
CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

1

An Ontology for Specifying and Tracing Requirements
Engineering Artifacts and Test Artifacts

M. Luciana Roldán, Marcela Vegetti, Silvio Gonnet, Horacio Leone
Instituto de Desarrollo y Diseño (Conicet/UTN),

Santa Fe, Argentina, 3000
{lroldan, mvegetti, sgonnet, hleone}@santafe-conicet.gov.ar

and

Marcelo Marciszack

 Centro de Investigación, Desarrollo y Transferencia de Sistemas de Información (CIDS),
Córdoba, Argentina, 5000
marciszack@gmail.com

Abstract

Nowadays, modern software development processes follow an iterative approach, which makes
possible to start the testing of a system at early stages. This approach requires recording the
requirements artifacts that specify the functionality or characteristics required by the system,
and the test cases that are derived from each requirement artifact. Frequently, software
development organizations employ supporting tools to create and maintain these artifacts.
There exist numerous tools for supporting requirements specification activities, as well as the
definition and execution of test cases. These separate tools have their own databases and
metamodels. The lack of integration between these tools leads to difficulties in tracing related
artifacts and obtaining useful knowledge to manage the developing process. It is necessary to
understand without ambiguities the concepts used by the different tools to allow them to
interoperate. This paper proposes an ontology that defines and integrates the concepts included
by the metamodels of different Requirements Engineering and Testing Management supporting
tools. The formalization of these concepts and their relationships in an ontology language
prevents ambiguity of the concepts and permit to the tools involved to interoperate with each
other, to achieve semantic consistency and the tracing of artifacts. The proposed ontology used
in conjunction with a reasoner provides capabilities to infer traces that are not explicit, which
makes it possible to easily maintain artifacts and associations between them. The approach
facilitates backward tracing from test cases to use cases and functional requirements artifacts,
obtain knowledge about the causes of a defect or a poor specification, and enable impact
analysis.

Keywords: Functional requirements, Artifacts tracing, Ontologies, Traceability, Knowledge
inference, Test cases, Requirements engineering.

1 Introduction
There exists a close relationship among the activities involved in Requirements Engineering and software intensive
systems testing, which is reciprocal and positive. On the one hand, a complete, consistent and legible specification of
requirements allows a good definition of test cases [1]. On the other hand, the testing activities that are performed to
verify a system also contribute to the verification and improvement of requirements artifacts, since the test cases
specification activities have a positive effect on the improvement on quality of the requirements specification. Testing
activities require a validated and released set of requirements. Therefore, having a complete, consistent and legible set
of fully specified requirements is beneficial for the definition of high-quality test cases.

Nowadays, most employed modern development processes follow an iterative approach, where it is possible to
start testing the system at early stages. In this line, the present proposal promotes the use of requirements artifacts (use

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

cases specifications) to generate tests case artifacts [2]. Use cases [3] are key for the testing process, to derive test
artifacts, to identify what conditions should be taken into account when developing the test cases, and to verify the
proper implementation of that all the requirements. Frequently, software development organizations employ
supporting tools to create and maintain these artifacts. Therefore, it is not only important to record the requirements
artifacts that specify the functionality or characteristics required by certain systems (textual requirements
specifications, use cases, use case scenarios, etc.), but also to know which test cases were derived from each
requirement artifact. Besides, it is important to facilitate backward tracing from test cases to use cases and functional
requirements artifacts, thus to obtain knowledge about the causes of a defect or a poor specification, and to enable
impact analysis.

 Numerous tools for supporting requirements specification activities, as well as for supporting the definition and
execution of test cases exist. These separate tools have their own databases and metamodels. The lack of integration
among these tools leads to difficulties in tracing related artifacts and obtaining useful knowledge to manage the
developing process. It is necessary to understand without ambiguities the concepts used by the different tools to allow
them to interoperate.

In this paper, an ontology is developed, which defines the concepts involved in requirements engineering and
testing activities, and the relationships among them, with the aim of achieving the required semantic interoperability.
In computer science, an ontology is a formal representation of the knowledge by a set of concepts within a domain
and the relationships between those concepts. Ontologies are used to describe the domain and to reason about the
properties of that domain. Ontologies provide a shared vocabulary, which can be used to model a domain in terms of
the type of objects that intervene, and/or concepts that exist, and their properties and relations [4].

