
A Version Control Tool for Framework-based Applications

Maria Istela Cagnin1 ∗, Rosana T. V. Braga1, Roŝangela Penteado2,
Ferñao Germano1, Jośe Carlos Maldonado1

1University of S̃ao Paulo

Instituto de Cîencias Mateḿaticas e de Computacão

São Carlos, S̃ao Paulo, Brasil

Caixa Postal 668, CEP 13560-970

{istela, rtvb, fernao, jcmaldon }@icmc.usp.br

2Federal University of S̃ao Carlos

Departamento de Computacão

São Carlos, S̃ao Paulo, Brasil

Caixa Postal 676, CEP 13.565-905

rosangel@dc.ufscar.br

Abstract

Framework based application development is increasingly being adopted by software organizations.
Frameworks provide reuse of both software design and code, and supply more trustable applications, as
the components used to implement them have been previously tested. However, version control is more
problematic than in conventional software development, as it is necessary to control both the framework
versions and the versions of the applications created with it. Furthermore, aiming to minimize the impact
of system requirement changes, framework based software development and reengineering processes
adopt the incremental approach, which is a “must” in agile methodologies. This approach makes easier
to fulfill requests for system requirements change at any time during the process application. In that
context, there is a lack of tools that support version control of applications created with frameworks. This
paper presents a tool that aims to aid in the fulfillment of that need, contributing to quality assurance of
the products that result from software development or reengineering.

1 Introduction

Software evolves constantly to attend changes in management, functions, business, government rules,
among others, so that the fulfillment of user needs is always kept. To control such changes, it is necessary
to establish an efficient and systematic control of the versions produced and delivered to users. This
can be accomplished throughSoftware Configuration Management - SCM, which is a set of activities
that aims to manage changes occurred during all software life cycle, and also helping to guarantee its
quality (Pressman, 2001). Software organizations are increasing their investments on development of

∗Financial Support from FAPESP #00/10881–4.

1

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

framework based applications (Taligent, 1997; Fayad and Schmidt, 1997). A framework is a set of
classes that embeds an abstract and reusable design of solutions for a family of related problems in a
particular domain (Johnson and Foote, 1988). They allow the reuse of both design and code, and the
resulting applications are more reliable, because the components used to build the applications were
carefully tested and were probably used before by other organizations. Moreover, Fayad and Schmidt
(1997) state that, using frameworks, applications can be developed faster and with less effort.

However, version control is more complex in the context of framework based development than
it is in the context of traditional software development, due to the need of controlling not only the
framework versions but also of the applications generated from it. Frameworks version control has to
be done with special care, because framework evolutions can change its design and, consequently, the
design of dependent applications. As a result, these applications might not fit the new design and behave
improperly.

To minimize the impact of changes in system requirements, some development and reengineer-
ing processes, based on frameworks, adopt the incremental approach, which is indispensable to agile
methodologies (Abrahamsson et al., 2002; Beck, 2000; Turk et al., 2002). This approach eases the ful-
fillment of requests to change system requirements, done anytime during the process application. In this
context, there is a lack of tools to support version control of both frameworks and applications derived
from them. Framework instantiation allows the inclusion or removal of components in an application
that was created before with the same framework. However, in case the application had been modi-
fied manually to include new functions that were not provided by the framework, if the framework is
instantiated again to add new functions, all the manually included source code will be lost.

This paper presents a tool, which is specific to control the versions of applications generated from a
particular framework. Its goal is to provide means of soften this lack, as well as to support the execution
of the taskversion controlduring the SCM acitivity, and helping to guarantee the resulting product
quality, both during forward engineering and reengineering. Related work is discussed in Section 2. The
mentioned tool, namedGREN-WizardVersionControl, is presented in Section 3, together with details of
its conceptual modeling, architecture, and implementation. In Section 4, the experience of using this tool
in a reengineering case study is presented. In Section 5, conclusions and future work is discussed.

