
Integrity Constraint Checking in Distributed Nested Transactions over a
Database Cluster*

Stephane Gançarski1, Claudia León2, Hubert Naacke1, Marta Rukoz2 and Pablo Santini2

1
Laboratoire d’Informatique Paris 6, Université Pierre et Marie Curie.

8 rue du capitaine Scott, 75015, Paris, France.

{Stephane.Gancarski,Hubert.Naacke}@lip6.fr

2
Centro de Computación Paralela y Distribuida, Universidad Central de Venezuela.

Apdo. 47002, Los Chaguaramos, 1041 A, Caracas, Venezuela.

{cleon,mrukoz}@ciens.ucv.ve, psantini@eda.com

Abstract

This paper presents a solution to check referential integrity constraints and conjunctive

global constraints in a relational multi database system. It also presents the experimental

results obtained by implementing this solution over a PC cluster with Oracle9i DBMS.

The goal of those experimentations is to measure the time spent to check global

constraints in a distributed systems. The results show that the overhead induced by our

distributed constraint checking is reduced by 50% compared to a centralized checking of

constraints.

Keywords: Multi Databases, Integrity Constraints, Transaction Systems, Distributed

Systems.

Introduction

Multidatabase Systems (MDBS), where different sites (or nodes), connected by large scale (e.g. Internet)

or local (e.g. Fast Ethernet) network, store parts of a global database are nowadays widely used:

distributed databases, database clusters, mediation based systems, databases over peer-to-peer networks.

A major issue with such systems is to maintain data quality with respect to transactions addressed to the

MDBS. One of the most popular way of maintaining data quality is to define and maintain integrity

constraints, which are logical assertion which must be satisfied by the database. An integrity constraint

may be local, i.e. it relates data stored on a single node. Otherwise, it is a global constraint, i.e. it relates

data distributed over different sites. Maintaining global constraints is a challenging performance issue,

since it involves a distributed evaluation for checking the constraints. Data involved by such a constraint

being distributed over various nodes, it is necessary to determine on which node(s) the constraint must be

checked to minimize the checking process duration, by minimizing the quantity of information transferred

through the network, and thus optimize transaction response time. In [2], we propose a classification of

integrity constraint and give, for each constraint type, strategies for integrity checking in an object

oriented multidatabase, according to the nodes on which updates are sent.

In this paper, we propose a mechanism for checking global constraints in a relational Multidatabase. As in

[2], user transactions as well as the integrity checking process are nested transactions, according to the

model proposed by Moss [6]. We first focus on referential integrity constraints, then, we address global

conjunctive constraints which are a generalization of referential integrity constraints. The core idea of our

solution is to distribute and parallelize the checking process whenever a local checking is not sufficient.

*
 This work was financed by CDCH-UCV, FONACYT - Venezuela and CNRS - France

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

We also show the performance evaluation results obtained on a database cluster where each node runs an

instance of Oracle9i

The remainder of the paper is structured as follows. Section 1 presents the main concepts used in our

approach. Section 2 describes our checking strategies while implementation and experimentations are

presented in Section 3. In Section 4, we present and discuss the results we obtained. Section 5 concludes.

1. Context and main concepts

A Multidabase system allows for data manipulation over different database parts, each one being

managed on a node by a local DBMS. There are different possible architectures, with different levels of

integration of the local DBMSs, corresponding to different levels of global services [8]. In this paper, we

propose mechanisms for maintaining global integrity constraints over a relational homogenous

multidatabase system which includes the following features:

• All the transactions are global and handled by a global transaction manager based on a global schema

describing data and its localization. In other words, we do not consider the case where local

transactions can be executed by local transaction managers out of the control of the global transaction

manager. This latter manages the concurrency control between transactions and between sub-

transactions of a nested transaction.

