CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

A Version Control Tool for Framework-based Applications

Maria Istela Cagnih*, Rosana T. V. BragaRosangela Penteadp
Ferrio Germang Jo€ Carlos Maldonado

LUniversity of Si0 Paulo
Instituto de Cencias Materaticas e de Computao
Sao Carlos, 8o Paulo, Brasil
Caixa Postal 668, CEP 13560-970
{istela, rtvb, fernao, jcmaldon }@icmc.usp.br

2Federal University of 8o Carlos
Departamento de Computax
Sao Carlos, 8o Paulo, Brasil
Caixa Postal 676, CEP 13.565-905
rosangel@dc.ufscar.br

Abstract

Framework based application development is increasingly being adopted by software organizations.
Frameworks provide reuse of both software design and code, and supply more trustable applications, as
the components used to implement them have been previously tested. However, version control is more
problematic than in conventional software development, as it is necessary to control both the framework
versions and the versions of the applications created with it. Furthermore, aiming to minimize the impact
of system requirement changes, framework based software development and reengineering processes
adopt the incremental approach, which is a “must” in agile methodologies. This approach makes easier
to fulfill requests for system requirements change at any time during the process application. In that
context, there is a lack of tools that support version control of applications created with frameworks. This
paper presents a tool that aims to aid in the fulfillment of that need, contributing to quality assurance of
the products that result from software development or reengineering.

1 Introduction

Software evolves constantly to attend changes in management, functions, business, government rules,
among others, so that the fulfillment of user needs is always kept. To control such changes, it is necessary
to establish an efficient and systematic control of the versions produced and delivered to users. This

can be accomplished throu@oftware Configuration Management - SClhich is a set of activities

that aims to manage changes occurred during all software life cycle, and also helping to guarantee its

quality (Pressman, 2001). Software organizations are increasing their investments on development of

*Financial Support from FAPESP #00/10881—4.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

framework based applications (Taligent, 1997; Fayad and Schmidt, 1997). A framework is a set of
classes that embeds an abstract and reusable design of solutions for a family of related problems in a
particular domain (Johnson and Foote, 1988). They allow the reuse of both design and code, and the
resulting applications are more reliable, because the components used to build the applications were
carefully tested and were probably used before by other organizations. Moreover, Fayad and Schmidt
(1997) state that, using frameworks, applications can be developed faster and with less effort.

However, version control is more complex in the context of framework based development than
it is in the context of traditional software development, due to the need of controlling not only the
framework versions but also of the applications generated from it. Frameworks version control has to
be done with special care, because framework evolutions can change its design and, consequently, the
design of dependent applications. As a result, these applications might not fit the new design and behave
improperly.

To minimize the impact of changes in system requirements, some development and reengineer-
ing processes, based on frameworks, adopt the incremental approach, which is indispensable to agile
methodologies (Abrahamsson et al., 2002; Beck, 2000; Turk et al., 2002). This approach eases the ful-
fillment of requests to change system requirements, done anytime during the process application. In this
context, there is a lack of tools to support version control of both frameworks and applications derived
from them. Framework instantiation allows the inclusion or removal of components in an application
that was created before with the same framework. However, in case the application had been modi-
fied manually to include new functions that were not provided by the framework, if the framework is
instantiated again to add new functions, all the manually included source code will be lost.

This paper presents a tool, which is specific to control the versions of applications generated from a
particular framework. Its goal is to provide means of soften this lack, as well as to support the execution
of the taskversion controlduring the SCM acitivity, and helping to guarantee the resulting product
quality, both during forward engineering and reengineering. Related work is discussed in Section 2. The
mentioned tool, name@GREN-WizardVersionControis presented in Section 3, together with details of
its conceptual modeling, architecture, and implementation. In Section 4, the experience of using this tool
in a reengineering case study is presented. In Section 5, conclusions and future work is discussed.