2 Related Work

SCM is considered as one of the most important activities to obtain quality certification in several stan-
dards, such as ISO 9000 (ISO 9000, 1993),Capability Maturity Model(CMM) (Paulk, 1993),Capability
Maturity Model Integration(CMMI) (Carnegie Mellon University, 2002) and ISO/IEC 15504 (Software
Process Improvement and Capability dEtermination) or SPICE (ISO/IEC 15504, 1998). According to
Pressman (2001), SCM is composed of five tasks: (1) changes identification, (2) version control, (3)
changes control, (4) configuration auditing, and (5) reports (to inform what happened, who did the
changes, when the change was done, what will be affected with the change, etc). Theversion control
task is the most known and, at the same time, the one that has more responsibilities, because it deals with
the storage and retrieval of different versions of the artifacts generated during the software process.

Some desirable features of an SCM system are highlighted by Midha (1997): a) usability, so that
the user can use the tool functionality as part of his/her job execution; b) easiness of managing the
tool; c) support for distributed development, so that the system can be also used by remotely distributed
development teams; e d) SCM functionality integragrion with other tools. To minimize repository storage
space for the artifact versions, SCM systems often usedelta scripts, or simplydeltas, in which only one
artifact version is stored integrally, while the other versions store only the difference (Reichenberger,
1991). There are two approaches that deal with deltas:negative deltaandpositive delta. The former,
also known asreverse delta, stores integrally the most recent version and the differences until then, so
that the last version is available in a faster way. Thepositive deltastores integrally the oldest version

2

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

and the differences since then. The tool presented in this paper stores only the modifications done in
each application version, because there is a framework instantiation historic that is considered by the
tool, in which it is possible to obtain the functionality of the generated applications. Thus, it is possible
to automatically obtain information of the applications oldest version.

There are several SCM tools, with varying functionality, complexity, and price. This requires the
software engineer to evaluate each one to choose the most appropriate to his/her needs.ClearCase
(IBM, 2004), Continuus/CM(Telelogic, 2004),Visual Source Safe(Microsoft, 2004),QVCS(Quma
Software Inc., 2004),FreeVCS(FreeVCS, 2004),CVS(CVS, 2004),VersionWeb(Soares et al., 2000)
and PVCS(Synergex, 2004) are examples of existing SCM tools. None of them fulfills the need of
controlling the several versions of applications generated from frameworks. However, a tool was found,
proposed by Tourẃe (Tourẃe, 2002), to evaluate the impact that changes can have, both in the framework
and in the applications class hierarchy. To achieve that: a) it first provides the definition of changes
propagation, allowing the developer to evaluate the impact of transformations in the framework and
depending applications, to detect possible “merge” conflicts; b) it suggests how these problems can be
solved. Tourẃe’s tool has different goals than the tool presented in this paper, which aims at controlling
the changes caused in frameworks and corresponding derived applications.

3 GREN-WizardVersionControltool

The motivation to create theGREN-WizardVersionControltool became evident after two reengineering
case studies: the first for a library legacy system (Cagnin et al., 2003a; Chan et al., 2003), and the second
for a electronic appliances repair shop legacy system (Cagnin et al., 2003b), both developed in Clipper.
The reengineering of these systems was done with the support of the PARFAIT1 agile reengineering
process(Cagnin et al., 2003b).

PARFAIT is incremental and iterative, as the software engineer has the flexibility to return to previ-
ously executed steps to refine the produced artifacts. It is considered an agile process, because it provides
severalpracticesof agile methodologies (Beck, 2000), for example: a) a new version of the system is de-
livered as soon as possible – attends the“small releases” XP (eXtreme Programming) practice; b) users
participate actively of most reegineering project activities and approve the product as the design evolves.
In each interaction with users, product improvements are done – attends the“customer is present” XP
practice; c) tests in the new system are done frequently and compared to the legacy system tests – at-
tends the“frequent tests” XP practice; d) reengineering planning is done again in each process iteration
– attends the“planning game” XP practice; and e) stimulates the“pair programming” XP practice.