In a previous work [5], we introduced a preliminary ontology of functional requirements and use cases, with the
aim of supporting the automatic derivation of test cases from use cases. In this paper, the ontology is enriched with
additional concepts, relationships, properties, and rules taking advantage of the capabilities to represent complex
knowledge that ontologies offer. Besides, the potential of ontologies for knowledge retrieval and inference makes
possible to trace the artifacts generated at different software development process stages and with different supporting
tools (requirements artifacts, tests artifacts, and intermediate artifacts if any). Besides, the main methodologic steps
followed for the ontology development are introduced.

The paper is organized as follows. In section 2, we introduce some general topics about ontologies, traceability
issues, and derivation of test cases from use cases. In section 3, we outline the main methodologic steps followed for
the ontology development. In section 4, the purpose and scope of the ontology are defined by means of competency
questions, and the conceptual model that underlies the ontology is described. In section 5, the implementation of the
proposal is detailed and illustrated with a scenario that shows how traceability links between artifacts are retrieved
and inferred. In section 6, related works are mentioned. Finally, the conclusion is provided in section 7.

2 Background
2.1 Ontologies

In the context of software developing, numerous studies have been proposed where ontologies play a major role.
Particularly, in Requirements Engineering, the concept of ontology has been used to minimize or resolve different
types of problems. For instance, to improve the completeness of requirements specification and to help to
disambiguate its meaning, to perform consistency analysis in requirements, to assist in explicitly modeling domain
knowledge, to manage requirements knowledge and requirements changes and so on [6].

In computer science, ontology is a formal representation of the knowledge by a set of concepts within a domain
and the relationships between those concepts. It is used to reason about the properties of that domain and may be used
to describe the domain [4]. In theory, ontology is a “formal, explicit specification of a shared conceptualization”.
Ontology provides a shared vocabulary, which can be used to model a domain that is, the type of objects, and/or
concepts that exist, and their properties and relations [7]. Ontologies make possible the hierarchical classification of
interrelated domain concepts and can be formalized using an RDF1 schema or the OWL2 language. These languages
enable ontologies to be read both by humans and machines and obtain knowledge by means of queries and reasoning
to infer knowledge that is not explicitly stated. Additionally, semantic web languages like RDF and OWL facilitates
interoperability. They provide a social structure and technical framework for reusing available ontologies, and formal
mechanisms to express logical equivalence among classes and properties that belong to different ontologies.

1 https://www.w3.org/TR/2004/REC-rdf-primer-20040210/
2 https://www.w3.org/TR/owl2-overview/

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

2.2 Traceability

According to IEEE St. 610-12-1990 [8] traceability denotes, in general, the degree to which a relationship can be
established between different development artifacts, especially artifacts having a predecessor-successor or master-
subordinated relationship to one another. A requirement is considered being traceable if the origin of the requirement
as well as its further use in the development process can be traced. As stated by Gotel and Finkelstein [9],
Requirements traceability refers to the ability to describe and follow the life of a requirement, in both a forwards and
backwards direction.

Traceability relations can be documented in different ways [1]. The simplest way of documenting a traceability
relationship is to include the identifier of the target artifact as a textual annotation to the source artifact. Another way
is by using hyperlinks. To document a traceability relationship a hyperlink from the source artifact to the target artifact
is created. Different types of traceability relationships can be documented by defining different hyperlinks types. The
traceability relationship types can be defined and structured in a traceability information model. Such traceability
model defines, for a specific project, the traceability artifact types and the traceability relationship types between
artifacts to be used in this project. Furthermore, such a model can define cardinalities for the relationship types as well
as specializations relationships between different types and artifact types.

Besides the traceability documentation approach employed, there are different ways of presenting (visualizing)
traceability information. A way of doing it is by using traceability matrices. The rows of a traceability matrix represent
the source artifacts considered in the matrix, and the columns represent the target artifacts. An artifact can be
represented in the matrix by its identifier. If a traceability relationship exists between the source artifact of row i and
the target artifact of column j, cell (i, j) in the traceability matrix is marked. A traceability matrix can be used for
representing a single relationship type. In practice, due to the large numbers of requirements, the use of traceability
matrices for visualizing traceability information is limited.

