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Abstract

Pseudoknots are a frequent RNA structure that ess@ssential roles for varied biocatalyst celliscfions. One of the
most challenging fields in bioinformatics is theegiction of this secondary structure based on #eeipair sequence
that dictates it. Previously, a model adapted fommputational linguistics — Stochastic Context Regammars (SCFG)
— has been used to predict RNA secondary strudtiioeever, to this date the SCFG approach impogehibitive
complexity cost O(n%)] when they are applied to the prediction of psémdts, mainly because a context-sensitive
grammar is formally required to analyze them. Othgbrids approaches (energy maximization) giveD@n®)
complexity in the best case, besides having sevesdtictions in the maximum length of the sequefucepractical
analysis.

Here we introduce a novel algorithm, based on patteatching techniques, that uses a sequentialozippation
strategy to solve the original problem. This altjori not only reduces the complexity®gn2logn) , but also widens
the maximum length of the sequence, as well asapacity of analyzing several pseudoknots simuttasly.

Keywords: pseudoknots, Stochastic Context Free Grammars ($Q&¥FGondary structure prediction, RNA, dynamic
programming.

1. Introduction

Bioinformatics is an applied science where matheaabtnd computational theories and technologies ar
used in order to process, relate and derive piediktand inferences from data obtained in molecular
biology. Bioinformatic’'s goal is to understand aahlyze the information control and flow within fdifent
organisms. There is a synergic interaction betvssanputer science, mathematics and biology, eadh itgit
own richness and limitations.

Within the bioinformatics scope, one of the mospamant fields is biological sequence analysis,clvhi
assumes the representation of the molecules teaessential for life (DNA, RNA, Proteins) as resdu
chains represented as symbols in a particular bfgh#hus allowing its study with grammatical asiyin
order to find relations among these residues. dlieand relations determine, according to the eéntr
dogm& of molecular biology, the biological properties sfich molecules [21][18]. This sequential
representation of a molecule is known as its pryns#ucture.

As many other proteins, RNA molecules presentsadispairings within a sequence. These bindings
(secondary structure) manifest themselves as baitg nucleotides located far and indistinctivedy the
sequence, resulting in a structural folding, kn@srPseudokndtSince its discovery [17] these pseudoknots

! This paper is the english version of the papediccion de Pseudonudos en la Estructura SecundigisddRN via Gramaticas Estocasticas
Independientes del ConteXtib] presented in CLEI 2005.
2 The central dogma says the following:

a The DNA sequence determines the protein sequence.

b. The protein sequence determines the proteintatel

c. The protein structure determines the proteintfanc

3 More formally, in a RNA sequence a pseudoknot meethen a subsequence of a loop makes Watson-faick with a subsequence out of the loop.
There exists two types of pseudoknots: H-pseudak{zinples) and P-pseudoknots (recursives).
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has drawn considerable attention because they 3jestructure to the molecule, a structure that wil
determine in most cases its particular biologicaktiorf.

Even though determining the molecular structurefisvital importance, it is also particularly hardida
expensive to obtain structural data from RNA spengtry and crystallography, so thatapriori prediction
based on the residue sequence is an essentiakistbjbioinformatics [20]. We describe briefly cent
approaches to achieve these predictions.

In a molecular level it is plausible that RNA foldi is dictated more by biophysical characteristizn by
the mere count and relating of base pairs. Zuckmirimization algorithm [27] assumes that the ccirre
structural configuration is the one that presehéslowest equilibrium energyAG’). This prediction can be
refined by combining it with experimental data, astatistical and thermodynamic information [24].
Nonetheless, given that the model for exact enasgpciated with the pseudoknots is not yet availdabese
existing models that use secondary structure engpgyoximations with relatively success [12] [9h€Be
approaches can't determine an optimal solution mwgdt of the time can't tell how far from the optima
solution is the obtained one [20]. This is why ndasgs no algorithm can predict in an accurate fashio
pseudoknot classes; in fact the most importantritaritons present complexities that make them ubple3a
There are several linguistic approaches to pseuwstekmost of them are variations of Stochastic €xnt
Free Grammars (SCFG), which also aim to predictstihectures and find them in databases. By its very
definition, pseudoknots are described by a “comglege”. This is the reason why formally it would b
necessary a context sensitive grammar to analya,ths corresponding problems would NP-Completé an
their solutions have prohibitive complexity [6]. trder to avoid this problem, linguistic methodg tihe
following approaches: intersections of associat&FG [2]; special non terminal symbols and specific
productions for each problem [19]; or parallel graans that communicate between them [4]. Even so, it
implementations require computational times thatheunfeasible level$[(n®) ] and are not yet effective
nor trustworthy [20].