PARFAIT uses the GREN framework (from Portuguese “Gestão de REcursos de Negócios”, which
means Business Resource Management) (Braga, 2003) as a computational support: a) to the reverse
engineering activities: during new requirements elicitation and during the identification of legacy system
business rules; and b) to the forward engineering activities to create the new system prototype. GREN
construction was based on the analysis pattern language for the same domain, named GRN (Braga et al.,
1999), so it is specific to ease the reengineering of legacy systems belonging to the business resource
management domain, which includes applications for trading, renting or maintaining business resources.
The framework was built using the Smalltalk programming language and the persistence of objects is
done using the MySQL database management system (MySQL, 2003). There is a tool to ease GREN
instantiation, named GREN-Wizard (Braga and Masiero, 2003), which requests the GRN patterns used
to model the system and generates the classes of the application (in Smalltalk), together with the MySQL
tables needed to persist the objects.

1PARFAIT is the acronym for ProcessóAgil de Reengenharia baseado em FrAmework no domı́nio de sistemas de In-
formaç̃ao com VV&T (in Portuguese), which means “Framework-based Agile Reengineering Process in the Information
System Domain with VV&T”.

3

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

After creating the library system, during the reengineering supported by GREN-Wizard, some
changes were done in its source code to make it functionally compatible with the legacy system. After-
wards, a new functionality was requested by the customer, which was not present in the legacy system,
which was:“Charge a Fine” during the book devolution if the user returns the book after the due date.
This functionality is supported by one of GRN patterns and, so, is provided by the GREN framework,
without the need to implement it manually. This could be as simple as creating the application again
using GREN to add the required functionally. However, doing that would cause the loss of the source
code lines included manually in the application in the previous maintenance. This problem has motivated
the need to create a tool to store the changes done in the applications source code, so that all changes
manually done in applications generated by GREN could be retrieved and incorporated in later instanti-
ations. Besides making evident the need to create the version control tool for applications created from
the GREN framework, it was also observed the need to evolve the framework instantiation tool (GREN-
Wizard), so that it could incorporate, during the creation of the new application version, the changes
done in the source code in previous maintenances. This allows GREN to effectively support incremental
development and reengineering, making possible to add new functions at any time during the application
of these processes.

Thus, the tool was created so that agility is not injured during the PARFAIT reengineering process,
as it uses the incremental approach during both the reverse engineering and the forward engineering
activities. The tool is useful not only in PARFAIT but also in the development of new applications in an
incremental way.

3.1 Conceptual Modeling

This section presents theGREN-WizardVersionControltool functionality and metamodel, through a use
case diagram and a class diagram respectively. Both are UML (Unified Modelling Language) diagrams
(Fowler and Scott, 1997; OMG, 2003).

3.1.1 Tool Functionality

TheGREN-WizardVersionControltool use case diagram is shown in Figure 1. All use cases, except for
that filled with grey color (“Decide about conflicts between methods”), are performed during the modi-
fications of the source code in applications generated from the framework. The “Decide about conflicts
between methods” use case is performed during the framework instantiation with the support of the up-
dated GREN-Wizard tool to make part of theGREN-WizardVersionControltool, specifically when some
method inherited from a framework class had been manually modified by the application engineer. The
“Change Attribute” use case is performed when the application developer needs to add basic attributes
(integer, string, float, date) that are not inherited from the framework. Besides adding
basic attributes, it is possible to add attributes with special treatment: enumerated attributes (“Add enu-
merated attribute”) and multivalued attributes (“Add multivalued attribute”).

“Remove class”, “Remove attribute”, “Remove method category” and “Remove method” use cases
are executed only for classes, attributes, method categories, and methods not inherited from the frame-
work, respectively. Removal restrictions were established to avoid the accidental or intentional removal
of components (i.e., classes, attributes, methods, etc) inherited from the framework. So, it is only al-
lowed for the application engineer to override or modify the inherited methods, to ensure that none of
the frameworkhot-spots2 are damaged, and that the application structure is correct and works properly.