2 Related Work

SCM is considered as one of the most important activities to obtain quality certification in several stan-
dards, such as 1ISO 9000 (ISO 9000, 19€x)pability Maturity Mode(CMM) (Paulk, 1993) Capability
Maturity Model IntegratioCMMI) (Carnegie Mellon University, 2002) and ISO/IEC 155@bftware
Process Improvement and Capability dEterminalion SPICE (ISO/IEC 15504, 1998). According to
Pressman (2001), SCM is composed of five tasks: (1) changes identification, (2) version control, (3)
changes control, (4) configuration auditing, and (5) reports (to inform what happened, who did the
changes, when the change was done, what will be affected with the change, eta)er3iba control
task is the most known and, at the same time, the one that has more responsibilities, because it deals with
the storage and retrieval of different versions of the artifacts generated during the software process.
Some desirable features of an SCM system are highlighted by Midha (1997): a) usability, so that
the user can use the tool functionality as part of his/her job execution; b) easiness of managing the
tool; ¢) support for distributed development, so that the system can be also used by remotely distributed
development teams; e d) SCM functionality integragrion with other tools. To minimize repository storage
space for the artifact versions, SCM systems ofterdedta scripts or simplydeltas in which only one
artifact version is stored integrally, while the other versions store only the difference (Reichenberger,
1991). There are two approaches that deal with defiagative deltaandpositive delta The former,
also known aseverse deltg stores integrally the most recent version and the differences until then, so
that the last version is available in a faster way. Plsitive deltastores integrally the oldest version

2

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

and the differences since then. The tool presented in this paper stores only the modifications done in
each application version, because there is a framework instantiation historic that is considered by the
tool, in which it is possible to obtain the functionality of the generated applications. Thus, it is possible
to automatically obtain information of the applications oldest version.

There are several SCM tools, with varying functionality, complexity, and price. This requires the
software engineer to evaluate each one to choose the most appropriate to his/herCleadSase
(IBM, 2004), Continuus/CM(Telelogic, 2004),Visual Source SaféMicrosoft, 2004),QVCS(Quma
Software Inc., 2004)FreeVCS(FreeVCS, 2004)CVS(CVS, 2004),VersionWel{Soares et al., 2000)
and PVCS(Synergex, 2004) are examples of existing SCM tools. None of them fulfills the need of
controlling the several versions of applications generated from frameworks. However, a tool was found,
proposed by Tour@ (Tourwe, 2002), to evaluate the impact that changes can have, both in the framework
and in the applications class hierarchy. To achieve that: a) it first provides the definition of changes
propagation, allowing the developer to evaluate the impact of transformations in the framework and
depending applications, to detect possibigetge conflicts; b) it suggests how these problems can be
solved. Tourv’s tool has different goals than the tool presented in this paper, which aims at controlling
the changes caused in frameworks and corresponding derived applications.

3 GREN-WizardVersionControtool

The motivation to create th@ REN-WizardVersionContrabol became evident after two reengineering

case studies: the first for a library legacy system (Cagnin et al., 2003a; Chan et al., 2003), and the second
for a electronic appliances repair shop legacy system (Cagnin et al., 2003b), both developed in Clipper.
The reengineering of these systems was done with the support of the PARRA&jile reengineering
process(Cagnin et al., 2003b).

PARFAIT is incremental and iterative, as the software engineer has the flexibility to return to previ-
ously executed steps to refine the produced artifacts. It is considered an agile process, because it provides
severapracticesof agile methodologies (Beck, 2000), for example: a) a new version of the system is de-
livered as soon as possible — attends‘#mall releases” XP (eXtreme Programming) practid® users
participate actively of most reegineering project activities and approve the product as the design evolves.
In each interaction with users, product improvements are done — attenttsuthemer is present” XP
practice c) tests in the new system are done frequently and compared to the legacy system tests — at-
tends the'frequent tests” XP practiced) reengineering planning is done again in each process iteration
— attends théplanning game” XP practiceand e) stimulates thgair programming” XP practice

PARFAIT uses the GREN framework (from Portuguese “@este REcursos de Negos”, which
means Business Resource Management) (Braga, 2003) as a computational support: a) to the reverse
engineering activities: during new requirements elicitation and during the identification of legacy system
business rules; and b) to the forward engineering activities to create the new system prototype. GREN
construction was based on the analysis pattern language for the same domain, named GRN (Braga et al.,
1999), so it is specific to ease the reengineering of legacy systems belonging to the business resource
management domain, which includes applications for trading, renting or maintaining business resources.
The framework was built using the Smalltalk programming language and the persistence of objects is
done using the MySQL database management system (MySQL, 2003). There is a tool to ease GREN
instantiation, named GREN-Wizard (Braga and Masiero, 2003), which requests the GRN patterns used
to model the system and generates the classes of the application (in Smalltalk), together with the MySQL
tables needed to persist the objects.

