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Abstract 

Pseudoknots are a frequent RNA structure that assumes essential roles for varied biocatalyst cell’s functions. One of the 
most challenging fields in bioinformatics is the prediction of this secondary structure based on the base-pair sequence 
that dictates it. Previously, a model adapted from computational linguistics – Stochastic Context Free Grammars (SCFG) 
–  has been used to predict RNA secondary structure. However, to this date the SCFG approach impose a prohibitive 
complexity cost [O(n 4) ] when they are applied to the prediction of pseudoknots, mainly because a context-sensitive 
grammar is formally required to analyze them. Other hybrids approaches (energy maximization) give a O(n 3)  
complexity in the best case, besides having several restrictions in the maximum length of the sequence for practical 
analysis.  
Here we introduce a novel algorithm, based on pattern matching techniques, that uses a sequential approximation 
strategy to solve the original problem. This algorithm not only reduces the complexity to O(n 2logn) , but also widens 
the maximum length of the sequence, as well as the capacity of analyzing several pseudoknots simultaneously. 
 
Keywords: pseudoknots, Stochastic Context Free Grammars (SCFG), secondary structure prediction, RNA, dynamic 

programming.  
 
1. Introduction 
 
Bioinformatics is an applied science where mathematical and computational theories and technologies are 
used in order to process, relate and derive predictions and inferences from data obtained in molecular 
biology. Bioinformatic’s goal is to understand and analyze the information control and flow within different 
organisms. There is a synergic interaction between computer science, mathematics and biology, each with its 
own richness and limitations. 
Within the bioinformatics scope, one of the most important fields is biological sequence analysis, which 
assumes the representation of the molecules that are essential for life (DNA, RNA, Proteins) as residues 
chains represented as symbols in a particular alphabet, thus allowing its study with grammatical analysis in 
order to find relations among these residues.  These found relations determine, according to the central 
dogma2 of molecular biology, the biological properties of such molecules [21][18]. This sequential 
representation of a molecule is known as its primary structure. 
As many other proteins, RNA molecules presents distant pairings within a sequence. These bindings 
(secondary structure) manifest themselves as bonds within nucleotides located far and indistinctively in the 
sequence, resulting in a structural folding, known as Pseudoknot3. Since its discovery [17] these pseudoknots 
                                                 
1 This paper is the english version of the paper Predicción de Pseudonudos en la Estructura Secundaria de ARN vía Gramáticas Estocásticas 
Independientes del Contexto [15] presented in CLEI 2005. 
2 The central dogma says the following: 

a  The DNA sequence determines the protein sequence. 
b. The protein sequence determines the protein structure. 
c. The protein structure determines the protein function. 