2variable framework structures that contain the components that can be adapted and extended by the software engineer
in the application instantiated from the framework, so as to adapt them to the needs of a particular system (for example,
business rules, functional requirements inherent to the internal organization policies, etc).

4

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Allows to change
only basic attributes
and not inherited
from the framework.

Allows to remove
only attributes not
inherited from the
framework.

Add class

Remove class

Change class

Add method category

Remove method category

Add method

Change method

Remove method

Decide about conflicts
between methods

Remove attribute

Change attribute

Application
Engineer

Add enumerated attribute Add multivalued attribute

Add attribute

<<extends>>
<<extends>>

Performed
during the
framework
instantiation.

Allows to remove
only classes not
inherited from the
framework.

Allows to remove
only methods not
inherited from the
framework.

Allows to remove only
method categories
not inherited from the
framework.

Figure 1: Use Case Diagram for theGREN-WizardVersionControltool

3.1.2 Tool Metamodel

The GREN-WizardVersionControltool metamodel is presented through a class diagram, as
illustrated in Figure 2. Some existing classes from GREN (PersistentObject) and
GREN-Wizard (GrenWizardCodeGenerator , GrenWizardGUI , GrenApplication ,
AttributeMappingForm , and AttributeListForm) had to be modified, so they are
shown in grey. Classes:ClassVersionControl , ClassProtocolVersionControl , and
ClassMethodVersion contain relevant information about the class being changed, about the method
protocol or category3, and about the method, respectively. As these classes contain some common
information, they inherit fromMetaVersionControl . The GREN-WizardVersionControl
class is responsible for the version control as a whole and contains an interface similar to theSystem
Browser, which is one of the VisualWorks (Cincom, 2003) tools used to develop our tool. The
GrenWizardDifferatorTool class4 is responsible for showing conflicting parts of the source
code for methods inherited from GREN that were modified in a previous application version. These
conflicts occur during the instantiation of a new application version through the updated GREN-Wizard
tool and need to be taken care of by the application engineer.

3in Smalltalk, class methods are organized in protocols (or categories), which are groups of semantically related methods.
4based on VisualWorksDifferator class.

5

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

ClassProtocolVersionControl
protocolName
protocolType

ClassVersionControl
superClassName
indexedType
private
instanceVariableNames
classInstanceVariableNames
imports
category

GREN classes
modified

GREN version
control classes
created

Legend:

ClassAttributeVersionControl
attibutePrevName
attributeName
attributeType
attributeLenght
sequentialNb

PersistentObject

GrenWizardDifferatorTool
appNameSpace
aclassName
text1
text2
textResult
diffModeHolder
diffMode

ClassMethodVersionControl

methodName
methodType
protocolName
methodBody

0..10..n 0..10..n

verifies conflicts

GrenWizardVersionControl
appNameSpace
appIdCode
aclassName
appVersion
currentVersion
protocolName
type
aClassOrganizer
appNameSpaceList
classNameList
protocolNameList
methodNameList
methodBody
instanceType
classType

MetaVersionControl

seq
appIdCode
aclassName
action
appVersion
currentVersion

0..n 0..n0..n 0..n

controls

GrenWizardCodeGenerator

0..n

1

0..n

1

uses

GrenApplicationGrenWizardGUI
11 11

calls
1..n1 1..n1

creates

AttributeListFormAttributeMappingForm

0..n

1

0..n

1
calls

1..n1 1..n1

calls

Figure 2: Class Diagram for theGREN-WizardVersionControltool

3.2 Architecture

The GREN-WizardVersionControltool architecture was based both on GREN and GREN-Wizard ar-
chitectures. GREN architecture was designed in three layers: persistence, business and graphical user
interface (GUI), as presented in Figure 3. Thepersistence layerhas classes to deal with database con-
nection, management of objects identifiers and objects persistence. Thebusiness layercommunicates
with the persistence layer to store objects. In this layer there are several classes derived directly from the
analysis patterns that compose the GRN pattern language, i.e., the classes and associations contained in
each pattern have the corresponding implementation in this layer. TheGUI layer contains classes to deal
with data input and output, allowing the interaction with the system final user. This layer communicates
with the business layer to obtain the objects, to be shown in the GUI and to return information to be
processed by the business layer methods.