• We use the (closed) nested transaction model originally proposed by Moss [6]. A nested transaction

can have as many as necessary sub-transactions which themselves can be composed of sub-

transactions and so on. Thus, a nested transaction can be represented by a transaction tree which

represents the parent-child hierarchy among sub-transactions. Moss described the properties of the

nested transaction model and algorithms for concurrency control and validation. It also proposed a

simplified version of the model, where only leaf sub-transaction can access stored data, each leaf sub-

transaction being executed on a single node and thus, only accessing data stored on that node. We use

T

T1

T2

T12 T21 T11 T22

T111 T112 T221 T222

T1111

T1112

Site S2

Site S1

Site Sn

Site S3

C1

C2

SCA(C2)

 SCA(C1)

Check(C1)

Check(C2)

Figure 1. Distributed nested transaction and “touched” integrity constraints

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

this simplified version of the model, since it simplifies the transaction control and, as demonstrated by

Moss, it is as expressive as the original version.

Sub-transactions of a nested transaction are assigned to the different nodes according to the distribution of

the data. When a nested transaction is initiated on a site Si its sub-transactions are recursively initiated on

the same site. When one of those sub-transactions is the root of a sub-tree the leaves of which must be

executed on a same site Sj, different from Si, then the whole sub-tree is sent to Sj where it will be fully

executed. This assignation policy is illustrated on Figure 1.

2. Checking global integrity constraints over relational multidatabases manipulated by nested
transactions

As mentioned in the introduction, the main issue for checking global constraints in a multidatabase

environment is to determine where to check the constraint while minimizing the amount of data

transferred through the network. In [2], we address this issue in the context of OO multidatabase with

nested transactions, and propose a strategy based on the constraint type, update type and update

localization. As the goal of this paper is to adapt this strategy to relational multidatabases, we recall here

the main principles of our strategy proposed in [2]:

• The checking of a constraint Ci against the effects of a nested transaction T is controlled by the

smallest common ancestor, within the tree representing T, of all the leaf sub-transactions touching the

constraint. Briefly speaking, a transaction touches a constraint if it is likely to violate it, i.e. it updates

data involved by the constraint. The set of subtransaction that touch Ci is denoted Touch(Ci) , and their

smallest common ancestor which controls Ci is denoted SCA(Ci). The checking of Ci starts as soon as

no more subtransaction likely to violate it is running, i.e. as soon as all the subtransactions in

Touch(Ci) have finished.

• Since each subtransaction controls the execution of its subtree [6], it is possible to guarantee that in

case of violation of Ci, we abort not only the subtransactions in Touch(Ci), but also the subtransactions

that have already used the “dirty data” produced by subtransactions of Touch(Ci). On opposite to flat

transactions systems, the nested transaction can continue its execution with its subtransactions which

are not related with the constraint, i.e. the subtransactions which are not in Touch(Ci) and which have

not used results produced by subtransactions in Touch(Ci).

• There is a direct communication between elements of Touch(Ci) and SCA(Ci),which allows checking

Ci as soon as possible, i.e. as soon as all the subtransactions have finished. In case of violation, a

message is propagated downwards through the subtree of SCA(Ci) to provoke the abort of relevant

subtransactions in order to maintain the database integrity.

• The checking of Ci is performed against the objects modified by a nested transaction Tj, i.e. the process

Check(Ci) which checks Ci uses the effects of the transactions in Touch(Ci) that have decided to

commit. We denote Effect(Tj,Ci) the set of such effects. Check(Ci) is nested transaction, child of

SCA(Ci). Due to the way subtransactions are assigned to sites, Check(Ci) is initiated either on the site

SCA(Ci) is initiated or on a site Sk, if all the subtransaction in Touch(Ci) are assigned to Sk (see Figure

1).

For sake of efficiency, we must determine on which site the processes triggered by check will be

executed, in order to minimize the amount of data to be transferred through the network. We must take

into account the nature of constraint Ci as well as the location of the subtransactions in Touch(Ci). This

issue is illustrated on Figure 1 where the “area” concerned by a constraint (data involved by the constraint

and subtransactions touching the constraint) is delimited by a bold line. For instance, C1 involves data on

sites S1 and S2 and is touched by T1112 on S1 and by T12 on S2. C2 involves data on sites S2 and S3 and is

touched by T221 on S3. This example shows that it is necessary to minimize the quantity of data to transfer

between the sites concerned by the checking of a constraint. More precisely:

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

• For constraint C2, though the unique leaf subtransaction that touches it is located on S3, it is likely that

the checking process should be executed on S2. For instance, if C2 is a referential integrity constraint,

its checking requires comparing the data modified on S3 by T221 with data stored on S2 related with the

constraint. Evaluating C2 on S2 only requires transferring data modified on S3 to S2, while evaluating it

on S3 could require transferring all the data of S2 involved by the constraint, even the data that is not

related, directly or indirectly, by the transaction.