In this article we propose a novel algorithm toveadthe classical problems described above. Thipgzal
consists in altering an existing effective algartknown as Covariance Models (CM) [7], which isdise
analyze secondary structure, in such a way thi #@ble to analyze pseudoknots. This is achieved by
disaggregating pseudoknot prediction in two préalict of consecutive and related secondary strusture
managing to divide the analysis in two iteratiotisys avoiding simultaneous analysis, as well as its
corresponding complexity and computational costs Tiethod yields a structure predictionOxin 2logn)
improving the complexities in the algorithms deyadd so far and enlarging the maximum window of the
sequence being analyzed.

This approach was inspired in the theory of infaiora[22] and its handling of entropy, which statieat the
information is not evenly distributed across thesgage (sequence) but that there are regions orotytiiat
contain more information than others. In preserdimganalyzing these “special” regions one can obgai
better comprehension of the whole message that aidbe times is a cryptic message that enclosgg la
guantities of unknown information — as in the cathe bioinformaticist’s point of view —.

The article structure is as follows: in the secsedtion the basic concepts of grammars that des&NMA
sequences and basic concepts of SCFGs are intehdincéhe third section the elements of the covaréa
model are exposed along with an innovative appraagbredict pseudoknots in secondary structurenas a
extension to such models. In the fourth sectionegperimental evaluation of the proposed approach is
presented, and in the last section conclusionduatiter work are presented.

* Virtually, pseudoknots are presents in all RNAeggARNM, ARN, ISUARN, ssuARN, 7-SL ARN, U2-snARNgroup of introns, viral ARN) and
possess many biological functions (see [12], [B§] [or [5]).

® For example, the Rivas-Eddy algorithm [18] haveperal complexity O(F), spatial complexity O(f and a constrained set of sequences to analyze
(the sequence cannot contains more than 150 bg&sthe Lyngsg-Pedersen algorithm [14] have termpoomplexity O(fl), spatial complexity
O(r®) and make predictions about H pseudoknots; orrenatomparative divide and conquer algorithm wetporal complexity O@ and without
constrains about the pseudoknot type. Though thédecapproaches needs manual and expert mediation42%st, the ILM algorithm combines
the thermodynamic and comparative approaches troatmore desirable and specific one than predecgshut their final result is not optimal [19].
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2. Secondary Structure Prediction via Stochastic Contd Free Grammars.
2.1 Basic Concepts

One of the most promising techniques in bioinfoiogats the analysis of stochastic grammars, siheg t
allow the generation of sequence patterns in aralatvay, besides having a broader range of actian t
other architectures [21].

Stochastic grammars have its origins in formal grems that were developed as a model to analyzeahatu
languages; in fact, these were developed at the same that the double-helix model was developed by
Watson and Crick [1]. Grammars are useful toolswamlel character sequences, in a certain way afaluse
model molecular biology sequences [18] [1] [3]. Mdoinformatics problems can be reformulated imig
of formal languages, producing the correspondirgrgnar from the available data [1].

Among several utilities contributed by grammarg, thain contribution is the ability to test by detions if

a sequence is syntactically correct, that is, ibétlongs to a determined language. A derivation lcan
represented as a tree-like structure known as at@ivtree. This tree reflects the syntacticalctie of a
sequence. It is possible that for a given sequérere are more than one derivation tree. In thée cave say
that the grammar is ambiguous. In ambiguous grasntamplexity for the derivation rises given thia t
possible trees grows exponentially with the lergftthe sequence to be derived [1]. For a completesion
on basic concepts of formal language theory, inodhe study of grammars, reading of [10] or [18]
recommended.