The GREN-Wizard layer, responsible for generating the application source code from its specifica-
tion based on GRN patterns, stays above GREN, as it uses all the other layers. The GREN-Wizard layer
communicates with theGREN-WizardVersionControllayer, which is responsible for controlling the ver-
sions of applications generated from the GREN framework. It supports incremental development and
reengineering and, consequently, processes based on agile methodologies. Specific applications can be
built from its GUI layer, without the support of the GREN-Wizard layer, by using (through inheritance
or object referencing) classes of all GREN layers below it, or can be built based on the business layer, if
the GUI layer is not reused from GREN, but implemented separately.

Figure 4 shows GREN-Wizard andGREN-WizardVersionControlarchitectures. Two actors interact

6

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

GREN-
Wizard

Specific Applications

GREN - Graphical User Interface (GUI)

GREN - Business

GREN - Persistence

JdmMySQLDriver Smalltalk
MySQL

Specific
A

pplications

Specific A
pplications

G
R

E
N

G

R
E

N
-W

izard and
G

R
E

N
-W

izard V
ersion C

ontrol
B

asic R
esources

Hardware / Operational System

Final User

 Domain Engineer

Application
Engineer

A
plications

G
enerated from

Fram

ew
ork

GREN-Wizard
Version Control

Figure 3: GREN framework architecture (adapted from (Braga, 2003))

directly with GREN-Wizard: the domain engineer, who is responsible for building the wizard (and,
possibly, also has participated in the pattern language creation and in the framework development) and
the application engineer, who uses GREN-Wizard to generate specific applications through its GUI. This
GUI eases the specification of applications according to the GRN patterns used to model them. The final
user executes the specific application code generated by GREN-Wizard.

GREN-Wizard is composed of three modules: the domain specification module, the application
specification module, and the code generation module.

Thedomain specificationmodule allows the representation of information about the GRN pattern
language and its mapping to the corresponding GREN framework classes. Theapplication specifica-
tion module is responsible for storing information about the modeling of specific applications using the
pattern language. Finally, thecode generationmodule takes as basis the information available about the
domain specification and about the application specification, to generate application specific code. This
code, together with the framework code, is used to produce the application to be delivered to the final
user.

According to Figure 4, the application engineer should first use the GREN-Wizard tool to gener-
ate the first version of the application. In this tool, as mentioned before, the application is specified in
terms of the GRN patterns used to model it. If any manual change in the application source code is
required, for example to include new functions not provided by the framework, it has to be done through
theGREN-WizardVersionControltool, to guarantee that each modification is stored in its meta-database.
Afterwards, when new functions offered by the framework are requested to be included in the applica-
tion, the application engineer uses the GREN-Wizard tool again. In this case, the tool generates the new
application version, with the new functions inherited from the framework, together with all the modifica-
tions that were previously done in the source code. The final user interacts with all application versions
released for use.

7

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

version n

...

version 2

Domain
Specification

GUI

Application
Specification Code Generation

Persistence

GREN-Wizard

Final User

Domain Engineer Application
Engineer

Specific
Application

version 1

+

GREN

Application
Code

GREN-WizardVersionControl

GUI

Modification
on Specific
Application

Persistence

GRN and GREN

 Meta-database

Meta-database of
applications

modeled with GRN

Version Control Tool

Meta-database

Figure 4: GREN-Wizard andGREN-WizardVersionControlarchitectures

3.3 Implementation

The GREN-WizardVersionControltool was implemented using the same programming language used
to implement GREN and GREN-Wizard, which is Smalltalk (specifically using the VisualWorks envi-
ronment), so that these tools could be better integrated, to attend one of the desirable features of an
SCM system, as mentioned by Midha (Midha, 1997). TheGREN-WizardVersionControlmeta-model
was mapped to a relational database (MySQL (MySQL, 2003)).