Another kind of traceability visualization is traceability graphs. In a traceability graph, the nodes represent
artifacts and the edges represent traceability relationships between the artifacts. In addition, to distinguish the different
artifact types and/or different traceability relationship types, different type of nodes or edges can be defined.
Alternatively, an attribute can be assigned to each node and/or edge of the graph to denote the artifact or relationship
type. During traceability analysis, traceability graphs are often analyzed along specific paths consisting of multiple
nodes and edges. Traceability paths are particularly important for change management. A limitation of traceability
graphs is that is difficult to trace and analyze long paths only visually, so a language is needed to query and retrieve
traceability paths efficiently. In addition, if redundant or alternative traceability relationships between the artifacts
exist, they become difficult to maintain.

2.3 Derivation of test cases from requirements artifacts

Several authors have proposed strategies for the derivation of test cases based on requirements artifacts [1], [10], [11].
While some of them raise the possibility of deriving test cases directly from the artifacts (such as the System
Requirement Specification document, use cases diagrams, or textual use cases) [2], others propose test case derivation
from the so-called "test models" (model-based test-case derivation approach) [12], [13]. When deriving test cases
directly from requirement artifacts, the test cases are constructed without constructing preliminary artifacts. Since a
complete test is not possible, a number of representative test cases must be selected. This selection can be made based
on experience, but this approach is no systematic and thus important test cases can be overlooked. Test cases can be
determined systematically by means of equivalence class partitioning or using scenarios from requirement engineering
as a starting point. In the latter approach, requirement scenarios can be used as test-case scenarios and, based in these
test-case scenarios, test cases can be derived. Test cases are derived by defining concrete inputs (and preconditions),
expected outputs (and postconditions), and test instructions. The direct derivation of test cases from requirements
artifacts provides the advantage that no additional notation or documents have to be introduced. Furthermore, all
requirements artifacts can be used as a starting point since the used artifacts do not have to be formalized or
interpretable by tools. During the derivation of test cases from requirements scenarios, the quality of the test also
strongly depends on the completeness of the requirements specification. This is a problem, as requirements scenarios
are generally not created with the objective of defining the system behavior completely. This shortcoming is addressed
by model-based test-case derivation.

In the second strategy for the derivation of test cases, a test model serves as the basis for systematically deriving
test cases [12]. If during Requirement engineering, model-based artifacts like state machines (finite automata, UML
state diagrams, UML activity diagrams), and flowcharts were generated, then these artifacts are suitable for being
used as test models. If this kind of (model-based) requirement artifacts do not exist, then a test model has to be created
based on the existent requirement artifacts for the sole purpose of supporting testing. In this approach, each path
through a test model represents a test-case scenario. By selecting paths systematically, a subset of all possible test-
case scenarios can be identified for the test.

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

3 Methodology for the ontology development

To develop the proposed ontology, an ad-hoc methodology was applied, which is based on principles globally
accepted in the ontology engineering domain. It comprises four stages, which are common to most popular ontology
development methodologies [4], [14], [15], [16]:

• Ontology requirements specification. This stage consists of identifying the purpose for constructing the
ontology and set its scope.

• Conceptualization. This stage consists of organizing the involved concepts in an informally perceived
view of the domain and, then, converting it in a semi-formal UML-based specification.

• Implementation/Formalization. This stage implies the codification of the ontology using a formal
language.

• Evaluation, which allows making a technical judgment of the ontology quality and usefulness with respect
to the requirements specification, competency questions and/or the real world

It should be noted that any ontology development is an iterative and incremental process; indeed, these stages are
not truly sequential. If some need/weakness is detected during the execution of a stage, it is possible to return to any
of the previous ones to make modifications and/or refinements. Some highlights of these methodological steps are
given in the remaining of this section.

Regarding the first stage (Specification), the approach followed to determine the requirements and scope of the
ontology to develop, is by outlining a list of preliminary competency questions, as Gruninger and Fox [14] propose.
The list of competency questions does not need to be exhaustive. Later, at the Evaluation stage, they will be used to
validate and check the quality of the defined ontology. Besides, competency questions serve to verify if the ontology
contains enough information to answer them, and thus to analyze if further information details are required or a portion
of knowledge about a particular area that has not been fully addressed.