 
3 More formally, in a RNA sequence a pseudoknot occurs when a subsequence of a loop makes Watson-Crick pairs with a subsequence out of the loop. 
There exists two types of pseudoknots: H-pseudoknots (simples) and P-pseudoknots (recursives).   
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has drawn considerable attention because they give 3-D structure to the molecule, a structure that will 
determine in most cases its particular biological function4.  
Even though determining the molecular structure is of vital importance, it is also particularly hard and 
expensive to obtain structural data from RNA spectrometry and crystallography, so that an a priori prediction 
based on the residue sequence is an essential subject to bioinformatics [20]. We describe briefly current 
approaches to achieve these predictions. 
In a molecular level it is plausible that RNA folding is dictated more by biophysical characteristics than by 
the mere count and relating of base pairs. Zuckers’ minimization algorithm [27] assumes that the correct 
structural configuration is the one that presents the lowest equilibrium energy (∆Go). This prediction can be 
refined by combining it with experimental data, and statistical and thermodynamic information [24]. 
Nonetheless, given that the model for exact energy associated with the pseudoknots is not yet available, these 
existing models that use secondary structure energy approximations with relatively success [12] [9]. These 
approaches can’t determine an optimal solution and most of the time can’t tell how far from the optimal 
solution is the obtained one [20]. This is why nowadays no algorithm can predict in an accurate fashion 
pseudoknot classes; in fact the most important contributions present complexities that make them unusable5.  
There are several linguistic approaches to pseudoknots, most of them are variations of Stochastic Context 
Free Grammars (SCFG), which also aim to predict the structures and find them in databases. By its very 
definition, pseudoknots are described by a “copy language”. This is the reason why formally it would be 
necessary a context sensitive grammar to analyze them, its corresponding problems would NP-Complete and 
their solutions have prohibitive complexity [6]. In order to avoid this problem, linguistic methods try the 
following approaches: intersections of associated SCFG [2]; special non terminal symbols and specific 
productions for each problem [19]; or parallel grammars that communicate between them [4]. Even so, its 
implementations require computational times that reach unfeasible levels [O(n 6) ] and are not yet effective 
nor trustworthy [20]. 
In this article we propose a novel algorithm to solve the classical problems described above. This proposal 
consists in altering an existing effective algorithm known as Covariance Models (CM) [7], which is used to 
analyze secondary structure, in such a way that it is able to analyze pseudoknots. This is achieved by 
disaggregating pseudoknot prediction in two predictions of consecutive and related secondary structures, 
managing to divide the analysis in two iterations, thus avoiding simultaneous analysis, as well as its 
corresponding complexity and computational cost. This method yields a structure prediction in O(n 2logn) , 
improving the complexities in the algorithms developed so far and enlarging the maximum window of the 
sequence being analyzed.  
This approach was inspired in the theory of information [22] and its handling of entropy, which states that the 
information is not evenly distributed across the message (sequence) but that there are regions or symbols that 
contain more information than others. In preserving or analyzing these “special” regions one can obtain a 
better comprehension of the whole message that most of the times is a cryptic message that encloses large 
quantities of unknown information – as in the case of the bioinformaticist’s point of view –. 
The article structure is as follows: in the second section the basic concepts of grammars that describe RNA 
sequences and basic concepts of SCFGs are introduced. In the third section the elements of the covariance 
model are exposed along with an innovative approach to predict pseudoknots in secondary structure as an 
extension to such models. In the fourth section an experimental evaluation of the proposed approach is 
presented, and in the last section conclusions and further work are presented. 
                                                 
4 Virtually, pseudoknots are presents in all RNA types (ARNm, ARNt, lsuARN, ssuARN, 7-SL ARN, U2-snARN, I-group of introns, viral ARN) and  
possess many biological functions (see [12], [8], [16] or [5]).  

5 For example, the Rivas-Eddy algorithm [18] have temporal complexity O(n6), spatial complexity O(n4) and a constrained set of sequences to analyze 
(the sequence cannot contains more than 150 bases) [25]; the Lyngsø-Pedersen algorithm [14] have temporal complexity O(n4), spatial complexity 
O(n3) and make predictions about H pseudoknots; or another comparative divide and conquer algorithm with temporal complexity O(n2) and without 
constrains about the pseudoknot type. Though these ad hoc approaches needs manual and expert mediation [25]. At last, the ILM algorithm combines 
the thermodynamic and comparative approaches to obtain a more desirable and specific one than predecessors, but their final result is not optimal [19]. 
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2. Secondary Structure Prediction via Stochastic Context Free Grammars. 
 
2.1 Basic Concepts 
 
One of the most promising techniques in bioinformatics is the analysis of stochastic grammars, since they 
allow the generation of sequence patterns in a natural way, besides having a broader range of action than 
other architectures [21]. 
Stochastic grammars have its origins in formal grammars that were developed as a model to analyze natural 
languages; in fact, these were developed at the same time that the double-helix model was developed by 
Watson and Crick [1]. Grammars are useful tools to model character sequences, in a certain way are useful to 
model molecular biology sequences [18] [1] [3]. Many bioinformatics problems can be reformulated in terms 
of formal languages, producing the corresponding grammar from the available data [1]. 
Among several utilities contributed by grammars, the main contribution is the ability to test by derivations if 
a sequence is syntactically correct, that is, if it belongs to a determined language. A derivation can be 
represented as a tree-like structure known as derivation tree. This tree reflects the syntactical structure of a 
sequence. It is possible that for a given sequence there are more than one derivation tree. In this case, we say 
that the grammar is ambiguous. In ambiguous grammars, complexity for the derivation rises given that the 
possible trees grows exponentially with the length of the sequence to be derived [1]. For a complete revision 
on basic concepts of formal language theory, including the study of grammars, reading of [10] or [13] is 
recommended. 
 