2.2 Stochastic Context Free Grammars.

There is a wide variety of palindrome examples gmeésn RNA/DNA. Biological palindromes have a
different connotation than the usual one, for éters are not identical but base-complemeftaarting
from the two ends. This is, in the same way thatian, a plan, a canal, panama!” is usually seea as
palindrome (if the blanks and punctuation are readdyfor its sequence mean the same thing even if is
inverted, it is understood that AGAUUUCGAAUCU idmlogical palindrome (given that if read from righ
to left a sequence of complementary bases to thginal sequence). In other words, due to the
complementary nature of the DNA double-helix stouet each half of a palindrome on a strand hawsiitisor
image in the opposing straffd].

This distant pairings causes that the computatitotd$é used commonly for protein analysis can’tibed for
RNA secondary structure. This is due to the nestedcture observed frequently in RNA that can’t be
modeled in an efficient way using classic sequameespondences (Neural Networks, regular languages
Hidden Markov Models (HMM)). For this reason an &C&an be a better approach [6].

An SCFG is built by adding a probabilistic struetdo the production rules of a given grammar [lt].other
words, each production rute— 6 has an assigned probabil®f$ -0) . P( ¢ -0) denotes the probability
of using rule$ - & in a derivation, thus complying with the seconiaxof probabilityZs(P s( ¢ — d))=1 .

A stochastic grammar is then characterized by afsptobabilistic models that generate the corradpm
language.

In this way, to measure the probabilRyO|w) ® of the stochastic derivation of a sequefccording to a
grammamM = M(w) with parametew, is enough to compute:

P(O|w)= ZP(S - O|w)

whererttis the sequence of derivations needed to proQuce

® The RNA baseé (Adenine)C (Cytosine) conform chemical links in complementhage-paring withJ (Uracile) andG (Guanine), respectively.

" This structural ambiguity confers different rolesan element of the RNA sequence. In evolutiveesethis ambiguity gives a competitive adventage
to the organism [23]. For example, secondary strecof a recursive palindrome is a stem with anoffide stem. Many structures associated to
recursive palindromes are stems with several bes@drthodox secondary structures), such as tfel ts&ructure of tranferences RNA [1].

8 This notation denote the probability of the occneeeof O given the occurrence of the parameters w.
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3. A modification to the Covariance Models as an apprach to the prediction of secondary
structure

3.1 Covariance Model construction

Using an approach inherited from HMM, covarianceadais specify an SCFG architecture adequate to model
consensus RNA secondary structures. Consensususesi@are repetitive patterns in a RNA family thla@re
various structuraimotifs among therh [6]. This method is inspired in the CYK dynamicogramming
algorithm, which has been the standard to analyZEGs alignments. In synthesis, this algorithm firzos
optimal derivation tree for a parameterized modeh isequence, being an optimization toitreédde/outside
algorithm [11]. At the same time, this algorithnrngoutes the best score assigned to a given seqéremce

the various alternatives that a given SCFG may rgeee

To describe with a SCFG this multiple alignmentimn RNA homologous sequences, various types of non
terminal symbols are needed to model the diffekanivn structures.

The Non-terminals of the grammar included in the,@Nid their semantic are: (see Figure 1) [6]:

» P: the paired columns in Watson-Crick bridges (bofds C-G) are described by a non terminal that
emits abase pairing

« L: The non paired columns are described by a nonitet that emitgo the left(direction 5— 3°)'°
whenever possible; that is, when no possible anghigisequences may arise.

* R: non terminal that emitto the right (direction 3' >5’). Case that can occasionally happen in
protuberances between stems and loops in thepaghof the structure (strand 2’) It is used when
ambiguous sequences emerge whes used.

» B: Bifurcation non terminal used to split severainss or loops with various branches arising from it.