Then, from the defined competency questions, the relevant terms related to the domain are identified (second
column of Table 1). Initially, a list of terms is generated without taking into account if any overlapping exists among
the concepts represented by the terms, the possible relationships among them, or the properties that characterize each
concept. Then, at the Conceptualization stage, each class or concept is defined from the terms, which results in a
taxonomy depending on the generalization/specialization relationships that exist among the concepts and their
properties [4]. Since the classes by themselves do not provide enough information to answer the competency
questions, it is necessary to describe the internal structure of the represented concepts by means of properties.
Generally, the remaining terms that do not constitute classes are properties. Then, each of these concepts has to be
analyzed in order to decide if it represents an intrinsic property, an extrinsic property, or it is part of a more complex
object, or if it constitutes a kind of relationship to another concept. As a result of this stage, a series of conceptual
models arise, which are described in section 4.

The Implementation stage requires the selection of a formal language suitable for the codification of the concepts
that were identified in the previous stage. Based on its ample acceptance, OWL 2, developed by the W3C (World
Wide Web Consortium), was chosen. OWL 2 is an ontology language for the Semantic Web with a formally defined
meaning. OWL 2 is an extension of OWL designed to facilitate ontology development and sharing via the Web, with
the ultimate goal of making Web content more accessible to machines. OWL 2 ontologies provide classes, properties,
individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with
information written in RDF, and any OWL 2 ontology can also be viewed as an RDF graph (set of RDF triples subject,
predicate, object). Protégé3 tool was employed for editing the ontology. Protégé, besides being an ontology editor,
provides deductive classifiers useful for checking model consistency and for inferring new knowledge.

Finally, at the Evaluation stage, the activities carried out include populating the ontology with instances gathered
from several case studies, formalizing the competency question in the SPARQL4 language, and executing queries on
the knowledge represented in the case studies with the aim of obtaining properly answers to the competency questions.
Some of the initial results that were obtained are mentioned in section 5.

The ontology for tracing requirements and test artifacts was developed by following the introduced methodology.
During the Specification stage, various competency questions were stated, which are partially shown in Table 1. In
order to lead the definition of competency questions and to avoid neglecting aspects of concern, several dimensions
or categories were regarded, which also enable grouping related competency questions. In Table 1, the Group column
indicates the questions categories: functional requirements, use cases, test cases, traceability, etc. The list of

3 https://protege.stanford.edu/
4 https://www.w3.org/TR/rdf-sparql-query/

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

competency questions is used in the next stage to identify the relevant terms for specifying the classes, properties, and
data values of the ontology under construction. The next sections describe in detail the Conceptualization,
Formalization and Evaluation stages.

Table 1: Competency Questions
Competency Questions Terms Group

Which are the functional requirements of a system? Which artifacts are
created for the system definition?

Functional Requirement, System,
Artifact

Functional requirement
definition

Which use cases specifications pertain to a given functional
requirement?

Use Case, Functional Requirement Functional requirement
definition

Which is the goal of a given use case? Goal, Use Case Use case definition
Which are the actors involved in a given use case? Actor, Use Case Use case definition
Which are the preconditions regarded in a given use case? Precondition, Use Case Use case definition
Which is the main scenario of a given use case? Which are the steps of a
given alternative scenario? Does exist alternatives or exceptions for a
given main scenario?

Use Case, Main Scenario,
Scenario Step

Use case definition

Which are the alternative scenarios of a given use case? Which steps
comprise a given alternative scenario?

Use Case, Alternative Scenario,
Scenario Step

Use case definition

Which are the exception scenarios of a given use case? Which steps
comprise a given exception scenario?

Use Case, Exception Scenario,
Scenario Step

Use case definition

Which are the postconditions of a given use case? Postcondition, Use Case Use case definition
Given a functional requirement expressed in a use case, which is the
deterministic finite automata that models it?

Functional Requirement, Use
Case, Deterministic Finite
Automata

Traceability

Which is the alphabet of input symbols handled by certain deterministic
finite automata? Which are its states? Which are its transitions?

Alphabet, Input symbol, State,
Transition

Behavior/test model
definition

Which are the correspondences or equivalences of the states of a
deterministic finite automaton and the steps of the different scenarios
within a use case?

State, Scenario State, Use Case Behavior/test model
definition

Given a bifurcation in a course of action of a use case, which are the
corresponding transitions in the transition function of the deterministic
finite automaton? Which conditions are verified?