IPARFAIT is the acronym for Proces#ail de Reengenharia baseado em FrAmework noidimde sistemas de In-
formago com VV&T (in Portuguese), which means “Framework-based Agile Reengineering Process in the Information
System Domain with VV&T”.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

After creating the library system, during the reengineering supported by GREN-Wizard, some
changes were done in its source code to make it functionally compatible with the legacy system. After-
wards, a new functionality was requested by the customer, which was not present in the legacy system,
which was:“Charge a Fine” during the book devolution if the user returns the book after the due date.
This functionality is supported by one of GRN patterns and, so, is provided by the GREN framework,
without the need to implement it manually. This could be as simple as creating the application again
using GREN to add the required functionally. However, doing that would cause the loss of the source
code lines included manually in the application in the previous maintenance. This problem has motivated
the need to create a tool to store the changes done in the applications source code, so that all changes
manually done in applications generated by GREN could be retrieved and incorporated in later instanti-
ations. Besides making evident the need to create the version control tool for applications created from
the GREN framework, it was also observed the need to evolve the framework instantiation tool (GREN-
Wizard), so that it could incorporate, during the creation of the new application version, the changes
done in the source code in previous maintenances. This allows GREN to effectively support incremental
development and reengineering, making possible to add new functions at any time during the application
of these processes.

Thus, the tool was created so that agility is not injured during the PARFAIT reengineering process,
as it uses the incremental approach during both the reverse engineering and the forward engineering
activities. The tool is useful not only in PARFAIT but also in the development of new applications in an
incremental way.

3.1 Conceptual Modeling

This section presents tli@REN-WizardVersionContrébol functionality and metamodel, through a use
case diagram and a class diagram respectively. Both are WMiIfiéd Modelling Languagediagrams
(Fowler and Scott, 1997; OMG, 2003).

3.1.1 Tool Functionality

The GREN-WizardVersionContrébol use case diagram is shown in Figure 1. All use cases, except for
that filled with grey color (“Decide about conflicts between methods”), are performed during the modi-
fications of the source code in applications generated from the framework. The “Decide about conflicts
between methods” use case is performed during the framework instantiation with the support of the up-
dated GREN-Wizard tool to make part of tB&REN-WizardVersionControbol, specifically when some
method inherited from a framework class had been manually modified by the application engineer. The
“Change Attribute” use case is performed when the application developer needs to add basic attributes
(integer, string, float, date) that are not inherited from the framework. Besides adding
basic attributes, it is possible to add attributes with special treatment: enumerated attributes (“Add enu-
merated attribute”) and multivalued attributes (“Add multivalued attribute™).

“Remove class”, “Remove attribute”, “Remove method category” and “Remove method” use cases
are executed only for classes, attributes, method categories, and methods not inherited from the frame-
work, respectively. Removal restrictions were established to avoid the accidental or intentional removal
of components (i.e., classes, attributes, methods, etc) inherited from the framework. So, it is only al-
lowed for the application engineer to override or modify the inherited methods, to ensure that none of
the frameworkhot-spots’ are damaged, and that the application structure is correct and works properly.

2variable framework structures that contain the components that can be adapted and extended by the software engineer
in the application instantiated from the framework, so as to adapt them to the needs of a particular system (for example,
business rules, functional requirements inherent to the internal organization policies, etc).

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

NPV mew— O Allows to remove only
Allows to remove i

vl Add method category O _____________ method categories
only classes not Add class not inherited from the
inherited from the framework
framework. | T O Remove method category :

Remove class //O

Add method

Allows to change AN

only basic attributes

and not inherited
Change class Ppllcatlo O
from the framework. e Engineer

O Change method
Allows to remove
Change attribute [N MYee____| only methods not
inherited from the
__O Remove method framework.
- Remove attribute Q

Allows to remove
only attributes not
inherited from the

framework. Add attribute Decide about conflicts ~~~~__| Performed
between methods during the
<<extends>> framework
X <<extends>> instantiation.
Add enumerated attribute Add multlvalued attribute

Figure 1: Use Case Diagram for tREN-WizardVersionContrabol

3.1.2 Tool Metamodel

The GREN-WizardVersionControkool metamodel is presented through a class diagram, as
illustrated in Figure 2. Some existing classes from GRERergistentObject) and