* S Beginning non terminal that acts as immediatetsamnbifurcation’s derivation or a sequence start.

» E: Ending non terminal that finishes the derivatifrsequences.

» D: Suppression non terminal that is used to deseripeduction that does not emit terminal symbols
and does not describe one of the previous cases.

Each one of the non terminals has, by its stoahab@racteristic, a probabili,(a,b) of emitting one or
two pairs of bases. Hexeis the non terminal ana, b 0 {A,G,C,U} . The symbot ,(Y) represents the
probability to go from state to stateY.

Production Description P (Emission) P(Transition)
P - aYb Pair derivation (16 possbile emitting types) e,(a,b) tu(Y)
L - aYy Left derivation (4 possbile emitted symbols) ey tu(Y)

(a,b)
R - Ya Right derivation (4 possbile emitted symbols) ey(a,b) tu(Y)
B - SS Bifurcation 1 1
D - Y No symbol derivation 1 tv(Y)
S - Y Start 1 tu(Y)
E N e End 1 1

Figure 1. Types of grammatical rules and its prdhigs in a Covariance Mod&l

? Homologous structurgis molecular vocabulary..

% In molecular biology5 and 3" are the ending points of the DNA/RNA sames. The direction is associated with many cefulections such as
duplication and replication.

" The secuence must be readed in 3" direction.

2 Quoted from [6], pp 278.
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Multiple Alighment Example Structure UU CGm
Structure . : : <<<_ _ _ _>->>:<<-<.,__ _.>>>, C'GA
Human .AAGACUUCGGAUCUGGCG.ACA.CCC. sAeU
Mouse aUACACUUCGGAUG-CACC.AAA.GUGa T A
Orc .AGGUCUUC-GCACGGGCAgCCAcUUC. A GGG,
1 5 10 15 20 25 28 C C
27 25

Figure 2.2 A fictitious alignment of three sequences wherec@dsensus columns are modeled out
of 28 possible columns. The annotated structuraeseg is consensus for the structure on the rght,
structure that corresponds to the human seqtfence

To build a CM it is necessary to begin with an mfigent® of RNA sequences, with its correspondent
annotation of the consensus secondary structurahendnnotations of which columns must be consitlere
insertions and which should be considered consenslisnns (see Figure 2). From these columns a
consensus structural tree is built.

The CM will be a directed graph Mstates with transitions given lvy(y) , with each state numbered in a
way that(y,z) -v. The CM can then be visualized as an array ofitians that run in only one direction,
which guarantees two things: an iterative dynamagpmmming calculation through all the model stated
that all transitions for state can be maintained as a displacement and a count.

3.2 A Pseudoknot secondary structure prediction imigmentation as an extension of Covariance
Models

Understanding CM, and generally speaking all SC&&G¢omputational tools that allow to probabilidtica
model distant relations between symbols in the mdée language, then it is possible to extend ¢biscept

to pseudoknots. This extension makes possibleddigtion when in the original sequence the distarited
segments (copy language) are deleted, and thefeidsible to analyze the resulting sequence asd.usu

Just as the relation that exist between residuasstdm is separated by non related residuesgisdine way

a pair of residues that form a pseudoknot will bpasated by residues that are not necessarilyedetatthe
pseudoknot being analyZ8dBecause of this, just as non related residuesserepart to determine the
relation between base pairs that form the stenthensame way it is possible to set apart existéigtions
between non related residues to determine thecphati relation between the base pairs that form the
pseudoknot.

3 This alignment is presented in STOCKHOLM format. Setails in:http://www.cgr.ki.se/cgb/groups/sonnhammer/Stockhbtml .

More information about formats used in moleculaldygy in: http://www.psc.edu/general/software/packages/hmmetiial/node38.html

* Quoted from [6], pp 278.

5 An alignment pretends to give a quantitative measf similarity between sequences. To comparalignment assigns correspondences between
symbols in the sequences.