Figure 5 presents the main screen for theGREN-WizardVersionControltool, whose interface design
was based on the VisualWorksSystem Browser, in order to make them as similar as possible, making it
easier to learn and use. This allows the user to naturally use the tool functionality, as part of his daily
work. This attends to another desirable feature of an SCM system (Midha, 1997).

Moreover, managing and configuring theGREN-WizardVersionControltool is easy, what makes it fit
another desirable feature of an SCM system (Midha, 1997).

As mentioned before, besides creating theGREN-WizardVersionControltool, it was necessary to
update the GREN-Wizard tool, so that the changes done by the software engineer in the source code of a
certain application were considered in the future instantiations of the framework for that application. So,
when a new version of the application is generated by GREN-Wizard, it is able to detect classes, methods,
and attributes that were removed, included, or updated in the previous version of the application with the
support of theGREN-WizardVersionControl, because they are stored in its meta-database.

Both source code inclusion and removal is automatically resolved by the GREN-Wizard tool. How-
ever, modifications done to methods that are inherited from the framework are identified by the tool as
a method conflict between application and framework source code. This requires the intervention of the

8

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Applications generated
from GREN-Wizard

Classes of the
selected application

Method categories Methods of the
selected

category

Method or class body

Remove class or method according to active

code on “Method or class body” box.

Confirm class or method according to active
code on “Method or class body” box.

Add, change or remove attributes on meta-
database of applications modeled with GRN

Figure 5: Main screen for theGREN-WizardVersionControltool

software engineer to solve the problem at runtime, during the GREN-Wizard code generation. So, when
the GREN-Wizard tool detects conflicts, a screen is shown to the application engineer, as illustrated in
Figure 6 (left side). The application engineer has to inform the tool about the method content to be con-
sidered by the instantiation tool during the application generation. This is done by copying and pasting
the correct content in the text boxResulting Method(Figure 6 (right side)). After that, theAcceptbutton
should be pressed to confirm the compilation of the source code lines and to proceed with the framework
instantiation.

The GREN-Wizard tool also creates the database and MySQLscriptsto allow the creation of tables
for the newly generated application. A modification was performed in this functionality to allow the
application engineer to choose between: 1) generating a new database or 2) keeping the present one, just
updating its modified structure to avoid loosing data already inserted into the database.

TheGREN-WizardVersionControltool was tested in another reengineering case study for the library
system, with the PARFAIT support, and it has shown to be effective, as described in the next section.

4 GREN-WizardVersionControltool - Example of usage

Figure 7 presents the “Book Loan”5 screen and the SQL script to create theBookLoan table, for the first
version of the library system. Both of them were generated by GREN-Wizard during the reengineering
with PARFAIT support.

During the application of the reengineering process, it was observed the need to make some changes

5that is, “Empŕestimo de Livro” in Portuguese.

9

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Resulting Method Resulting Method

Figure 6: Screen for solving conflicts between framework and application methods

create table Emprestimo(
number integer not null,
date date,
observation char(60),
status char(1),
totalPrice float,

totalDiscount float,
destinationParty integer,
resource integer,
instanceCode char(10),
finishingDate date,
returnDate date,
fineValue float);

MySQL

Book Loan screen - v.1

SQL script generated from GREN-Wizard

Figure 7: Part of Library system application – Version 1

in the source code of the first application version. TheGREN-WizardVersionControltool was used to
do that. Figure 8 presents one of the changes done, to modify thewindowLabel method, which
was inherited from the GREN framework: its original content “Loan ” was changed to “Book Loan ”.

10

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

This change was stored in theGREN-WizardVersionControldatabase (Figure 8), to allow its posterior
incorporation by GREN-Wizard in future versions of the system.

seq appIdCode className methodName methodType protocolName methodBody action appVersion version

...

122 38 EmprestimoForm windowLabel c interface specs windowLabel u 1 2
 ^'Empréstimo de Livro'

...

...