2.2 Stochastic Context Free Grammars. 
 
There is a wide variety of palindrome examples present in RNA/DNA. Biological palindromes have a 
different connotation than the usual one, for its letters are not identical but base-complementary6, starting 
from the two ends. This is, in the same way that “a man, a plan, a canal, panama!” is usually seen as a 
palindrome (if the blanks and punctuation are removed), for its sequence mean the same thing even if we it is 
inverted, it is understood that AGAUUUCGAAUCU is a biological palindrome (given that if read from right 
to left a sequence of complementary bases to the original sequence). In other words, due to the 
complementary nature of the DNA double-helix structure, each half of a palindrome on a strand has its mirror 
image in the opposing strand7 [1]. 
This distant pairings causes that the computational tools used commonly for protein analysis can’t be used for 
RNA secondary structure. This is due to the nested structure observed frequently in RNA that can’t be 
modeled in an efficient way using classic sequence correspondences (Neural Networks, regular languages or 
Hidden Markov Models (HMM)). For this reason an SCFG can be a better approach [6]. 
An SCFG is built by adding a probabilistic structure to the production rules of a given grammar [1].  In other 
words, each production rule ϕ→δ has an assigned probability P( ϕ→δ) � P( ϕ→δ)  denotes the probability 
of using rule  ϕ→δ in a derivation, thus complying with the second axiom of probability Σδ(P δ( ϕ→δ))=1 . 
A stochastic grammar is then characterized by a set of probabilistic models that generate the corresponding 
language.  
In this way, to measure the probability P(O|w)  8 of the stochastic derivation of a sequence O according to a 
grammar M = M(w)  with parameter w, is enough to compute: 

 
P(O|w)= ΣP(S →π O|w)   

 
where π is the sequence of derivations needed to produce O. 
 
                                                 
6  The RNA bases A (Adenine) C (Cytosine) conform chemical links in complementary base-paring with U (Uracile) and G (Guanine), respectively. 
7 This structural ambiguity confers different roles to an element of the RNA sequence. In evolutive sense, this ambiguity gives a competitive adventage 
to the organism [23]. For example, secondary structure of a recursive palindrome is a stem with another side stem. Many structures associated to 
recursive palindromes are stems with several branches (orthodox secondary structures), such as the trefoil structure of tranferences RNA [1]. 
8 This notation denote the probability of the occurrence of O given the occurrence of the parameters w.  
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3. A modification to the Covariance Models as an approach to the prediction of secondary 
structure 

 
3.1 Covariance Model construction 

 
Using an approach inherited from HMM, covariance models specify an SCFG architecture adequate to model 
consensus RNA secondary structures. Consensus structures are repetitive patterns in a RNA family that share 
various structural motifs among them9 [6]. This method is inspired in the CYK dynamic programming 
algorithm, which has been the standard to analyze SCFG alignments. In synthesis, this algorithm finds an 
optimal derivation tree for a parameterized model in a sequence, being an optimization to the inside/outside 
algorithm [11]. At the same time, this algorithm computes the best score assigned to a given sequence from 
the various alternatives that a given SCFG may generate. 
To describe with a SCFG this multiple alignment between RNA homologous sequences, various types of non 
terminal symbols are needed to model the different known structures.  
The Non-terminals of the grammar included in the CM, and their semantic are: (see Figure 1) [6]: 
 

• P: the paired columns in Watson-Crick bridges (bonds A-U C-G) are described by a non terminal that 
emits a base pairing.  

• L : The non paired columns are described by a non terminal that emits to the left (direction 5→́ 3´)10 
whenever possible; that is, when no possible ambiguous sequences may arise. 

• R: non terminal that emits to the right (direction 3’ �5’). Case that can occasionally happen in 
protuberances between stems and loops in the right part of the structure (strand 3’)11. It is used when 
ambiguous sequences emerge when L is used. 

• B: Bifurcation non terminal used to split several stems or loops with various branches arising from it. 
• S: Beginning non terminal that acts as immediate son to a bifurcation’s derivation or a sequence start. 
• E: Ending non terminal that finishes the derivation of sequences. 
• D: Suppression non terminal that is used to describe a production that does not emit terminal symbols 

and does not describe one of the previous cases. 
 
