Fig. (9) shows the temperature distributions and the meshes at two different times with AMR/C at
every 10 time-steps. The refinement fraction is set as rf = 0.95 and the coarsening fraction is rc = 0.01.
In order to prevent the size of the elements become too small, we allowed only 4 refinement-levels. The
Kelvin-Helmholtz billows are captured by the mesh as the front evolves after the release.

(a)

(b)

(c)

(d)

Figure 9: Adaptive meshes and temperature distribution: (a) Adaptive mesh at t = 12.5, (b) Temperature
distribution at t = 12.5, (c) Adaptive mesh at t = 25.0 and (d) Temperature distribution at t = 25.0

Through the mesh adaptivity simulation, the largest number of elements reached is approximately 30,000.
If a fixed structured mesh had been used, to achieve the same refinement level, it would take approximately
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131,000 hexaedrons. Therefore, with mesh adaptation we can, in this problem, compute a solution with one
order of magnitude less elements without compromising the solution accuracy.

5 Conclusions

The libMesh framework was used to implement the stabilized SUPG/PSPG finite element formulation for the
parallel adaptive solution of incompressible viscous flow and advective-diffusive transport using a trilinear
hexahedral element. Good numerical results were obtained for parallel executions with adaptive meshes.
AMR/C allows the representation of multiple flow scales and improves resolution where needed. It was
possible to track the Kelvin-Helmholtz billows present in the temperature-driven gravity current problem.
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