GREN-

WizardVersionControl
tool meta-database

ClassMethodVersionControl Table

Figure 8: Source code change in version 1 of the library system

Another change requested by the customer was the addition of a new functionality (“Charge a fine”,
as mentioned in Section 3). In this case, as GREN supplies this functionality, the GREN-Wizard tool was
used to instantiate GREN again, to include this new function. During the instantiation process, GREN-
Wizard detected the change done before in thewindowLabel method and opened a special screen to
solve the conflict between the method inherited from the framework and the method changed directly in
the application, as shown in Figure 9. The application engineer is responsible for solving this conflict,
through the screen presented by theGREN-Wizard Differator Tool(Figure 9), which is automatically
opened by GREN-Wizard at runtime during the instantiation.

Figure 9 also presents some screens of the library system new version: “Book Loan”, with the
updated window label, and “Fine Rate”6, resulting from the functionality added through GREN-Wizard,
as well as its SQL script.

6that is, “Taxa de Multa” in Portuguese.

11

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

create table IF NOT EXISTS Taxa(

 percentageRate float,

 lowernumber integer,
 uppernumber integer);

SQL script generated from GREN-Wizard

MySQL

Book Loan screen - v.2

Fine Rate screen - v.2

Conflict between methods

de Livros

Resulting Method

Figure 9: Part of Version 2 functionality for the library system

5 Conclusions

The GREN-WizardVersionControltool supports both reengineering and development processes based
on the GREN framework, using an incremental approach, as it allows the application engineer to have
an historical log of all changes done in each new system version. These changes are automatically
incorporated to new versions generated by GREN-Wizard, with minimum intervention of the application
engineer.

As we cannot guarantee that the source code generated by GREN-Wizard is always in the same
order, existing tools for version control (for example, CVS) are difficult to use to merge the application
versions. Besides, these tools do not have control mechanisms neither to detect source code conflicts
at instantiation time, nor to deal with database maintenance of the new application version. These facts
have motivated the development of theGREN-WizardVersionControltool.

Other case studies should be performed with the tool to refine the tests already done and to add
improvements. Moreover, it is necessary to use it in other contexts, for example, software maintenance.
Although the tool presented in this paper is specific for a particular framework, its conceptual modeling
and architecture could possibly be used to implement other tools with the same goals for other existing
frameworks.

It should be observed thatGREN-WizardVersionControlis classified as an SCM system, as it fulfills
most of the desirable features (Midha, 1997) for this type of system: it is easy to use; it allows the user
to interact with its functionality as part of his daily job; it is easy to manage; and it is integrated to
GREN-Wizard.

References

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development methods.
review and analysis. ESPOO (Technical Research Centre of Finland)’ 2002. VTT Publications n.
478. http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf . Accessed: De-
cember,2003.

12

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Beck, K. (2000).Extreme Programming Explained: Embrace Change. Addison-Wesley, 2nd edition.

Braga, R. (2003).A Process for Construction and Instantiation of Frameworks based on a Domain-
Specific Patterns Language. PhD thesis, Instituto de Ciências Mateḿaticas e de Computação, Univer-
sidade de S̃ao Paulo. (in portuguese).

Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (1999). A pattern language for business resource
management. InPLOP’1999, Conference on Pattern Languages of Programs, pages 1–33.

Braga, R. T. V. and Masiero, P. C. (2003). Building a Wizard for Framework Instantiation Based on
a Pattern Language. InOOIS’2003, 9th International Conference on Object-Oriented Information
Systems, pages 95–106, Geneva, Switzerland. Lecture Notes on Computer Science, LNCS 2817.

Cagnin, M. I., Maldonado, J. C., Germano, F. S., Chan, A., and Penteado, R. D. (2003a). A reengineering
case study using the PARFAIT process. InSDMS’2003, Simṕosio de Desenvolvimento e Manutenção
de Software da Marinha, Niterói, RJ. CD-ROM, (in portuguese).

Cagnin, M. I., Maldonado, J. C., Germano, F. S., and Penteado, R. D. (2003b). PARFAIT: Towards a
framework-based agile reengineering process. InADC’2003, Agile Development Conference, pages
22–31. IEEE.