• For constraint C1 the situation is even more complex. Its evaluation can be executed on S1, on S2, or on

both sites, depending on the nature of the constraint and on the operations performed by T1112 and T12.

2.1 Using intersite sets

An usual method for optimizing the checking process of universally quantified constraint is the following.

Objects modified by a transaction and involved by a constraint are collected at transaction execution time,

so that the constraint is only checked against those objects. In a distributed context, it is necessary to

minimize the transfers of such objects through the network, to avoid creating a bottleneck during the

execution of distributed transactions. To this end, we proposed in [2] to parse each global constraint C in

order to determine intersite sets which minimize the number of objects to be transferred for checking the

constraint. Generating intersite sets is made through the two following steps:

First step: the first step is inspired by the work of Gupta and Widom [4] which consists in deriving,

wherever possible, a locally computable predicate. This predicate is locally evaluated on a single node

with object locally modified. If this predicate is satisfied, this is sufficient to guarantee the satisfaction of

the global constraint C. From now on, we denote PLi such a predicate, where Si is the site on which PLi is

defined and C is the constraint to check.

Second step: the second step is based on the approach of Grufman et al. [3]. They propose to decompose

each universally quantified constraint into a conjunction of intersite predicates. The idea is to obtain a

sub-constraint for each site, which describes the responsibility of the site with respect to the satisfaction

of the global constraint, and an additional constraint which relates all the intersite predicates with the

constraint to check. This additional constraint is stored on the site where the final checking of the

constraint will occur. In [2], we propose such a decomposition where C_intersitei, the set associated with

the intersite predicate of Si, only contains objects modified on Si and which do not satisfy the locally

computable predicate associated with Si and C.

2.2 Generating nested transactions to implement the checking process

The process Check(C) which implements the checking of constraint C with respect to nested transaction

T, is initiated by SCA(C) , the subtransaction of T in charge of controlling the checking of C, on the site

assigned to SCA(C), denoted SiteSCA(C) . Check(C) initiate the root of a distributed nested transaction on

SiteSCA(C), having a child Check(CSi) for each site Si assigned to a leaf sub-transaction of T touching C.

Each Check(CSi) has the following behavior:

1. Check the locally computable predicate PLi , if exists, through Check(PLi) process. If PLi is satisfied,

the process ends since this means that C can not be violated by the modifications made on Si.

2. If PLi is not satisfied, C_intersitei is built. C_intersitei contains the objects of Si required to continue

the checking of C on every site Sj containing data involved by C and is thus sent to Sj.

3. Last, Check(Si) initiate on Sj the process Check(RGij) which checks the satisfaction of C with respect

to the objects in C_intersitei and to the data stored on Sj.

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

Nested transaction Check(C) is distributed over different sites: sites containing leaf sub-transactions of T

touching C, and sites where C must be checked because they contain data involved by C. Figure 2 shows

such a nested transaction for the constraint C1 of Figure 1. Note that the nested transaction for checking

C2 would have only one subtree (instead of two for C1) since C2 is touched by leaf sub-transactions all

executed on a single site, S3.

Figure 2. Checking of a global constraint touched by sub-transactions on two sites

A global constraint may contain predicates and quantifiers requiring to process checking on several sites,

through transactions exchanging information. Such a constraint may have an arbitrary complexity which

makes it difficult (almost impossible) to define a generic algorithm for generating the nested transaction

that checks the constraint. Thus, we restrict our solution to two constraint classes: global foreign key

constraints (referential integrity) and global conjunctive constraints. Global conjunctive constraints are

more general constraints with relate data located on different sites. We present the method for checking

those two constraint type in the next two subsections.

2.3. Referential integrity constraints

Referential integrity constraints are defined between the primary key of a table and a set of columns,

called foreign key, of another table. This type of constraint is usually maintained by existing DBMS in

client/server architectures, we present here a method to maintain them in a distributed environment.