Each one of the non terminals has, by its stochastic characteristic, a probability ev(a,b)  of emitting one or 
two pairs of bases. Here v  is the non terminal and a, b ∈ {A,G,C,U} . The symbol t v( Y)  represents the 
probability to go from state v  to state Y. 
 

 
Production Description P (Emission) P(Transition) 

 
P → aYb Pair derivation  (16 possbile emitting types) ev(a,b)  t v( Y) 

L → aY Left derivation (4 possbile emitted symbols) ev 
(a,b) 

 t v( Y) 

R → Ya Right derivation (4 possbile emitted symbols) ev(a,b)  t v( Y) 

B → SS Bifurcation  1  1 

D → Y No symbol derivation 1  t v( Y) 
S → Y Start 1  t v( Y) 
E → є End 1  1  

Figure 1. Types of grammatical rules and its probabilities in a Covariance Model12. 
 
 
                                                 
9 Homologous structures in molecular vocabulary..  
10 In molecular biology, 5´ and 3´ are the ending points of the DNA/RNA sequences. The direction is associated with many celular functions such as 
duplication and replication.  
11 The secuence must be readed in 5´→ 3´ direction. 
12 Quoted from [6], pp 278.  
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Figure 2. 13 A fictitious alignment of three sequences where 24 consensus columns are modeled out 
of 28 possible columns. The annotated structure sequence is consensus for the structure on the right, a 
structure that corresponds to the human sequence14. 

 
To build a CM it is necessary to begin with an alignment15 of RNA sequences, with its correspondent 
annotation of the consensus secondary structure and the annotations of which columns must be considered 
insertions and which should be considered consensus columns (see Figure 2).  From these columns a 
consensus structural tree is built. 
The CM will be a directed graph of M states with transitions given by t v(y) , with each state numbered in a 
way that (y,z) →v . The CM can then be visualized as an array of transitions that run in only one direction, 
which guarantees two things: an iterative dynamic programming calculation through all the model states and 
that all transitions for state v  can be maintained as a displacement and a count.  
 
3.2 A Pseudoknot secondary structure prediction implementation as an extension of Covariance 
Models 
 
Understanding CM, and generally speaking all SCFG, as computational tools that allow to probabilistically 
model distant relations between symbols in the molecular language, then it is possible to extend this concept 
to pseudoknots. This extension makes possible its prediction when in the original sequence the distant paired 
segments (copy language) are deleted, and then it is feasible to analyze the resulting sequence as usual. 
Just as the relation that exist between residues of a stem is separated by non related residues, in the same way 
a pair of residues that form a pseudoknot will be separated by residues that are not necessarily related to the 
pseudoknot being analyzed16. Because of this, just as non related residues are set apart to determine the 
relation between base pairs that form the stem, in the same way it is possible to set apart existing relations 
between non related residues to determine the particular relation between the base pairs that form the 
pseudoknot. 

 
                                                 
13 This alignment is presented in STOCKHOLM format. See details in: http://www.cgr.ki.se/cgb/groups/sonnhammer/Stockholm.html .  
More information about formats used in molecular biology in: http://www.psc.edu/general/software/packages/hmmer/manual/node38.html 
14  Quoted from [6], pp 278.  
15 An alignment pretends to give a quantitative measure of similarity between sequences. To compare, an alignment assigns correspondences between 

symbols in the sequences.  
16 This is the SCFG approach. The SCFG approach is in the opposite direction of thermodynamic approach.  
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Definition. If γ and δ are RNA sequences such that | γ|=| δ|  and, always that 1≤i ≤| γ|  you have that γi  y 
(δ-1 ) i  are base-complementary, where δ-1  is δ written backwards. Then it is stated that γδ is a biological 
palindrome. 
Note that if x  is a RNA sequence that can be written as the concatenation of five subsequences this is 
x=πγψωσ  (π y σ possibly empty) such that γω is a biological palindrome, then the CM model must predict 
the pairing  ( γ, ω-1 )  as part of the secondary structure of x  (see Figure 4). 