Carnegie Mellon University (2002). Capability maturity model integration - version 1.1. Technical
Report CMU/SEI-2002-TR-003, Carnegie Mellon University, Software Engineering Institute.

Chan, A., Cagnin, M. I., and Maldonado, J. C. (2003). Application of PARFAIT agile reengineering
process in a library control legacy system. Working Document, ICMC-USP.

Cincom (2003). Visualworks 5i.4 non-commercial.http://www.cincom.com/ . Accessed: Febru-
ary, 2003.

CVS (2004). Concurrent Versions System - The open standard for version control.http://www.
cvshome.org . Accessed: December, 2003.

Fayad, M. and Schmidt, D. C. (1997). Object-oriented application frameworks.Communications of the
ACM, 40(10).

Fowler, M. and Scott, K. (1997).UML Distilled - Applying the Standard Object Modeling Language.
Addison-Wesley, first edition.

FreeVCS (2004). Free Version Control System.http://www.thensle.de . Accessed: April, 2004.

IBM (2004). Clearcase.http://www-306.ibm.com/software/awdtools/clearcase .
Accessed: April, 2004.

ISO 9000 (1993). International Organization for Standardization.http://www.iso.ch/iso/en/
iso9000-14000/iso9000/iso9000index.html . Accessed: April, 2004.

ISO/IEC 15504 (1998). International Standard for Software Process Assessment.http://
isospice.com/standard/tr15504.htm . Accessed: April, 2004.

Johnson, R. E. and Foote, B. (1988). Designing reusable classes.Journal of Object Oriented Program-
ming – JOOP, 1(2):22–35.

13

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

Microsoft (2004). Visual SourceSafe. http://www.msdn.microsoft.com/vstudio/
previous/ssafe . Accessed: April, 2004.

Midha, A. K. (1997). Software configuration management for the 21st century.Bell Labs Techni-
cal Journal, 2(1). http://citeseer.nj.nec.com/midha97software.html . Accessed:
February, 2004.

MySQL (2003). Mysql reference manual.http://www.mysql.com/doc/en/index.html .
Accessed: December, 2003.

OMG (2003). Unified Modeling Language Specification. Version 1.5, formal/2003-03-01.http://
www.omg.org/technology/documents/formal/uml.htm . Accessed: April, 2005.

Paulk, M. C. (1993). Capability maturity model for software - version 1.1. Technical Report CMU/SEI-
1993-TR-24, Carnegie Mellon University, Software Engineering Institute.

Pressman, R. (2001).Software Engineering: A Practitioner’s Approach. McGraw-Hill, 5th edition.

Quma Software Inc. (2004). QVCS – Quma Version Control System.http://www.qumasoft.com .
Accessed: April, 2004.

Reichenberger, C. (1991). Delta storage for arbitrary non-text files.ACM, pages 144–152.

Soares, M. D., Fortes, R. P. M., and Moreira, D. A. (2000). VersionWeb: A Tool for Helping Web Pages
Version Control. InIMSA’2000, 4th International Conference on Internet Multimedia Systems and
Applications, pages 275–280, Las Vegas, Nevada, USA.

Synergex (2004). PVCS.http://www.pvcs.synergex.com . Accessed: April, 2004.

Taligent (1997). Building object-oriented frameworks. http://www.ibm.com/java/
education/oobuilding/index.html . Accessed: February, 2002.

Telelogic (2004). Continuus/CM.http://www.telelogic.com/continuus.cfm . Accessed:
April, 2004.

Tourwé, T. (2002).Automated Support For Framework-Based Software Evolution. PhD thesis, Depart-
ment of Computer Science, Vrije Universiteit Brussel, Brussel.

Turk, D., France, R., and Rumpe, B. (2002). Limitations of agile software processes. InThird Interna-
tional Conference on Extreme Programming and Agile Processes in Software Engineering (XP’2002),
pages 43–46, Alghero, Sardinia, Italy.

14

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 7, DECEMBER 2007