Figure 3 shows an example of a referential integrity constraint Cf , which can be expressed as follows:

∀ p ∈ P, ∃ r ∈ R, r.Kr = p.A.

Note that the only operations likely to violate Cf are update or delete on table R and update or insert on

table P. In the following, we show our method applied to two examples: a delete on R and an insert on P.

2.3.1. Removing a primary key

Figures 4 and 5 show the pseudo-SQL code of the nested transaction that maintains the constraint Cf

when a operation DELETE R WHERE <condition> is executed. We assume in Figure 4 (resp. Figure 5)

that Cf is defined with the Restrict (resp. Cascade) option. In both cases, tuples deleted on site 2 may be

Check(C1S1)

Check(PL1)

Check(RG12)

SiteSCA(C1)

C1_Intersite1

Check(C1S2)

Check(PL2)

Check(RG21)

C1_Intersite2

Check(C1)

Site

Site

Figure 3: Referential integrity constraint between tables P and R.

Create Table P (

 Primary Key Kp,

 Foreign Key A

 Reference R(Kr),

);

Site

 P Kp ... A

Site
S2

 R Kr

Create Table R (

 Primary Key Kr,

); Cf

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

referenced by tuples on site 1. In case of the Restrict option, the transaction is aborted if there exist such

tuples (Figure 4). In case of the Cascade option, such tuples are deleted on site 2.

2.3.2. Inserting a foreign key

When a tuple is inserted into table P, we must guarantee that there exists a tuple in R with the

corresponding primary key value. Figure 6 shows the pseudo-SQL code of the nested transaction that

maintains the constraint Cf when a operation INSERT INTO P is executed. For sake of simplicity, we

assume that the inserted tuples correspond to the result of query SELECT * FROM P WHERE

<condition>.

To check referential integrity constraints, we take into account the following points:

• In case of a Delete on R with cascade option, we need not only to check the constraint, but also

maintain it by deleting all the tuples in P with a foreign key equal to the primary key of the deleted

tuple in R.

• The case where two concurrent transactions (belonging to the same nested transaction or not)

introduce inconsistency by respectively inserting a tuple into P with A=x and deleting a tuple in R

where Kr=x is impossible, at least if the DBMS concurrency control is based on (write) locks, as it is

the case with Oracle9i.

-- Check(PL1) on S2

Intersite: Rdel = SELECT R.Kr FROM R WHERE <condition>

DELETE R WHERE <condition>

Transfer Rdel FROM S2 to S1

-- Check(CL12) on S1

DELETE P WHERE A IN (SELECT Kr from Rdel)

Figure 5: Checking an referential integrity constraint with CASCADE option upon deletion of tuples in R

S2 to S1

Check(Cf_S2)

;

Delete R Delete P

Check(Cf)

Rdel

-- Check(PL

1
) on S

2

Intersite: R
del

= SELECT Kr FROM R WHERE <condition>

DELETE R WHERE <condition>

Transfer R
del

 FROM S
2
 to S

1

-- Check(RG
12
) on S

1

If(SELECT A FROM P WHERE A IN(SELECT Kr FROM R
del

))<>∅

Then ROLLBACK

Else COMMIT;

Endif;

Figure 4: Checking an referential integrity constraint with RESTRICT option upon deletion of tuples in R

S2 to S1

Check(Cf_S2)

;

Delete R Exists P ?

Check(Cf)

Rdel

Rollback

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

2.4. Global conjunctive constraints

Global conjunctive constraints are an important class of constraint useful to relate data possibly located

on different sites. We give here an example, the reader may refer to [2, 3] for a more detailed description.

Consider the distributed database of Figure 7, where the arrow illustrates the fact that attribute F on S1 is a

reference to the table R on S2. A global conjunctive constraint Cf that uses this reference could be:

∀(p ∈ P, r ∈ R), p.D = value1 ∧ p.F = r.Kr ⇒ r.N = value2

C
f
 imposes a defined value for attribute N for every tuple in R related through F with a tuple in P with a

given value for attribute D. For instance, assume that P describes products and R describes Firms, such a

global constraint may be that a firm which produces a given product type must have a security level above

a given threshold.