%6 This is the SCFG approach. The SCFG approach ieinpposite direction of thermodynamic approach.
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Figure 3. Canonical sketch of a pseudoknottedcttre, divided in
substringa Bydepgpuik, ready to subsequent abstracti

Definition. If y andd are RNA sequences such that=| 8| and, always thal<i <| y| you have thay, y
(8'); are base-complementary, wheré is & written backwards. Then it is stated tydtis a biological

palindrome.
Note that ifx is a RNA sequence that can be written as the ¢tenation of five subsequences this is

x=TyPwo (1y o possibly empty) such thgto is a biological palindrome, then the CM model musdict
the pairing (y, w') as part of the secondary structure dee Figure 4).

Figure 4. Abstraction sketch of the

pseudoknotted structureyywo, ready to
subsequent analysis.

Now, if yw is a biological palindrome andupoc can be decomposed as the concatenation of fiversuds
aBuvp such thaPv is a biological palindrome, then the pairin@, v!) is also predicted by the CM model
as part of the secondary structurexof
On the other hand, ¥fw is a biological palindrome andnpo can't be decomposed as in the last paragraph,
then it is possible to infer that =Ty pwo one cannot find pairings that don’t propose ps&ndts in the
secondary structure af
Letx'= To be the sequences obtainedkdfy eliminating all paired base pairs accordinghe CM model.
If there are sequences,y , ', w ando’ suchthatk = mpo= My P wao andy w isa
biological palindrome, then the pairifgy’, w ™), that is part of the secondary structurexof report a
pseudoknot present in the secondary structure of
The previous statement can be concluded becaugdvamlcases make sense:

e VvV UMW 0OUWY

e VvV DY U0Dw 0O o
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Thus, it is intended thatpo preserve the information from the previous analyghile relations between
and w are analyzed. In this way the problem is divided a second iteration can be made to find the two
levels of relations in a separate way. After thisps the two analysis can be fused together and thie
complete analysis at the end. In synthesis, instdadoing a parallel analysis as in [4], we prop@se
sequential analysis of two instances of the sanobl@m, with evident gain in computational resouyces
which were before shared and now can be entiraljcdted to each of the two instances; besidesdhle sf
structural complexity is reduced in both cases dnaanatic way.

3.3 General description for the validation of the poposed extension

To test the proposed algorithm a program was writteC/C++, which was executed in two systems, the
result diverging only in the time of the requiredalysis. The fastest implementation was executednin

INTEL/Linux  platform with 1.8GHz processor and 1024 MbyteRAM. The second implementation was
executed in anRIX 6.5 platform E&GI Origin 200 ) with 4 parallel processors and 1024 Mbytes in
RAMY. Such program analyze an alignment in STOCKHOYNbrmat, augmented with a marker
PK_cons®’, which indicates the relations of pseudoknots mting to the standard implemented by

PseudoBas§6]. As an example figure 5 shows a theoretitighanent with a consensus pseudoknot for the
sequences shown.

# STOCKHOLM 1.0

#=GF ID trnaDummy

#=GF DE taken from [Eddy 2002], with PK_cons indi cating a fictitious pseudoknot
DF6280 GCGGAUUUAGCUCAGUUGGG.AGAGCGCCAGA CUGAAGAUCUGGAGGUCC
DE6280 UCCGAUAUAGUGUAAC.GGCUAUCACAUCACG CUUUCACCGUGGAGA.CC

DD6280 UCCGUGAUAGUUUAAU.GGUCAGAAUGGGCGC UUGUCGCGUGCCAGA.UC

DC6280 GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGA UUGCAAAUCUGUUGGUCC
DA6280 GGGCACAUGGCGCAGUUGGU.AGCGCGCUUCC CUUGCAAGGAAGAGGUCA
#=GC SS_cons <<L<LLLL, . <<L<LL. >S>>><<<<< . >S>>>> . .<

#=GC PK_cons <<<[[<<.. <<, >>[><<< L >>>>> ]