 
 

 

 

 

 

 

 

 

 
Now, if γω is a biological palindrome and πψσ can be decomposed as the concatenation of five substrings 
αβµνρ such that βν is a biological palindrome, then the pairing ( β, ν-1 )  is also predicted by the CM model 
as part of the secondary structure of x . 
On the other hand, if γω is a biological palindrome and πψσ can’t be decomposed as in the last paragraph, 
then it is possible to infer that in x=πγψωσ one cannot find pairings that don’t propose pseudoknots in the 
secondary structure of x . 
Let x’= πψσ be the sequences obtained of x  by eliminating all paired base pairs according to the CM model. 
If there are sequences π’ , γ’ , ψ’ , ω’  and σ’  such that x’ = πψσ = π’ γ’ ψ’ ω’ σ’   and  γ’ ω’  is a 
biological palindrome, then the pairing ( γ’, ω’ -1 ) , that is part of the secondary structure of x’ , report a 
pseudoknot present in the secondary structure of x . 
The previous statement can be concluded because only two cases make sense: 

• γ’ ⊆ π ∧ ω’ ⊆ ψ 
• γ’ ⊆ ψ ∧ ω’ ⊆ σ. 

α:UUCGA 

β:UGCCA 

γ:UG 

δ:CA 

ε:UCGAA 

µ:GAAACG 

φ:UCGA 

ρ:UG 

ω:CA 

τ: AUGCA 

κ:UCGACCG 

 

 

 

 
Figure 3.  Canonical sketch of a pseudoknotted structure, divided in 
substring αβγδεµφρωτκ, ready  to subsequent abstraction. 

 
 
Figure 4.  Abstraction sketch of the 
pseudoknotted structure πγψωσ, ready to 
subsequent analysis. 
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Thus, it is intended that πψσ preserve the information from the previous analysis while relations between γ 
and ω are analyzed. In this way the problem is divided and a second iteration can be made to find the two 
levels of relations in a separate way. After this step, the two analysis can be fused together and give the 
complete analysis at the end. In synthesis, instead of doing a parallel analysis as in [4], we propose a 
sequential analysis of two instances of the same problem, with evident gain in computational resources, 
which were before shared and now can be entirely dedicated to each of the two instances; besides the scale of 
structural complexity is reduced in both cases in a dramatic way. 
 
3.3 General description for the validation of the proposed extension 
 
To test the proposed algorithm a program was written in C/C++ , which was executed in two systems, the 
result diverging only in the time of the required analysis. The fastest implementation was executed in an 
INTEL/Linux  platform with 1.8GHz processor and 1024 Mbytes of RAM. The second implementation was 
executed in an IRIX 6.5  platform (SGI Origin 200 ) with 4 parallel processors and 1024 Mbytes in 
RAM17. Such program analyze an alignment in STOCKHOLM18 format, augmented with a marker 
PK_cons19, which indicates the relations of pseudoknots according to the standard implemented by 
PseudoBase [26]. As an example figure 5 shows a theoretical alignment with a consensus pseudoknot for the 
sequences shown.  
 

# STOCKHOLM 1.0 
#=GF ID   trnaDummy 
#=GF DE   taken from [Eddy 2002], with PK_cons indi cating a fictitious pseudoknot 
 
DF6280             GCGGAUUUAGCUCAGUUGGG.AGAGCGCCAGA CUGAAGAUCUGGAGGUCC 
DE6280             UCCGAUAUAGUGUAAC.GGCUAUCACAUCACG CUUUCACCGUGGAGA.CC 
DD6280             UCCGUGAUAGUUUAAU.GGUCAGAAUGGGCGC UUGUCGCGUGCCAGA.UC 
DC6280             GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGA UUGCAAAUCUGUUGGUCC 
DA6280             GGGCACAUGGCGCAGUUGGU.AGCGCGCUUCC CUUGCAAGGAAGAGGUCA 
#=GC SS_cons       <<<<<<<..<<<<.........>>>>.<<<<< .......>>>>>.....< 
#=GC PK_cons       <<<[[<<..<<<<.........>>[>.<<<<< .......>>>>>.....] 
#=GC RF            xxxxxxxxxxxxxxxxxxxx.xxxxxxxxxxx xxxxxxxxxxxxxxxxxx 
 
DF6280             UGUGUUCGAUCCACAGAAUUCGCA 
DE6280             GGGGUUCGACUCCCCGUAUCGGAG 
DD6280             GGGGUUCAAUUCCCCGUCGCGGAG 
DC6280             UUAGUUCGAUCCUGAGUGCGAGCU 
DA6280             UCGGUUCGAUUCCGGUUGCGUCCA 
#=GC SS_cons       <<<<.......>>>>>>>>>>>>. 
#=GC PK_cons       <<<<.......>>>>>>>>]]>>. 
#=GC RF            xxxxxxxxxxxxxxxxxxxxxxxx 
// 

 
Figure 5.  Five RNA fragment alignment. Note that it is used <> to indicate relations 
between loops, and []  to indicate pseudoknots binding 20. 