Figure 7: Relation between R and P through reference F

Figure 8 presents the pseudo-SQL code of the nested transaction Check(Cf) that maintains the constraint

Cf when a transaction that updates table P is executed on node S1. The execution of another transaction

that updates table R on node S2 would generate a similar nested transaction, by inverting the role of S1 and

S2. The execution of a transaction that updates both tables would raise a nested transaction for checking

Cf similar to the one shown on Figure 2.

Figure 6: Checking an referential integrity constraint upon insertion of tuples in P

S1 to

-- Check(PL
1
) on S

1

INSERT INTO P Values (…),

Intersite: P
ins

 = SELECT P.A FROM P WHERE A=<condition>;

TRANSFERT P
ins

 FROM S
1
 to S

2
;

-- Check(RG
21
) on S

2

If(SELECT A FROM P
ins

WHERE A NOT IN(SELECT Kr FROM R)) ≠ ∅

Then ROLLBACK

Else COMMIT

Endif;

Check(Cf_S1)

;

Insert P ¬ Exists R ?

 Check(Cf)

Pins

Rollback

Figure 8: Checking of a global conjunctive constraint touched by a transaction updating table P

-- Check(PL
1
) on S

1

UPDATE INTO P (D) Values (),
Intersite: P

Upd
 = SELECT P.F FROM P WHERE D = value

1
;

Transfer P
upd

 from S
1
 to S

2
;

-- Check(RG
21
) on S

2

If (SELECT r.Kr FROM P
ins

 p, R r

WHERE r.Kr=p.F AND r.N ≠ value
2
)) <> ∅

Then ROLLBACK

Else COMMIT

Endif;

Check(Cf_S1)

;

Update P
Existe R /

value2 ?

Check(Cf)

Pupd

S1 a

Rollback

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

3. Performance evaluation of checking global conjunctive constraints

In order to evaluate our integrity checking mechanism, we focus on the checking of global conjunctive

constraints. We measure the time spent by the system to execute the checking process, including data

transfers between sites to prove the feasibility of our method in distributed environments. For sake of

simplicity, we assume that the nested transaction that may violate a constraint is reduced to the subtree

formed by the set of leaf subtransactions touching the constraint, noted T(C) and their common ancestor

SCA(C). We also consider that the leaf sub-transactions are all executed in parallel and use the

concurrency control method provided by Oracle9i [7].

In this context, the whole response time of a nested transaction is decomposed into the following three

parts that we measure separately:

• Update time: this time corresponds to the execution time of the leaf subtransactions, including the

updates made and the generation of intersite sets. Since leaf subtransactions are executed in parallel,

the update time is the maximum of the leaf subtransaction execution times.

• Transfer time: this is the time spent to transfer intersite sets from one site to another. Again, since

intersite sets are transferred in parallel, the total transfer time is the maximum execution time off all

threads performing intersite set transfers.

• Checking time: this is the time spent to check the constraint. It corresponds to the maximum time of

all the thread performing the checking of the constraint. It is worth noting that we consider the worst

case, i.e. the case where the constraint is not violated and thus the checking process must be executed

for all the involved data.

The total time is thus the sum of the three times defined above. We choose it as the metric for our

experiments, since each part includes actions related with the checking process.

3.1. Experimental environment

We ran our experiments on a seven nodes PC cluster at Central University of Venezuela of Caracas. Each

experiment used three nodes simultaneously. Each node has a Intel Pentium Pro III 1 GHz processor, 256

MB SDRAM core memory and a 40 gigabytes hard-disk. Nodes are connected by a fast Ethernet 100

Mb/s network. Each node runs Red Hat Linux Advanced Server Release 2.1 AS (Pensacola) Kernel 2.4.9-

e.3. The local DBMS is Oracle9i Release 2 (9.2.0.1.0) on each node. Programming and query languages

are Java 2 Standard Edition J2EE version 1.4.2, Oracle9i PL/SQL, Oracle SQL and Java Database

Connectivity JDBC 3.0 API.