#=GC RF XXXXXXXKKXXXXXKKXXXK . XXXXXXXKKXX XXXXXXXHXXXKKXXXKX

DF6280 UGUGUUCGAUCCACAGAAUUCGCA

DE6280 GGGGUUCGACUCCCCGUAUCGGAG

DD6280 GGGGUUCAAUUCCCCGUCGCGGAG

DC6280 UUAGUUCGAUCCUGAGUGCGAGCU

DA6280 UCGGUUCGAUUCCGGUUGCGUCCA

#=GC SS_cons <<<<....... SSSSS>>>555>>,

#=GC PK_cons <<<<....... >>>>>>>>]]>>,

#=GC RF XXXXKXXXXXKKXXXXXXXXXXXX

i

Figure 5. Five RNA fragment alignment. Note thdsiused<> to indicate relations
between loops, arffl to indicate pseudoknots bindifYy

The written software abstracts the two levels abselary structure and pseudoknots in two sepasatdd,
one to indicate the secondary struct88_cons(see Figure 6) and other to indicate the structfre
pseudoknot®K_cons(see Figure 7) abstracting the one previouslyyaeal.

Once the information is processed in these twoldevke algorithm proceeds to analyze them sepgrtde
construct the consensus models in both structwedeWith these two models built it is possibleptedict
the structure of a nucleotide string without ansluded structure (see Figure 8).

The software will then compare separately the satrieg with the two consensus models, predictirg th
secondary structure that would probably have thqtience, as well as the probable pseudoknot thetuitd
contain. The probable pseudoknot is abstractedarsécondary structure. After this step, the datanified
by building the pseudoknot structure to give thealffiresult with the complete structure. The secpnda
structure and the pseudoknot structure (see FRjure

" The dicerences are due to two factors: the intensse of the memory and the multyuser natureeo§titond computer.

18 Full information about this format in:_http://wwegr.ki.se/cgb/groups/sonnhammer/Stockholm.html

9 This is a non standard marker used only in thigepa

2 For clarity, the Stockholm format has a headehwéfevant information followed by the name, thgusnce and the consensus relations. The RF
indicador announces that all columns in the aligminsbould be used in the model.
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# STOCKHOLM 1.0

#=GF ID trnaDummy

#=GF DE taken from [Eddy 2002], with PK_cons indi cating a fictitious pseudoknot

DF6280 GCGGAUUUAGCUCAGUUGGG.AGAGCGCCAGA CUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCA
DE6280 UCCGAUAUAGUGUAAC.GGCUAUCACAUCACG CUUUCACCGUGGAGA.CCGGGGUUCGACUCCCCGUAUCGGAG
DD6280 UCCGUGAUAGUUUAAU.GGUCAGAAUGGGCGC UUGUCGCGUGCCAGA.UCGGGGUUCAAUUCCCCGUCGLGGAG
DC6280 GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGA UUGCAAAUCUGUUGGUCCUUAGUUCGAUCCUGAGUGCGAGCU
DA6280 GGGCACAUGGCGCAGUUGGU.AGCGCGCUUCC CUUGCAAGGAAGAGGUCAUCGGUUCGAUUCCGGUUGQGUCCA
#=GC SS_cons <L, <L, e S>>« . S>>>> ... <<L,...... SSSS555555>>,

#=GC RF XXXXXXXHXKXIHKEXHKIXKK  XXXXKKXKKKX XXXXKXXHKKXIKEXHKEXHKXIKEXKKIXKKXXKKXKKXXKK

Figure 6. First abstraction level. Note that flhewhich indicated the pseudoknotted binding have

been abstracted witk> to complete the existing loops.

# STOCKHOLM 1.0

#=GF ID trnaDummy

#=GF DE taken from [Eddy 2002], with PK_cons indi cating a fictitious pseudoknot
DF6280 GCGGAUUUAGCUCAGUUGGG.AGAGCGCCAGA CUGAAGAUCUGGAGGUCC
DE6280 UCCGAUAUAGUGUAAC.GGCUAUCACAUCACG CUUUCACCGUGGAGA.CC