GREN-Wizard GrenWizardCodeGenerator , GrenWizardGUI , GrenApplication ,
AttributeMappingForm , and AttributeListForm) had to be modified, so they are
shown in grey. ClassesClassVersionControl , ClassProtocolVersionControl , and

ClassMethodVersion contain relevant information about the class being changed, about the method
protocol or category, and about the method, respectively. As these classes contain some common
information, they inherit fromMetaVersionControl . The GREN-WizardVersionControl

class is responsible for the version control as a whole and contains an interface similaSicstiém
Browser which is one of the VisualWorks (Cincom, 2003) tools used to develop our tool. The
GrenWizardDifferatorTool class* is responsible for showing conflicting parts of the source
code for methods inherited from GREN that were modified in a previous application version. These
conflicts occur during the instantiation of a new application version through the updated GREN-Wizard
tool and need to be taken care of by the application engineer.

Sin Smalltalk, class methods are organized in protocols (or categories), which are groups of semantically related methods.

“based on VisualWorkBifferator class.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

AttributeMappingForm
——

0..n

calls AttributeListForm
———— 1

1 b | I

calls

creates
1.n

PersistentObject] [GrenwizardCodeGenerator calls GrenWizardGUI ‘

I 1 f T I T

[1 I8 1 i
1

GrenApplication

GrenWizardVersionControl
appNameSpace
appldCode
aclassName
appVersion
seq currentVersion

protocolName
:Eralgg\lo:neqe controls type .
; aClassOrganizer
:;ng(\)/nerslon " |appNameSpaceList
. classNameList
currentVersion protocolNameList
methodNameList
methodBody
instanceType
classType

uses,

MetaVersionControl

GrenWizardDifferatorTool

ClassVersionControl

ClassProtocolVersionControl

superClassName
indexedType

private
instanceVariableNames
classlnstanceVariableNames
imports

protocolName
protocolType

ClassAttributeVersionControl

attibutePrevName
attributeName
attribute Type
attributeLenght
sequentialNb

ClassMethodVersionControl

methodName
methodType
protocolName
methodBody

verifies conflicts

appNameSpace
aclassName
textl

0..n

0.1

text2
textResult
diffModeHolder
diffMode

category

Legend:

GREN classes D
modified
GREN version

control classes
created

Figure 2: Class Diagram for tHteREN-WizardVersionControbol

3.2 Architecture

The GREN-WizardVersionContrdabol architecture was based both on GREN and GREN-Wizard ar-
chitectures. GREN architecture was designed in three layers: persistence, business and graphical user
interface (GUI), as presented in Figure 3. Tgersistence layethas classes to deal with database con-
nection, management of objects identifiers and objects persistencéausiness layercommunicates

with the persistence layer to store objects. In this layer there are several classes derived directly from the
analysis patterns that compose the GRN pattern language, i.e., the classes and associations contained in
each pattern have the corresponding implementation in this layeiGUh&yer contains classes to deal

with data input and output, allowing the interaction with the system final user. This layer communicates
with the business layer to obtain the objects, to be shown in the GUI and to return information to be
processed by the business layer methods.

The GREN-Wizard layer, responsible for generating the application source code from its specifica-
tion based on GRN patterns, stays above GREN, as it uses all the other layers. The GREN-Wizard layer
communicates with th&REN-WizardVersionContrddyer, which is responsible for controlling the ver-
sions of applications generated from the GREN framework. It supports incremental development and
reengineering and, consequently, processes based on agile methodologies. Specific applications can be
built from its GUI layer, without the support of the GREN-Wizard layer, by using (through inheritance
or object referencing) classes of all GREN layers below it, or can be built based on the business layer, if
the GUI layer is not reused from GREN, but implemented separately.