3.2. Case study

Experiments were led on the example introduced in Section 2.4 and represented on Figure 9. The database

is composed of a table Products stored on one site S1 and a table Firms stored on another site S2. Attribute

ProdBy of table Products is a reference to the firm which produces the product. There is one global

conjunctive constraint over this database, which states that a firm which produces a product with

restricted delivery must have a (security) level equal to 33. It can be expressed by the following formula:

Cf : ∀(p ∈ Products, f ∈ Firms), p.Deliv = “restricted” ∧ p.Prodby = f.Kl ⇒ f.Level = 33

Figure 9: a sample distributed database

Site S1

Products

Kp ……. Deliv

Firms

 Kl ……. …… . Level

Site S2

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

Each table has one million of tuples randomly generated. The simplicity of the database design does not

simplify the checking algorithm. Moreover, as shown by Grefen and Widom [5], global constraints

involving more than two sites are very rare and almost every constraint involving more than two sites can

be rewritten as a conjunction of constraints involving only two sites.

3.3. Prototype global design

As shown on Figure 10, our prototype is composed of three layers: a global manager, a local controller

and a local DBMS. The global manager is used to control the whole nested transaction on the site it is

initiated (here Site1). Communications between sites are made between local controllers.

The global manager is in charge of controlling the execution of the nested transaction SCA(C) and of the

processes that check constraint C. Its main functions are: initiate the prototype, coordinate the execution

of operations according to the sites touched by the transaction, define and launch the processes required

for checking the constraint and decide whether the transaction commits or abort. It establishes a

connection with the local controller on the same site in order to schedule the different processes.

The local controller schedules and sends operations to the local DBMS: DML operations, operations that

create the intersite sets and operations that check the locally computable predicates. It also sends data

(intersite sets) to remote local controllers.

The local DBMS stores and manages local data. It takes advantage of the features of Oracle9i [7].

3.4. Experiments description

We ran four different experiment types, according to the different ways of distributing the data (one or

two nodes), the distribution of updates over those nodes, the nested transaction type and the checking

process. In the following, we describe those four experiment types. Grey rectangles represent updated

tables; the dashed arrows represent data transfers.

GTCM: global transaction

and constraint

LCM: local controller

GTCM

DBMS

LC

Site 1

DBMS

LC

Site 2

DBMS

LC

Site n

Figure 10.System Architecture

GTCM: global transaction

and constraint

LCM: local controller

GTCM

DBMS

LC

Site 1

DBMS

LC

Site 2

DBMS

LC

Site n

Figure 10.System Architecture

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

Experiment 1: updating one table on one site

This experiment is considered as a reference, since is it fully centralized, i.e.

there is no data transfer from one node to another. It allows comparing the

behavior of our mechanism in a distributed environment and in a centralized

environment with similar conditions. There is one leaf subtransaction that

updates table Products.

Experiment 2: updating two tables on one site.

This Experiment type is similar with the preceding one, but has two leaf

subtransactions, one updating table Products and the other updating table

Firms. Both tables are located on node S1. It is also a reference scenario since

it is fully centralized.

Experiment 3: updating one table on two sites from a third site

This scenario uses three cluster nodes. The nested transaction SCA(Cf) is

initiated on node S0. It has one leaf subtransaction sent to S1 to update table

Products. The three nodes are required for checking the constraint Cf. The

execution control of SCA(Cf) and of the checking process is made on S0, by

performing the following tasks : initiate leaf subtransactions on the

corresponding site (S1), coordinate the data transfer from S1 to S2, check

the constraint and, in case of satisfaction, initiate the 2PC mechanism to

validate the nested transaction.

Experiment 4: updating two tables on two sites from a third site

This experiment is similar to the

preceding one but has two leaf

subtransactions, one updating table

Products and the other updating table

Firms.

S0 Check(Cf)

Check(Cf_S1)

Check(Cf_S2)

S2

S1

Check(Cf_S1)

Check(Cf)

Check(Cf_S1)

Check(Cf)

S1

Check(Cf_S1)

Check(Cf)

S1

S1 S2

S0

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

3.5. Experiment size

In order to observe the behavior of our mechanism with different workloads, each experiment is executed

with six different sets (of increasing sizes) of tuples to update. More precisely, for each experiment, the

UPDATE operation has been executed over 20.000, 50.000, 100.000, 200.000, 500.000 and 1.000.000

tuples. Each experiment is repeated ten times, in order to increase the reliability of our results. As

mentioned above, the updates operation are chosen so that the constraint is never violated, which is the

worst case in terms of response time. Furthermore, if the constraint could be violated, then the

interpretation of the results would have been more difficult, since the checking time would depend on the

time when the first tuple which violate the constraint is encountered.