Transition, Condition Behavior/test model
definition

Which are the possible final states reached by the deterministic finite
automata? Which of those final states are produced by error conditions?

State, Final State, Error Final
State

Behavior/test model
definition

Which type of test models are used to derive test cases from functional
requirements specifications?

Test Model, Test Case, Functional
Requirement

Behavior/test model
definition

Which are the test cases scenarios defined for a certain use case? Test Case Scenario, Use Case Traceability
Which test cases are derived from a use case? Test Case, Use Case Traceability
Which test cases scenarios are derived from a test case? Test Case, Test Case Scenario Traceability

Which are the types of input data that are defined for a certain test case
scenario?

Input Data Type, Test Case
Scenario

Test case definition

Which are the types of expected results that are defined for a certain test
case scenario?

Expected Result Type, Test Case
Scenario

Test case definition

Which criterion of coverage was defined for the test cases scenarios of a
certain test model?

Test Model, Coverage criterion Test case definition

Which coverage percentage was set for the test cases scenarios of a
certain test model?

Test case scenario, Coverage
percentage

Test case definition

Which test flows or sequences of states were selected for the derivation
of test cases from a certain test model?

Test Flow, Sequence of States, Test
Model

Test case definition

4 Conceptual Model

4.1 Functional Requirements and Use Cases

Functional requirements are expressed in the form of use cases. Use cases describe a sequence of interactions that an
actor can carry out with a system to achieve some valuable result [3], [17]. Pohl defines the use cases as the
specification of sequences of actions, including variant sequences, and error sequences, that a system, subsystem, or
class can perform by interacting with outside objects to provide a service of value [1]. Besides, the sequence of actions
comprised by a use case pursues the satisfaction of a common (set of) goal(s). In other words, a use case is a collection
of related usage scenarios, which also implies that a scenario is a specific instance of a use case in which it is traversed,
a possible course of action.

To overcome the limitations of natural language, textual descriptions based on structured templates that include
a series of attributes are used for the specification of use cases. In Fig. 1, a model is presented that describes the main
concepts involved in a use case template [1], [17]. The objectives (Goal) represent the intentions of the stakeholders
(Actor). A scenario describes a concrete example of satisfying or failing to satisfy a goal (or set of goals). As indicated
in Fig. 1, different kind of scenarios exist in a use case.

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

A main scenario (MainScenario) documents a sequence of interactions or steps (ScenarioStep) that is normally
executed in order to satisfy a specific set of goals. An alternative scenario (AlternativeScenario) documents a sequence
of interactions that can be executed instead of a main scenario and that results in the satisfaction of the goals that are
associated with the main scenario. On the contrary, an exception scenario (ExceptionScenario) documents a sequence
of interactions that occur when an exceptional event occurs and as a consequence of it, one or multiple goals associated
with the original scenario cannot be satisfied. Thus, an exception scenario documents a sequence of interactions that
is executed instead of the interactions documented in another scenario. The use cases (UseCase) group a main scenario
with cero, one or more corresponding alternative and exception scenarios. Finally, a use case scenario
(UseCaseScenario) is a valid sequence of interactions from the main, alternative, and exception scenarios defined for
the use case, which can lead to a defined termination of the use case (satisfaction of associated goals or abort). The
steps (ScenarioStep) included in the use case scenarios can represent a concrete action that performs the system or the
actor. On the other hand, a scenario step can represent the evaluation of a condition that determines the next step to
be executed (thus, it configures a possible bifurcation on the use case). To indicate this, the data property named type
is defined. In the former case the value of the type property is “Sequence,” whereas, in the latter, its value is
“Condition”.

Figure 1: Use Cases and Scenarios Conceptual Model

4.2 Formalization of Use Cases using Deterministic Finite Automata

In a previous work [5], the authors developed a method to formalize the behavior of a use case by means of an
equivalent Deterministic Finite Automata (DFA), which is based in the proposal of Marciszack et al. [18]. This
proposal makes use of abstract machines for the specification and consistency checking of functional requirements.
The method was implemented in a software tool called SIAR (Sistema Integral para la Gestión de Requisitos-Integral
System for Requirements Management). SIAR is a tool for representing functional requirements in the form of
template-based use cases. One of the functionalities provided by the tool is an automated procedure for consistency
analysis of use cases, through the verification of the sequences of actions described in the case of use. With this
approach, the system generates a DFA from a use case specification. Then, a simulator of deterministic finite automata
carries out an analysis to verify the cohesion and consistency of the scenarios defined by the use case. Deterministic
finite automata constitute another artifact type to be defined in the proposed ontology.