Figure 4 shows GREN-Wizard ar@REN-WizardVersionContralrchitectures. Two actors interact

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

£ >
o
] 332
= S
= % g2
> Specific Applications > 2
Final User % » %’ = g @
e ———— g}"f%- § o e —
2= o
_ GREN- GREN-Wizard g >
Wizard Version Control [3 o
8 m
o Z 5
Application i =] <%
Engineer GREN - Graphical User Interface (GUI) o Sm
/ 2 Z o
Lk . 3y 2
M* A [GREN - Business 2o
L —4 Bl
i 8 (=%
Domain Engineer =
\ GREN - Persistence o
o}
8
- Smalltalk e
JdmM L Driver P
weaL | CEmMySaLorve > ;
c
3
B
Hardware/ Operational System

Figure 3: GREN framework architecture (adapted from (Braga, 2003))

directly with GREN-Wizard: the domain engineer, who is responsible for building the wizard (and,
possibly, also has participated in the pattern language creation and in the framework development) and
the application engineer, who uses GREN-Wizard to generate specific applications through its GUI. This
GUI eases the specification of applications according to the GRN patterns used to model them. The final
user executes the specific application code generated by GREN-Wizard.

GREN-Wizard is composed of three modules: the domain specification module, the application
specification module, and the code generation module.

The domain specificationmodule allows the representation of information about the GRN pattern
language and its mapping to the corresponding GREN framework classesipplieation specifica-
tion module is responsible for storing information about the modeling of specific applications using the
pattern language. Finally, tlt®de generatiormodule takes as basis the information available about the
domain specification and about the application specification, to generate application specific code. This
code, together with the framework code, is used to produce the application to be delivered to the final
user.

According to Figure 4, the application engineer should first use the GREN-Wizard tool to gener-
ate the first version of the application. In this tool, as mentioned before, the application is specified in
terms of the GRN patterns used to model it. If any manual change in the application source code is
required, for example to include new functions not provided by the framework, it has to be done through
the GREN-WizardVersionContrabol, to guarantee that each modification is stored in its meta-database.
Afterwards, when new functions offered by the framework are requested to be included in the applica-
tion, the application engineer uses the GREN-Wizard tool again. In this case, the tool generates the new
application version, with the new functions inherited from the framework, together with all the modifica-
tions that were previously done in the source code. The final user interacts with all application versions
released for use.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

R
&N Modification
- on Specific
= Application

PRy
&
Domain Engineer Application
Engineer
Persistence
, | =

Version Control Tool

I

| cu I

| Meta-database

| ¢ I GREN-WizardVersionControl
I

I

1

Y

Domain Application I) i
Specification Specification I Code Generation
¢ ¢] ¢ Specific
. Application
I Persistence ‘ |

GREN |

+

GRN and GREN

GREN-Wizard

Application
Code
D ”/V version 1
%g version 2

Final User \ version n

Figure 4: GREN-Wizard an@REN-WizardVersionContralrchitectures

3.3 Implementation

The GREN-WizardVersionContrdbol was implemented using the same programming language used

to implement GREN and GREN-Wizard, which is Smalltalk (specifically using the VisualWorks envi-
ronment), so that these tools could be better integrated, to attend one of the desirable features of an
SCM system, as mentioned by Midha (Midha, 1997). BREN-WizardVersionContraheta-model

was mapped to a relational database (MySQL (MySQL, 2003)).

Figure 5 presents the main screen for GREN-WizardVersionContrabol, whose interface design
was based on the VisualWorkgystem Browsein order to make them as similar as possible, making it
easier to learn and use. This allows the user to naturally use the tool functionality, as part of his daily
work. This attends to another desirable feature of an SCM system (Midha, 1997).

Moreover, managing and configuring tB&EN-WizardVersionContrébol is easy, what makes it fit
another desirable feature of an SCM system (Midha, 1997).

As mentioned before, besides creating GREN-WizardVersionContrdbol, it was necessary to
update the GREN-Wizard tool, so that the changes done by the software engineer in the source code of a
certain application were considered in the future instantiations of the framework for that application. So,
when a new version of the application is generated by GREN-Wizard, itis able to detect classes, methods,
and attributes that were removed, included, or updated in the previous version of the application with the
support of theaGREN-WizardVersionContrgbecause they are stored in its meta-database.

Both source code inclusion and removal is automatically resolved by the GREN-Wizard tool. How-
ever, modifications done to methods that are inherited from the framework are identified by the tool as
a method conflict between application and framework source code. This requires the intervention of the

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Applications generated
from GREN-Wizard

Classes of the
selected application

Methods of the
selected
category

Method categories |

& /Application Yersion Control Teol

Bibl10 - & : classReferences [-] [guiFam
Bibl7 AparelhoForm SaLClauses guantificationStrategyCl
Bibla Cliente hotspots configuration typeClasses
Bibl9 ClienteForm accessing typeForms
BibIFEF Conserto initialize-release
BibIFEF1 ConsertoForm
clifisio Especificacan
locadoradecarros EspecificacaoForm J
Oficinafula Marca ® instance class
MarcaForm

ﬂ ﬂ &idd Categ. | Remaove Categ.] =

message selector and argument names |
“zomment stating purpose of messaM Method or class body

| temparary variable names |
statements

Confirm class or method according to active
code on “Method or class body” box.