4. Experiment results

Figure 11 compares the total time, defined in Section 3, obtained for experiments 1 and 3, where only one

table is updated. It shows that distributing the checking process does not create overhead, even when

updates are all performed on the same site and thus the checking does not take much advantage from the

parallelization.

0

100

200

300

400

500

600

700

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Number of updated tuples

T
o

ta
l
ti

m
e

 (
s

)

Experiment 1 Experiment 3

Figure 11. Experiment results when only one table is updated

Figure 12 compares the results obtained by experiments 2 and 4, when the nested transaction performs

updates on both tables. We observe that experiment 4 raises better results than experiment 2, despite this

latter does not require data transfer. This is mainly due to a better parallelism, since two nodes are used,

instead of one, to perform the same tasks. Those results must be considered carefully, since they have

been obtained on a rather fast network, which reduces the impact of data transfers on the overall

execution time.

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

0

200

400

600

800

1000

1200

1400

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Number of updated tuples

T
o

ta
l
ti
m

e
 (
s

)
Experiment 2

Experiment 4

Figure 12. Experiments results when both tables Products and Firms are updated

5. Conclusions

In this paper, we present an efficient solution for maintaining global constraints in a relational

multidatabase. This solution has been introduced in [2], so this paper focuses on implementing the

solution and a first performance evaluation. We study two constraint types, referential integrity

constraints and global conjunctive constraints. We analyze the operations likely to violate a constraint of

such type and propose a mechanism that maintain integrity for each constraint type.

This mechanism has been implemented over a database cluster running Oracle9i on each node.

Experiments have been led for global conjunctive constraints. The results we obtained show the

feasibility of our approach, i.e. it is possible to efficiently maintain integrity in a multidatabase accessed

through distributed nested transactions, by using a mechanism that uses itself distributed nested

transactions. In other words, the benefits of a distributed nested transactions mechanism, execution

control and parallelism, can be extended to the integrity maintenance issue.

To go further, we plan to experiment with more complex cases, where several nested transactions are

executed in parallel and where several constraints can be violated by the same transaction. We also plan

to experiment the mechanism for referential integrity checking presented in this paper, to see if it yields

the same conclusions.

References

[1] J. Akoka and I.Comyn-Wattiau. Conceptions des Bases de Données Relationnelles Vuibert. Paris.

20001.

[2] A. Doucet, S. Gançarski, C. León and M. Rukoz. Integrity Constraints in Multi-DB with Nested

Transactions, LNCS. Volume 2172. Proceedings 9th International Conference of Cooperative

Information Systems, COOPIS’2001, Italia, 2001, Springer-Verlag.

[3] S. Grufman, F. Samson, S. M. Embury, P. M. D. Gray and T. Risch. Distributing Semantic

Constraints Between Heterogeneous Databases. Proceedings of the Thirteenth International

Conference on Data Engineering, ICDE 1.997, April 7-11, pages 33-42, Birmingham U.K., April

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

1-997. IEEE Computer Society.

[4] A. Gupta and J. Widom. Local Verification of Global Integrity Constraints in Distributed

Databases. Proc. of the 1.993 ACM SIGMOD Int. Conf. on Management of Data, volume 22 of

ACM SIGMOD Record, pages 49-58, Washington, USA, May 1.993. ACM Press.

[5] P.W.P.J. Grefen and J. Widom. Protocols for Integrity Constraints Checking in Federated

Database. Distributed and Parallel Database, 5(4):327-355, 1997.

[6] J.E.B. Moss. Nested Transactions: An Approach To Reliable Distributed Computing. MIT Press,

Cambridge, USA, 1.985.

[7] Oracle. Oracle9i Database Administrator’s Guide Release 2 (9.2). Part No. A96521-01. Oracle

Corporation. March, 2002.

[8] A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3):183-236, September

1.990.

CLEI ELECTRONIC JOURNAL, VOLUME 9, NUMBER 2, PAPER 2, DECEMBER 2006

