
MESI Cache Coherence Simulator for Teaching Purposes

Juan Gómez-Luna, Ezequiel Herruzo and José Ignacio Benavides

Dept. Computer Architecture and Electronics, University of Córdoba,
Av. Menéndez Pidal s/n, 14071 Córdoba, Spain

{el1goluj, eze, el1bebej}@uco.es

Abstract

Nowadays, the computational systems (multi and uniprocessors) need to avoid the cache
coherence problem. There are some techniques to solve this problem. The MESI cache
coherence protocol is one of them. This paper presents a simulator of the MESI protocol
which is used for teaching the cache memory coherence on the computer systems with
hierarchical memory system and for explaining the process of the cache memory location in
multilevel cache memory systems. The paper shows a description of the course in which the
simulator is used, a short explanation about the MESI protocol and how the simulator
works. Then, some experimental results in a real teaching environment are described.

Keywords: Cache memory, Coherence protocol, MESI, Simulator, Teaching tool.

1. Introduction

In multiprocessor systems, the memory should provide a set of locations that hold values, and when a location is read it
should return the latest written value to that location. This property must be established to communicate data between
threads or processes running on one processor. One reading returns the latest written value to the location regardless of
which process wrote it. This question is known as the cache coherence problem. This kind of problems arises even in
uniprocessors when I/O operations occur. Most I/O transfers are performed by direct memory access (DMA) devices
that move data between the memory and the peripheral component without involving the processor [5]. When the DMA
device writes to a location in main memory, unless special action is taken, the processor may continue to see the old
value if that location was previously present in its cache [1]. The techniques and support which are used to solve the
multiprocessor cache coherence problem also solve the I/O coherence problem. Essentially all microprocessors today
provide support for multiprocessor cache coherence. The MESI cache coherence protocol is a technique to maintain the
coherence of the cache memory content in hierarchical memory systems [2], [7]. It is based on four possible states of the
cache blocks: Modified, Exclusive, Shared and Invalid. Each accessed block lies in one of these stages and the
transitions among them define the MESI protocol. Nowadays, most processors (Intel, AMD) use this protocol or its
versions. Knowing how these processors maintain the cache coherence is very important for the students. This paper
presents a simulator of the MESI cache coherence protocol [1], [6]. The MESI simulator is a software tool which has
been implemented in the JAVA language. It has been developed specifically for teaching purposes. It has been designed
to show how the MESI protocol works to maintain the cache memory coherence in a multi-user system for a single
processor. The simulator permits to configure the cache memory parameters and the statistics of the studying memory
access; it also permits to determine how these statistics are shown.

The sections in this paper are organised as follows: Section 2 presents some works related to the MESI protocol.
Section 3 describes the educational objectives for the simulator. Section 4 explains the MESI protocol. Section 5 shows
the main characteristics of the MESI simulator, a description of pedagogical issues and some performance examples.
Section 6 describes the experimental results in a real teaching environment. Section 7 indicates our future works about
the cache memory coherence protocols. Finally, section 8 concludes this paper.

CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 1, PAPER 5, APRIL 2009

2

2. Related Work

There are some tools with similar functions to the MESI protocol simulator. The outstanding ones are presented in the
following lines:
• SMPCache: It simulates cache memory systems in symmetrical multiprocessors. It is useful to study cached

multiprocessor systems in parallel computing. One of the configuration options enables using the MESI protocol.
• LIMES: It uses the MESI protocol to maintain the cache memory coherency in parallel multiprocessor systems.
• MINT: It studies the memory hierarchy in multiprocessor systems with shared memory. It uses the MESI protocol, as

well as MOESI and MOES protocols.
However, none of them show how the cache memory coherence protocols work.
The MESI protocol simulator shows the internal functions of the protocol and the transitions of the different states.

That is what makes it to be a useful and unique tool.

3. Educational Objectives

The MESI protocol simulator is widely used in several courses about Computer Architecture, Computer Design and
Multiprocessor Systems in the University of Cordoba. The syllabus of these courses includes studying the datapath of a
RISC processor, pipelining, the memory hierarchy, superscalar processors or multiprocessor systems. The MESI
protocol simulator is an indispensable tool to reach some important objectives in these courses:
• Introducing the existing copy-back coherency protocols for cache memory through the understanding of the MESI

protocol performance.
• Understanding the meaning of each state of the MESI protocol in the cache memory shown by the simulator and the

corresponding state in any other cache memory in a multiprocessor environment.
• Realizing when a transition between states is needed in order to reflect the actions taken by a processor, an

Input/Output interruption or DMA device.
• Strengthening the knowledge about hierarchical memory systems, developing experiences with up to three cache

levels.
• Studying in depth the cache memory parameters, such as the associativity, the replacement policy, the writing policy,

etc.
The development of the MESI protocol simulator consists of keeping with some of the principles established by the

Computing Curricula 2001 [4]. It helps to include an appropriate experience in the computer engineering curriculum. It
also provides an interesting tool for students who are not on campus, such as distance learning and Internet courses.