DD6280 UCCGUGAUAGUUUAAU.GGUCAGAAUGGGCGC UUGUCGCGUGCCAGA.UC

DC6280 GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGA UUGCAAAUCUGUUGGUCC
DA6280 GGGCACAUGGCGCAGUUGGU.AGCGCGCUUCC CUUGCAAGGAAGAGGUCA
#=GC SS_cons oS Sevvee >

#=GC RF XXXKXXXKXXKKXXKKXXKK XXXXKXXXKXX XXXXXXXKXXXKXXKKXX

DF6280 UGUGUUCGAUCCACAGAAUUCGCA

DE6280 GGGGUUCGACUCCCCGUAUCGGAG

DD6280 GGGGUUCAAUUCCCCGUCGCGGAG

DC6280 UUAGUUCGAUCCUGAGUGCGAGCU

DA6280 UCGGUUCGAUUCCGGUUGCGUCCA

#=GC SS_cons  ....ccccevieenne >>..

#=GC RF XXXXXXXKXXXKXXKKXXKXXXKX

J

Figure 7. Second abstraction level. Note thatthewhich indicated the secondary relations
have been abstracted with dots, and[thevhich indicated the pseudoknotted binding havenbee

abstracted to<>, thus allowing the secondary structure analysis.

Secuencia sonda en formato FASTA T con su identificador seguido de la
secuencia de nucledtidos.

>trna_yeast_phe
GCAGAUUUAGCUCAGUUGGCAGAGCGCCAGACUGAAGAUCUGGAGGUCCU
GUGUUCGAUCCACAGAAUACGCU

# STOCKHOLM 1.0
#=GF AU Infernal 0.55

DF6280 GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGAC UGAAGAUCUGGAGGUCCY
#=GC SS_cons (B . >>>> <<<<< S>>>> <<

#=GC PS_cons (RS TN LRSI >>>>> 1<

#=GC RF gccgauaUagegcAgU.GGuAgcegegecacce UgucaagguggAGgUCcg
DF6280 GUGUUCGAUCCACAGAAUUCGCA

#=GC SS_cons <<< >>>>3>))))))):

#=GC PS_cons <<< >>>>>)))]]):

#=GC RF gggUUCGAUuccccguaucggceg

I
I

Figure 8. Results of the secondary structure ptiedicin sequence
trna_yeast_phe.faNote the secondary structure> as well as the
pseudoknot structure, displayed with.

2L Full information about FASTA format in:_http://wwebi.ac.uk/help/formats_frame.html
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4. Results and Experimental Evaluation

The set of source sequences for the test procesthéaame origin as the one used iR*[4This set, which
can be found in themRNA Databasé’, is already aligned and annotated for secondamyctsire and
pseudoknots [28]. The tmRNA has at most 4 rightigctated pseudoknots. From this database 35 sesgienc
were downloaded. These sequences were organizeghglogenic tree in such way that a test groupter
model training and another group for the modelingstvere both in equilibrium at a phylogenic level,
without any over represented class in the samples.

The source data were then aligned, deleting theshaned columns between the bacteria sequencdtsri@su

a complete alignment, obtaining a source suitadridibinformatics analysis.

The appropriate model for the two abstracted sirestwas built from the 5 bacteria sequences tleanahe
phylunt® of the bacteria to be analyzed. The following ctiite was derived from these two models starting
with a sequence without structural annotation {Sgare 9).

Sequence without structural anotation (FASTA):

>Esch.coli v-2. 741 bp
GGGGCUGauucuggauucgaCGGGAUUUgcgaaAcCCaaGGUGAUGCGEAGEGUUggCCUCGua
aaaAGCCGCaaaaaauagucgcaaacgacgaaaacuacGCUUUAGCAGcuuaauaacCUGCUUAGAGC
CCUCUCUCCCUagCCUccgCUCUUAGGacGGGGaucaAGAGAGGucaaAdGAGaucGCGUgy
aAGCCcuGCCUGGGGUUgaaGCGUuaaaacuuaaUCAGGCuaGUUUBHEAGGUccGUCCaCa
GCUGGCAAGCgaauguaaaGACurACuaaGCAUGUaguACCgaGGaUgueJUUCGgacGCGGGu
ucaacuCCCGCCAGCUCCacca