 

The written software abstracts the two levels of secondary structure and pseudoknots in two separate levels, 
one to indicate the secondary structure SS_cons (see Figure 6) and other to indicate the structure of 
pseudoknots PK_cons (see Figure 7) abstracting the one previously analyzed. 
Once the information is processed in these two levels, the algorithm proceeds to analyze them separately to 
construct the consensus models in both structure levels. With these two models built it is possible to predict 
the structure of a nucleotide string without any included structure (see Figure 8). 
The software will then compare separately the same string with the two consensus models, predicting the 
secondary structure that would probably have that sequence, as well as the probable pseudoknot that it would 
contain. The probable pseudoknot is abstracted in the secondary structure. After this step, the data is unified 
by building the pseudoknot structure to give the final result with the complete structure. The secondary 
structure and the pseudoknot structure (see Figure 8). 
  
                                                 

17 The dicerences are due to two factors: the intensive use of the memory and the multyuser nature of the second computer. 
18 Full information about this format in: http://www.cgr.ki.se/cgb/groups/sonnhammer/Stockholm.html 
19 This is a non standard marker used only in this paper. 
20 For clarity, the Stockholm format has a header with relevant information followed by the name, the sequence and the consensus relations. The RF 

indicador announces that all columns in the alignment should be used in the model. 
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# STOCKHOLM 1.0 
#=GF ID   trnaDummy 
#=GF DE   taken from [Eddy 2002], with PK_cons indi cating a fictitious pseudoknot 
 
DF6280             GCGGAUUUAGCUCAGUUGGG.AGAGCGCCAGA CUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCA 
DE6280             UCCGAUAUAGUGUAAC.GGCUAUCACAUCACG CUUUCACCGUGGAGA.CCGGGGUUCGACUCCCCGUAUCGGAG 
DD6280             UCCGUGAUAGUUUAAU.GGUCAGAAUGGGCGC UUGUCGCGUGCCAGA.UCGGGGUUCAAUUCCCCGUCGCGGAG 
DC6280             GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGA UUGCAAAUCUGUUGGUCCUUAGUUCGAUCCUGAGUGCGAGCU 
DA6280             GGGCACAUGGCGCAGUUGGU.AGCGCGCUUCC CUUGCAAGGAAGAGGUCAUCGGUUCGAUUCCGGUUGCGUCCA 
#=GC SS_cons       <<<<<<<..<<<<.........>>>>.<<<<< .......>>>>>.....<<<<<.......>>>>>>>>>>>>. 
#=GC RF            xxxxxxxxxxxxxxxxxxxx.xxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 

 
 
Figure 6.  First abstraction level. Note that the []  which indicated the pseudoknotted binding have 
been abstracted with <> to complete the existing loops. 

 
# STOCKHOLM 1.0 
#=GF ID   trnaDummy 
#=GF DE   taken from [Eddy 2002], with PK_cons indi cating a fictitious pseudoknot 
 
DF6280             GCGGAUUUAGCUCAGUUGGG.AGAGCGCCAGA CUGAAGAUCUGGAGGUCC 
DE6280             UCCGAUAUAGUGUAAC.GGCUAUCACAUCACG CUUUCACCGUGGAGA.CC 
DD6280             UCCGUGAUAGUUUAAU.GGUCAGAAUGGGCGC UUGUCGCGUGCCAGA.UC 
DC6280             GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGA UUGCAAAUCUGUUGGUCC 
DA6280             GGGCACAUGGCGCAGUUGGU.AGCGCGCUUCC CUUGCAAGGAAGAGGUCA 
#=GC SS_cons       ...<<...................<....... .................> 
#=GC RF            xxxxxxxxxxxxxxxxxxxx.xxxxxxxxxxx xxxxxxxxxxxxxxxxxx 
 