Remove class or method according to active
code on “Method or class body” box. _J

Accept Remove Adtributes.. |

\ Add, change or remove attributes on meta-

\ database of applications modeled with GRN

Figure 5: Main screen for th @ REN-WizardVersionContrebol

software engineer to solve the problem at runtime, during the GREN-Wizard code generation. So, when
the GREN-Wizard tool detects conflicts, a screen is shown to the application engineer, as illustrated in
Figure 6 (left side). The application engineer has to inform the tool about the method content to be con-
sidered by the instantiation tool during the application generation. This is done by copying and pasting
the correct content in the text b&esulting MethodFigure 6 (right side)). After that, th&cceptbutton
should be pressed to confirm the compilation of the source code lines and to proceed with the framework
instantiation.

The GREN-Wizard tool also creates the database and MyS@ptsto allow the creation of tables
for the newly generated application. A modification was performed in this functionality to allow the
application engineer to choose between: 1) generating a new database or 2) keeping the present one, just
updating its modified structure to avoid loosing data already inserted into the database.

The GREN-WizardVersionContrabol was tested in another reengineering case study for the library
system, with the PARFAIT support, and it has shown to be effective, as described in the next section.

4 GREN-WizardVersionControtool - Example of usage

Figure 7 presents the “Book Loah’creen and the SQL script to create BaokLoan table, for the first
version of the library system. Both of them were generated by GREN-Wizard during the reengineering
with PARFAIT support.

During the application of the reengineering process, it was observed the need to make some changes

Sthat is, “Empéstimo de Livro” in Portuguese.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

REN Wizard Differator Tool
Compare
GREN Driginal Method GREM Modified Method
updateSetClause =] updateSetClause B
"super “clausula de atualizagdo
updateSetClause ', sigla =" do técnico”
self sigla printString
*super updateSetClause
', nome =" self nome
printString
Resulting Method

Accept

Figure 6: Screen for solving conflicts between framework and application methods

REN Wizard Differator Tool
Compare
GREN Original Method GREM Modified Methad
updateSetClause =] updateSetClause =]
"super “cldusula de atualizacdo
updateSetClause., sigla ="' do técnica”
self sigla printString
‘super updateSetClause
', nome =" self nome
printString
Resulting Method
updateSetClause =
“clausula de atualizacdo do técnica”
*super updateSetClause . ', nome =" _ self nome prmtSirlng‘
Accept

B

Novo | Saivs | Remove| Busca | Lista | Devobver| Ssi

Cadgo (3
Impii corlimago
Blung Matia lstela Cagrin - s Fiecko delocacdo | Recibn de devolugao,

Data Empréstino | 10303 Data Final | 40903

Obeervagis | ‘

Tilo Javadvancado Tl aie
Torbo. 111

Book Loan screen - v.1

G

SQL script generated from GREN-Wizard

create table Enprestinmo(
nunber integer not null,
date date,

observati on char (60),
status char (1),

total Price float,

total Di scount fl oat,
destinationParty integer,
resour ce integer,

i nstanceCode char (10),

fi ni shingDat e date,
returnDate date,
finevValue float);

Figure 7: Part of Library system application — Version 1

in the source code of the first application version. BREN-WizardVersionContrabol was used to
do that. Figure 8 presents one of the changes done, to modifwitidowLabel method, which
was inherited from the GREN framework: its original contelnb&n ” was changed toBook Loan ”.

10

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

This change was stored in ti&REN-WizardVersionContralatabase (Figure 8), to allow its posterior
incorporation by GREN-Wizard in future versions of the system.