4. MESI Protocol

The MESI protocol makes it possible to maintain the coherence in cached systems. It is based on the four states that a
block in the cache memory can have. These four states are the abbreviations for MESI: modified, exclusive, shared and
invalid. States are explained below:
• Invalid: It is a non-valid state. The data you are looking for are not in the cache, or the local copy of these data is not

correct because another processor has updated the corresponding memory position.
• Shared: Shared without having been modified. Another processor can have the data into the cache memory and both

copies are in their current version.
• Exclusive: Exclusive without having been modified. That is, this cache is the only one that has the correct value of

the block. Data blocks are according to the existing ones in the main memory.
• Modified: Actually, it is an exclusive-modified state. It means that the cache has the only copy that is correct in the

whole system. The data which are in the main memory are wrong.
The state of each cache memory block can change depending on the actions taken by the CPU [3]. Figure 1 presents

these transitions clearly.
Although the Figure 1 is very clear, here is a brief explanation: at the beginning, when the cache is empty and a block

of memory is written into the cache by the processor, this block has the exclusive state because there are no copies of
that block in the cache. Then, if this block is written, it changes to a modified state, because the block is only in one
cache but it has been modified and the block that is in the main memory is different to it.

CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 1, PAPER 5, APRIL 2009

3

On the other hand, if a block is in the exclusive state, when the CPU tries to read it and it does not find the block, it
has to find it in the main memory and loads it into its cache memory. Then, that block is in two different caches so its
state is shared. Then, if a CPU wants to write into a block that is in the modified state and it is not in its cache, this block
has to be cleared from the cache where it was and it has to be loaded into the main memory because it was the most
current copy of that block in the system. In that case, the CPU writes the block and it is loaded in its cache memory
with the exclusive state, because it is the most current version now. If the CPU wants to read a block and it does not find
the block in its cache, this is because there is a more recent copy, so the system has to clear the block from the cache
where it was and to load it in the main memory. From there, the block is read and the new state is shared because there
are two current copies in the system. Another option is that a CPU writes into a shared block, in this case the block
changes its state into exclusive.

Figure 1: Transitions from CPU bus

It should be taken into account that the state of a cache memory block can change because of the actions of another

CPU, an Input/Output interruption or a DMA. These transitions are shown in Figure 2. Hence, the processor is going to
use the valid data in its operations. We do not have to worry if a processor has changed data from the main memory and
has the most current value of these data in its cache. With the MESI protocol, the processor obtains the most current
value every time it is required.

5. MESI Simulator

The MESI protocol simulator is a software system for educational purposes that simulates a run of a software application
in a cached multiprocessor system and uses the MESI protocol to maintain the data coherence.

The simulator has a very simple and clear interface that makes it become very easy to use. To start using the
application is required to enter a code. This code is a memory reference sequence. These references should be
understood as the actions done by a CPU during the execution of a program: instruction readings, data readings and data
writings.

During the execution of the code, I/O interruptions will occur. How to introduce these signals is explained below.
These I/O interruptions could be interpreted as the actions taken by other processors in a multiprocessor environment or
by DMA devices.

CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 1, PAPER 5, APRIL 2009

4

Figure 2: Transitions from System bus.

5.1 Pedagogical Issues

The simulator is helpful for users in some ways. First of all, it can be configured depending on your requirements
because it has a lot of configurable parameters. As shown in the figure, the simulator has a typical task bar that makes
easier the interaction with the simulator.

The most interesting option is the “Configuration” option. The main memory parameters, cache memory parameters,
such as the cache memory capacity, the cache line size, the associativity, the replacement policy, the number of words
per memory access, the writing policy, etc. can be configured. Moreover, the user can configure the statistics of the
memory access to study and how they are shown (the number of cache misses and their type, the number of memory
access, hits, etc.).

The MESI protocol simulator is a great tool for learning because it generates a lot of useful statistics that can be
interpreted by the student and it makes the study of the protocol easier.

In addition, the simulator has two ways of running. The first is the normal one, pushing the start key the simulation
begins. But there is another way, step by step, in which the simulator stops and it is possible to see how the system is
working at this time.

As seen in Figure 3, the simulator has the four states shown at the bottom of the screen. When a code is being run, the
states change their colours and the students can see what state is working each time. If this option is used with the
different ways of running, it makes the simulator very useful for learning the protocol.

In conclusion, as it can be seen in Figure 4, the results are statistics and they can be interpreted by anyone who has
some technical knowledge. Therefore the simulator can be used by a person with technical knowledge or by a student
who is learning with the application. The code is entered into the simulator as a reference sequence. The simulator has
an option which makes possible to introduce Input/output signals and they will appear by inserting them into the code
which will be simulated.

CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 1, PAPER 5, APRIL 2009

5

5.2 Conflicts Generation in Memory Access

The I/O option allows introducing I/O signals into the simulator and when to run them. Also, the simulator provides a
visualization option, in which can be seen all the statistics that the simulator has made according to the simulated code.
Furthermore, it can be seen the content of the main memory, I/O content and the graphics made by the simulator.

Figure 3: Interface of the MESI simulator and statistics screen

Figure 4: Statistics screen of the MESI simulator

5.3 Performance Examples

The following examples show the answer of the simulator by entering a code of real software. This software consists of
a matrix multiplication. Two different configurations are presented.

CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 1, PAPER 5, APRIL 2009

6

Configuration 1. A cache memory with the following configuration in level 1: Block size: 8; cache size: 1kb; replace:
LRU; Mapping: Associative by groups: 8; Unified.

This configuration has a 91% correct reading. Although it is a very simple configuration, it has a very low failure rate.
This is because it is not necessary to replace blocks, which is one of the main fault causes. It depends on the chosen
replacement because you can replace a block which is going to be read soon.

Configuration 2. A cache memory hierarchy with the following configuration in level 1: Block size: 4; cache size: 1kb;
replace: random; Mapping: Direct; Mixed. The configuration in level 2 is: Block size: 8; cache size: 4kb; replace: LRU;
Mapping: Associative by groups: 8; Unified.

This configuration has 84% correct reading in level 1 of the cache and 43% in level 2. Level 1 has failed the 7 times
that the system has accessed level 2. Level 2 has a block size bigger than the first one. With each failure of level 2, the
system loads more words than when level 1 fails. It is more likely to find a word in level 2.

This configuration presents more failures than the previous one. The reasons are the following:
− Block size: The main reason is this one because with the previous configuration, with each failure, the system loads

eight pages per block; now, when a failure is produced, the system loads four pages with each block.
− Replacement policy: A random policy is used in level 1, and the most effective policy is the LRU one.
− Distribution: This configuration is mixed, so there are more failures than in the unified one, because with the mixed

configuration, in each failure, the system loads a block of data or instructions. On the other hand, with the unified
configuration, the system loads data and instructions.

6. Experimental Results

The MESI simulator has been used in a real teaching environment at the University of Cordoba (Spain). Up to 60
students have made use of the MESI simulator with up to 4 different simulator configurations. Approximately 1200 tests
have been executed for 10 hours, averaging 120 tests per hour; 92.5 % of those tests being successful. The 7.5 %
remaining tests failed because students made a wrong introduction of I/O signals or syntactic failures in the code. In
future versions, a precompiler will detect these failures and will notice to fix them.

Students have been working with different configurations and I/O signals, which show every transition of the MESI
protocol. They have made their own conclusions in the practice report and, definitely, they have taken a good
understanding of the MESI protocol performance.

7. Future Works

The MESI protocol simulator is the first step in a strong effort to develop pedagogical tools. It is an evidence that the
students achieve a better understanding of theoretical concepts through a direct experience. Hence, to use a simulator is
the best way to see what is happening in a cache memory hierarchy.

In future developments, an extended version of the MESI protocol simulator will present other coherency protocols
[1], [3] such as MSI, MOESI, N+1, Futurebus+, Berkeley, etc.

8. Conclusions

The presented software is a very suitable tool to show the cache memory occupation from memory references during the
execution of a program. It is specially indicated to teach the cache memory concepts like the capacity, the cache line
size, the associativity, the replacement policy, etc. Besides, it shows other concepts like the input/output interruptions
and how these interruptions determine the transference of information (by applying it). On these cases, the
understanding of the MESI memory coherence protocol is possible by showing the different stages of the protocol.
Experimental results confirm the perfect applicability in a real classroom environment.

CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 1, PAPER 5, APRIL 2009

7

References

[1] Culler, D.E., Singh, J.P., and Gupta, A. Parallel Computer Architecture. A hardware/software approach. Morgan
Kaufmann Publishers, Inc., 1999.

[2] Hamacher, C., Vranesic, Z., and Zaky, S. Computer Organization. McGraw-Hill, 2003.
[3] Handy, J. The Cache Memory Book. Academic Press, 1998.
[4] McGettrick, A., Thies, M.D., Soldan, D.L., and Srimani, P.K., Computer Engineering Curriculum in the New

Millennium. IEEE Transactions on Education, vol. 46, no. 4, November 2003.
[5] Patterson, D.A., and Hennessy, J.L. Computer Organization and Design: The Hardware/Software Interface. Morgan

Kaufman Publishers, Inc., 2004.
[6] Stalling, W. Computer Organization and Architecture. Prentice-Hall, 2006.
[7] Tanembaum, A.S. Structured Computer Organization. Prentice-Hall, 2006.

CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 1, PAPER 5, APRIL 2009