Fragment of the predicted structure (from base 01 t 0 100):

Esch.coli GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGA AACCCAAGGUGAUGCCGA
#=GC SS_cons  {{{{{livrsrremns oore-—-- RULITIITIESS

#=GC PS_cons <LKLKLLLE, e <LLLLLL L -<<ggg<<<<[[[

#=GC RF ggggcuguuuucGGuUUCGAcaggauuauCgA Aaccaaaagugaugccga
Esch.coli GGGGCGGUUGGCCUCGUAAAAAGCCGCAAAAA AUAGUCGCAAACGACGAA
#=GC SS_CONS  <<-SS<KSS< P33 >>355>>,

#=GCPS_cons  [[[<<<[<>>>>—|l....

#=GC RF 9gGgcgguuggccucGuaAaaagccgcAaaAA AUAQUCGCAAAcaAaaAA

(.

Figure 9. A extract of the base sequence and g@onekng predicted
structure ofE. coli built from an alignment retrieved from tmRNA
DataBas®.

If the predicted structure is compared to the stmecprovided by themRNA Databasésee Figure 10), it is
found that the algorithm predicts in general theoletstructure, placing correctly the two pseudokribat

are found, even though it presents certain inctersiges in the size of the pseudoknot or in thefaromng
bases in some region of the whole molecule. A falssitive was never produced, that is, a pseudoknot
placed by the algorithm where it should not be sTrioves that the algorithm and it's prototype alée to
analyze big quantities of data in a relatively tnethy fashion, improving other algorithms whichadyzed
pseudoknots with similar results, but could onhalgme little fragments, only one pseudoknot or Iltpta
ignoring the secondary structure that was notedl& the pseudoknot [4].

It is quite important to point out that systemsdiie successfully identify pseudoknots simultaniyowith
sequences around 100 base pairs [4][5]. The sequabove has more than 740 base pairs, which is a
noteworthy improvement in the practical field fagudoknot analysis.

2 Results presented in modifyed WUSS format. TheimaigWUSS format not include the symbdlsand] to mark pseudoknots. Punctuation
symbols (.;,:) exhibit non pared remainder in teguence.

% software (GNU license) and biological sources usstbe obtained by e-mailingtmnino68@egresados.uniandes.edu.co

2 Online accessttp://psyche.uthct.edu/dbs/tmRDB/tmRDB.html

% Taxonomical division used by biologists to classifganisms.

% http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html.
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Fragment of the predicted structure (from base 01 t 0 100):

Esch.coli GGGGCUGauucuggauucgaCGGGAUUUgcgaaAcCCaaGGUGCAUGCCGAGGYGCGGUUggCCUCGuapnaa
#=GC SS_cons <<LLLLL Lo <<LLLLLLL-----<<KLLL <LLLLLLLLLLLLLL-LLLLL LKL D> >

#=GC PS_CONS —--m-mmmmmmmmmmmemmeeeee e (CCCCCC((udoknot-y)

Esch.coli AGCCGCaaaaaauagucgcaaacgacgaaaacua

#=GC SS_cons b e ———

#=GC SS_cons )

(...)

Il

Figure 10. Real structure Bf coliretrieved from tmRNA DataBa%e

5. Conclusions

Given the rising amount of data the genome projectsluce, the need for new sensible filters to find
adequate sequences is preponderant. Besides, tigerin some cases there is a lack of informatimn t
analyze the relations between the sequences,ilteis need new characteristics to compare the esergs.
One of the factors that are only starting to belatgd to such end is pseudoknots, that is whyalgerithm
proposed here is a contribution in that sense.

For the particular case of RNA and its secondamycstral prediction, there is an attempt to deceupid
disaggregate a complex problem by dividing it ib guoblems of an easier analysis, paying spediahtibn

to preserving the coherence and in a rigorous wath®e data back together. Because the resultsnebita
were satisfactory, the success of this integramgataach is confirmed, approaches that have alrbadyn
successful in other bioinformatics fiefls
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