L Application Yersion Control Tool @@
Editara +] [classReferences aDestinationPartyLabel -]
BibI7 EditaraForm pe aResourcelabel
Bibla Emprestimo report parameters aSourcePartylabel
ol
BibIFEF Exemplar
BibIFEF1 ExemplarForm
BibTeste Livra
clifisio LivraFarm =
locadoradecarros Taxa * instance " class
LocadoraVideo TaxaForm |
- *] | addtoics | RemmeCotg|
windowlabel = |
"Empréstimo de Livm|
Accept Remave Attributes.. |
ClassMethodVersionControl Table @
seq appldCode className methodName methodType protocolName methodBody action appVersion version
122 38 EmprestimoForm windowLabel c interface specs windowLabel u 1 2

~"Empréstimo de Livro~

WizardVersionControl
tool meta-database

Figure 8: Source code change in version 1 of the library system

Another change requested by the customer was the addition of a new functioff@liigrge a fine”,
as mentioned in Section 3). In this case, as GREN supplies this functionality, the GREN-Wizard tool was
used to instantiate GREN again, to include this new function. During the instantiation process, GREN-
Wizard detected the change done before intiredlowLabel method and opened a special screen to
solve the conflict between the method inherited from the framework and the method changed directly in
the application, as shown in Figure 9. The application engineer is responsible for solving this conflict,
through the screen presented by tBREN-Wizard Differator ToofFigure 9), which is automatically
opened by GREN-Wizard at runtime during the instantiation.

Figure 9 also presents some screens of the library system new version: “Book Loan”, with the
updated window label, and “Fine Ratresulting from the functionality added through GREN-Wizard,
as well as its SQL script.

Sthat is, “Taxa de Multa” in Portuguese.

11

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

ZuEp o [
o

GREN Drigial Method GREN Modiied Methad

=1 [windowLabel = T 00000
~Empréstimo de Livro’
,J [-Novo] Remove Fecha.

@ Fine Rate screen - v.2

create table IF NOT EXI STS Taxa(
percentageRate float,
| ower nunber i nteger,
upper nunber integer);

Book Loan screen - v.2

Conflict between methods W

SQL script generated from GREN-Wizard

Figure 9: Part of Version 2 functionality for the library system

5 Conclusions

The GREN-WizardVersionContrabol supports both reengineering and development processes based
on the GREN framework, using an incremental approach, as it allows the application engineer to have
an historical log of all changes done in each new system version. These changes are automatically
incorporated to new versions generated by GREN-Wizard, with minimum intervention of the application
engineer.

As we cannot guarantee that the source code generated by GREN-Wizard is always in the same
order, existing tools for version control (for example, CVS) are difficult to use to merge the application
versions. Besides, these tools do not have control mechanisms neither to detect source code conflicts
at instantiation time, nor to deal with database maintenance of the new application version. These facts
have motivated the development of BREN-WizardVersionControbol.

Other case studies should be performed with the tool to refine the tests already done and to add
improvements. Moreover, it is necessary to use it in other contexts, for example, software maintenance.
Although the tool presented in this paper is specific for a particular framework, its conceptual modeling
and architecture could possibly be used to implement other tools with the same goals for other existing
frameworks.

It should be observed th&REN-WizardVersionContrdd classified as an SCM system, as it fulfills
most of the desirable features (Midha, 1997) for this type of system: it is easy to use; it allows the user
to interact with its functionality as part of his daily job; it is easy to manage; and it is integrated to
GREN-Wizard.

References
Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development methods.
review and analysis. ESPOO (Technical Research Centre of Finland)’ 2002. VTT Publications n.

478. http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf . Accessed: De-
cember,2003.

12

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Beck, K. (2000).Extreme Programming Explained: Embrace Changddison-Wesley, 2nd edition.

Braga, R. (2003).A Process for Construction and Instantiation of Frameworks based on a Domain-
Specific Patterns LanguagPhD thesis, Instituto de Encias Materaticas e de Computag, Univer-
sidade de 8o Paulo. (in portuguese).

Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (1999). A pattern language for business resource
management. IRLOP’1999, Conference on Pattern Languages of Progrgrages 1-33.

Braga, R. T. V. and Masiero, P. C. (2003). Building a Wizard for Framework Instantiation Based on
a Pattern Language. @0IS’2003, 9th International Conference on Object-Oriented Information
Systemspages 95-106, Geneva, Switzerland. Lecture Notes on Computer Science, LNCS 2817.