Finite deterministic automata [19] are often used to document the reactive behavior of a system. Formally, a
deterministic finite automaton is defined as a quintuple (Q, Σ, δ, q0, F), where its components are:

1. A finite set of states (Q).
2. A finite set of input symbols (Σ).
3. A transition function that has as arguments a state (belonging to Q) and an input symbol (belonging to Σ) and

returns a state (belonging to Q). The transition function is usually referred to as δ. In a graph representation of

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

the automata (as will be seen later), δ is represented by arcs between the states (or nodes of the graph) and the
labels on the arcs. If q is a state and a is an input symbol, then δ(q, a) is the state p such that there is an arc
labeled as a that goes from q to p.

4. An initial state q0, one of the states of Q.
5. A set of end states or acceptance states F, where F is a subset of Q.

In addition to the mathematical representation as a quintuple, a DFA can be represented as a graph called
"transitions diagram", where: a) for each state q of Q, there is a corresponding node; b) for each state q of Q and each
input symbol a of Σ, be δ (q, a) = p, the transitions diagram has an arc from node q to node p, labeled with an a; c)
there is an arrow directed to the initial state q0 that has no origin in any node, which represents the start state; d) the
nodes corresponding to the acceptance states (those belonging to F) are marked with a double circle. States that do
not belong to F have a simple circle.

In [5], the elements that intervene in the DAF artifact were depicted in a conceptual model, which is represented
in Fig. 2. The concepts DFA, State, Transition, and InputSymbol (in Fig. 2) and the relationships between them were
included in the ontology proposed in the present work.

Figure 2. Conceptual model of Deterministic Finite Automata

In order to transform a use case into a deterministic finite automaton, a preliminary set of conversion rules was defined,
which allows obtaining an DFA from a use case specification [18]. An example of a template-based use case
specification [1][20] is shown in Fig. 3. As it can be viewed, a use case specification comprises one main scenario,
cero o more alternative scenarios, and cero o more exception scenarios. Scenarios include a series of steps that indicate
the sequence of interactions that take place. Besides, alternative and exception scenarios have a “void” first step that
represents the condition that is evaluated before proceeding with the steps in the scenario.

In [5] the conversion rules were refined and enhanced to overcome some limitations that the original approach
had, which was not adequate for the transformation of cases of uses with bifurcations due to multiple alternative
scenarios. The transformation rules are listed below:

Rule 1. Each step of a course of action of a use case (in any of its scenarios) corresponds to a state node in the
DAF. The conditions (initial step of an alternative scenario or exception scenario) are also considered steps that
have their corresponding state node in the DFA.
Rule 2. Every use case has an initial step, which is the first step of all possible courses of action (or flows) and is
given by the first step of the main scenario. This step constitutes the initial state/node of the generated DFA.
Rule 3. Every use case has a final step in the normal course of action given by the main scenario. This last step
constitutes one of the possible final states of the DFA (belongs to the set F). Reaching such a final state means
the satisfaction of the goals of the use case.
Rule 4. A course of action within a use case may not have, have one, or have several final states by mistake, each
of these being the last step of an exception scenario. These steps are also final states/nodes of the DFA.
Rule 5. Any possible sequence from a scenario step of the use case to another scenario step corresponds to a
transition from the DFA.
Rule 6. If in a certain step of the main scenario of the use case, there is a possible bifurcation towards an alternative
scenario, an outgoing transition will be generated from the state corresponding to that step to the state that

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

represents the first step of the corresponding alternative scenario. This means that starting from a given source
state / node it is possible to reach a single destination state / node, or two destination nodes / states.

Use Case ID CU-01
Name Login to the system
Version V.1.0
Description A user wants to access the system, which means that he / she must

"login" with their username and password.
Actors User
Goal Enter the system and obtain credentials
Preconditions The user needs to be registered in the system
Postconditions The user is logged in the system. The user's access was recorded in

the activity table.
Results The user enters the system and can perform actions on it until

explicitly leaving the system or until some time of inactivity has
passed.