DF6280             UGUGUUCGAUCCACAGAAUUCGCA 
DE6280             GGGGUUCGACUCCCCGUAUCGGAG 
DD6280             GGGGUUCAAUUCCCCGUCGCGGAG 
DC6280             UUAGUUCGAUCCUGAGUGCGAGCU 
DA6280             UCGGUUCGAUUCCGGUUGCGUCCA 
#=GC SS_cons       ...................>>... 
#=GC RF            xxxxxxxxxxxxxxxxxxxxxxxx 
// 
 
Figure 7.  Second abstraction level. Note that the <> which indicated the secondary relations 
have been abstracted with dots, and the []  which indicated the pseudoknotted binding have been 
abstracted to  <>, thus allowing the secondary structure analysis. 
 

 
 

Secuencia sonda en formato FASTA 21, con su identificador seguido de la 
secuencia de nucleótidos. 
>trna_yeast_phe 
GCAGAUUUAGCUCAGUUGGCAGAGCGCCAGACUGAAGAUCUGGAGGUCCU 
GUGUUCGAUCCACAGAAUACGCU 
 
# STOCKHOLM 1.0 
#=GF AU    Infernal 0.55 
 
DF6280             GCGGAUUUAGCUCAGUuGGGAGAGCGCCAGAC UGAAGAUCUGGAGGUCCU 
#=GC SS_cons       (((((((,,<<<<___.____>>>>,<<<<<_ ______>>>>>,,,,,<< 
#=GC PS_cons       ((([[((,,<<<<___.____>>[>,<<<<<_ ______>>>>>,,,,,]< 
#=GC RF            gccgauaUagcgcAgU.GGuAgcgcgccaccc UgucaagguggAGgUCcg 
 
DF6280             GUGUUCGAUCCACAGAAUUCGCA 
#=GC SS_cons       <<<_______>>>>>))))))): 
#=GC PS_cons       <<<_______>>>>>)))]])): 
#=GC RF            gggUUCGAUuccccguaucggcg 
// 
// 

 
 
Figure 8. Results of the secondary structure prediction in sequence 
trna_yeast_phe.fa. Note the secondary structure <> as well as the 
pseudoknot structure, displayed with [] 22. 

                                                 
21 Full information about FASTA format in: http://www.ebi.ac.uk/help/formats_frame.html 
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4. Results and Experimental Evaluation  
 
The set of source sequences for the test process has the same origin as the one used in [4]23. This set, which 
can be found in the tmRNA Database 24, is already aligned and annotated for secondary structure and 
pseudoknots [28]. The tmRNA has at most 4 rightly annotated pseudoknots. From this database 35 sequences 
were downloaded. These sequences were organized in a phylogenic tree in such way that a test group for the 
model training and another group for the model testing were both in equilibrium at a phylogenic level, 
without any over represented class in the samples. 
The source data were then aligned, deleting the non-shared columns between the bacteria sequences results in 
a complete alignment, obtaining a source suitable for bioinformatics analysis. 
The appropriate model for the two abstracted structures was built from the 5 bacteria sequences that are in the 
phylum25 of the bacteria to be analyzed. The following structure was derived from these two models starting 
with a sequence without structural annotation (see Figure 9). 
 
 

 
Sequence without structural anotation (FASTA):  
>Esch.coli v-2.       741 bp 
GGGGCUGauucuggauucgaCGGGAUUUgcgaaAcCCaaGGUGAUGCCGAGGgGCGGUUggCCUCGua 
aaaAGCCGCaaaaaauagucgcaaacgacgaaaacuacGCUUUAGCAGcuuaauaacCUGCuUAGAGC 
CCUCUCUCCCUagCCUccgCUCUUAGGacGGGGaucaAGAGAGGucaaacccaaAAGAGaucGCGUgg 
aAGCCcuGCCUGGGGUUgaaGCGUuaaaacuuaaUCAGGCuaGUUUGUUAGUgGcGuGUccGUCCaCa 
GCUGGCAAGCgaauguaaaGACurACuaaGCAUGUaguACCgaGGaUguagAAAUUUCGgacGCGGGu 
ucaacuCCCGCCAGCUCCacca 
 
Fragment of the predicted structure (from base 01 t o 100):  
 