Cagnin, M. |., Maldonado, J. C., Germano, F. S., Chan, A., and Penteado, R. D. (2003a). A reengineering
case study using the PARFAIT process SIBMS’2003, Simiisio de Desenvolvimento e Manut&ag
de Software da MarinhaNiter6i, RJ. CD-ROM, (in portuguese).

Cagnin, M. ., Maldonado, J. C., Germano, F. S., and Penteado, R. D. (2003b). PARFAIT: Towards a
framework-based agile reengineering processAMC’2003, Agile Development Conferenpages
22-31. IEEE.

Carnegie Mellon University (2002). Capability maturity model integration - version 1.1. Technical
Report CMU/SEI-2002-TR-003, Carnegie Mellon University, Software Engineering Institute.

Chan, A., Cagnin, M. |., and Maldonado, J. C. (2003). Application of PARFAIT agile reengineering
process in a library control legacy system. Working Document, ICMC-USP.

Cincom (2003). Visualworks 5i.4 non-commercihttp://www.cincom.com/ . Accessed: Febru-
ary, 2003.

CVS (2004). Concurrent Versions System - The open standard for version contiol/www.
cvshome.org . Accessed: December, 2003.

Fayad, M. and Schmidt, D. C. (1997). Object-oriented application framew@tmunications of the
ACM, 40(10).

Fowler, M. and Scott, K. (1997)UML Distilled - Applying the Standard Object Modeling Language
Addison-Wesley, first edition.

FreeVCS (2004). Free Version Control Systétip://www.thensle.de . Accessed: April, 2004.

IBM (2004). Clearcase. http://lwww-306.ibm.com/software/awdtools/clearcase
Accessed: April, 2004.

ISO 9000 (1993). International Organization for Standardizatitp.://www.iso.ch/iso/en/
is09000-14000/is09000/is09000index.html . Accessed: April, 2004.

ISO/IEC 15504 (1998). International Standard for Software Process Assessmigttp.//
isospice.com/standard/tr15504.htm . Accessed: April, 2004.

Johnson, R. E. and Foote, B. (1988). Designing reusable claks@&mal of Object Oriented Program-
ming — JOOR 1(2):22-35.

13

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Microsoft (2004). Visual SourceSafe. http://www.msdn.microsoft.com/vstudio/
previous/ssafe . Accessed: April, 2004.

Midha, A. K. (1997). Software configuration management for the 21st centBell Labs Techni-
cal Journal 2(1). http://citeseer.nj.nec.com/midha97software.html . Accessed:
February, 2004.

MySQL (2003). Mysql reference manuahttp://www.mysqgl.com/doc/en/index.html
Accessed: December, 2003.

OMG (2003). Unified Modeling Language Specification. Version 1.5, formal/2003-03xp.://
www.omg.org/technology/documents/formal/uml.htm . Accessed: April, 2005.

Paulk, M. C. (1993). Capability maturity model for software - version 1.1. Technical Report CMU/SEI-
1993-TR-24, Carnegie Mellon University, Software Engineering Institute.

Pressman, R. (2001poftware Engineering: A Practitioner’s ApproacklicGraw-Hill, 5th edition.

Quma Software Inc. (2004). QVCS — Quma Version Control Sysketp://www.qumasoft.com
Accessed: April, 2004.

Reichenberger, C. (1991). Delta storage for arbitrary non-text #€d4, pages 144-152.

Soares, M. D., Fortes, R. P. M., and Moreira, D. A. (2000). VersionWeb: A Tool for Helping Web Pages
Version Control. INIMSA'2000, 4th International Conference on Internet Multimedia Systems and
Applications pages 275-280, Las Vegas, Nevada, USA.

Synergex (2004). PVCSttp://www.pvcs.synergex.com . Accessed: April, 2004.

Taligent (1997). Building object-oriented frameworks. http://www.ibm.com/java/
education/oobuilding/index.html . Accessed: February, 2002.

Telelogic (2004). Continuus/CMhttp://www.telelogic.com/continuus.cfm . Accessed:
April, 2004.

Tourwg, T. (2002).Automated Support For Framework-Based Software EvolutRitD thesis, Depart-
ment of Computer Science, Vrije Universiteit Brussel, Brussel.

Turk, D., France, R., and Rumpe, B. (2002). Limitations of agile software processékirdrinterna-
tional Conference on Extreme Programming and Agile Processes in Software Engineering (XP’2002)
pages 43-46, Alghero, Sardinia, Italy.

14