Esch.coli          GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGA AACCCAAGGUGAUGCCGA 
#=GC SS_cons       {{{{{{{,,,,,,,,,,,,,[[[[[[[[---- -[[[[[[[[[[[[[[[<< 
#=GC PS_cons       <<<<<<<,,,,,,,,,,,,,<<<<<<<<---- -<<<<<<<<<<<<<<[[[ 
#=GC RF            ggggcuguuuucGGuUUCGAcaggauuauCgA Aaccaaaagugaugccga 
 
Esch.coli          GGGGCGGUUGGCCUCGUAAAAAGCCGCAAAAA AUAGUCGCAAACGACGAA 
#=GC SS_cons       <<-<<<<<<<_>>>>----->>>>>>>,,,,, ,,,,,,,,,,,,,,,,,, 
#=GC PS_cons       [[-[[<<<[<_>>>>----]]]]]]]],,,,, ,,,,,,,,,,,,,,,,,, 
#=GC RF            ggGgcgguuggccucGuaAaaagccgcAaaAA AUAguCGCAAAcaAaaAA 
 
(. . .) 
 

 
Figure 9. A extract of the base sequence and corresponding predicted 
structure of E. coli  built from an alignment retrieved from tmRNA 
DataBase26. 

 

If the predicted structure is compared to the structure provided by the  tmRNA Database (see Figure 10), it is 
found that the algorithm predicts in general the whole structure, placing correctly the two pseudoknots that 
are found, even though it presents certain inconsistencies in the size of the pseudoknot or in the conforming 
bases in some region of the whole molecule. A false positive was never produced, that is, a pseudoknot 
placed by the algorithm where it should not be. This proves that the algorithm and it’s prototype are able to 
analyze big quantities of data in a relatively trustworthy fashion, improving other algorithms which analyzed 
pseudoknots with similar results, but could only analyze little fragments, only one pseudoknot or totally 
ignoring the secondary structure that was not related to the pseudoknot [4]. 
It is quite important to point out that systems to date successfully identify pseudoknots simultaneously with 
sequences around 100 base pairs [4][5]. The sequence above has more than 740 base pairs, which is a 
noteworthy improvement in the practical field for pseudoknot analysis. 
 

                                                                                                                                                                   
22 Results presented in modifyed WUSS format. The original WUSS format not include the symbols [  and ]  to mark pseudoknots. Punctuation 
symbols (.;,:) exhibit non pared remainder in the sequence.  
23 Software (GNU license) and biological sources used can be obtained by e-mailing to m.nino68@egresados.uniandes.edu.co. 
24 Online access: http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html 
25 Taxonomical division used by biologists to classify organisms.  
26 http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html. 
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Fragment of the predicted structure (from base 01 t o 100):  
 
Esch.coli GGGGCUGauucuggauucgaCGGGAUUUgcgaaAcCCaaGGUGCAUGCCGAGGgGCGGUUggCCUCGuaaaa  
#=GC SS_cons <<<<<<<-------------<<<<<<<<-----<<<<< <<<<<<<<<<<<<<<-<<<<<<<-<<->>----> 
#=GC PS_cons -------------------------------------- ----------(((((((((((((udoknot-I)) 
 
Esch.coli AGCCGCaaaaaauagucgcaaacgacgaaaacua  
#=GC SS_cons >>>>>>----------------------------  
#=GC SS_cons ))))))----------------------------  
 (…) 
// 

 
Figure 10. Real structure of E. coli retrieved from tmRNA DataBase27. 

 
5. Conclusions 
 
Given the rising amount of data the genome projects produce, the need for new sensible filters to find 
adequate sequences is preponderant. Besides, given that in some cases there is a lack of information to 
analyze the relations between the sequences, this filters need new characteristics to compare the sequences. 
One of the factors that are only starting to be exploited to such end is pseudoknots, that is why the algorithm 
proposed here is a contribution in that sense. 
For the particular case of RNA and its secondary structural prediction, there is an attempt to decouple and 
disaggregate a complex problem by dividing it in sub problems of an easier analysis, paying special attention 
to preserving the coherence and in a rigorous way put the data back together. Because the results obtained 
were satisfactory, the success of this integrated approach is confirmed, approaches that have already been 
successful in other bioinformatics fields28.  
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