Main Scenario 1 The user accesses the system through a browser by entering the
URL

2 The user selects the menu option to enter the system

3 The user provides his/her username and password

4 The system validates the user's credentials and welcomes him/her
Alternative
Scenarios

3a The user does not remember his password

3a1 The user requests to recover the password by email

3a2 The system sends a temporary key to the email account that
the user provided when registering

3a3 Continue to step 3

3b The user is not registered in the system

3b1 The new user requests to create an account

3b2 The system requests the data to create the account

3b3 The user enters the requested and optional data requested and
confirms them.

3b4 The system creates the user's account

3b5 Continue to step 2

4a Incorrect password. Try <3

4a1 The system gives a message to the user informing that the
password is incorrect.

4a2 Continue to step 2
Exception
Scenarios

4b Incorrect password. Try =3
4b1 The system gives a message and blocks the account for

security.

Figure 3. Template-based specification of CU-01 Use Case

Rule 7. A DFA associated with a use case has an alphabet of two symbols N and A, which indicates the event that
causes each transition from one state to another:
• N: The transition that occurs continues with the course of action determined by the current scenario.
• A: The transition that takes place bifurcates the current course of action to an alternative or exception

scenario. This implies that a condition must be evaluated, which is the first step of the alternative or exception
scenario. If the given condition is met, the course of action continues as indicated by the scenario (transition
given by a symbol N). If the condition is not verified and there is another alternative scenario for that
bifurcation, it is represented as a transition labeled by A that reaches the first step of this new scenario. This
is repeated successively until there are no other alternatives for the same step. In this way, the DFA alphabet
is determined by the Σ = {N, A}.

Therefore, any course of action valid in a use case (also called "flow") is given by a sequence of input symbols,

according to which it is possible to start from the initial state (first step in the main scenario) and go through all the
transitions until reaching a final state (DFA acceptation state) belonging to F, this being the final step of the main
scenario or a final step of an exception scenario.

To illustrate how a DFA is generated from a use case specification by means of the applying of the previously
defined transformation rules, the use case shown in Fig. 3 was considered. The employed template is based on the
proposed ones by several authors [1, 20, 21], and it was implemented in the SIAR system to normalize the specification
of use cases. This use case describes the interactions that occur when a user accesses a web system.

In Fig. 4 (a), the DFA that models the behavior of the use case CU-01 is shown. As can be seen, the different
possible flows on the use case are formed by integrating all the scenarios defined in it. For obtaining the DFA, the
rules previously defined were applied. The formal definition of the use case is expressed as:

CU-01 = (Q, Σ, δ, 1, F), where
Σ = {N, A},
Q = {1, 2, 3, 4, 3a, 3a1, 3a2, 3a3, 3b, 3b1, 3b2, 3b3, 3b4, 3b5, 4a, 4a1, 4a2, 4b, 4b1, TrapState},
F = {4, 4b1}

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

δ the transition function that is given by the graph shown in Fig. 4 (a).

Figure 4. (a) DFA corresponding to CU-01. (b) CU-01 Scenarios simulation

It should be noted that to simplify the visualization, the DFA is not shown completely, obviating the visualization of
the trap state and the transitions towards it.

Once the obtained DFA has been loaded in a simulator, it is possible to enter different input strings, which
represent the possible flows in the use case in order in order to check whether they are accepted or rejected (thus if
they are valid flows for the use case). An input string to be verified will be a string formed by the symbols "N" and
"A". If the string representing a flow within the use case is accepted, it means that the corresponding scenario is
correctly defined in that use case. On the contrary, if the string is rejected, it means that in some of the flows or
scenarios it goes through there is a wrong or inconsistent sequence of steps. This may be because:

• there are unconnected states, paths or steps that were not considered when defining the use case,
• there are scenarios that do not end properly (or remain unfinished), or
• there are infinite loops in the defined scenarios.

Then, the detected inconsistency can be corrected in a new version of the use case, and its corresponding DFA is
automatically generated. In this way, use cases can be validated, and traceability links are registered. The side (b) of
Fig. 4, shows the result of the simulation that performs the verification of the five possible scenarios defined for the
use case CU-01. For the verification of scenarios, the Jflap5 tool was employed.

4.3 Test cases definition from requirements artifacts using test models

In the process of developing a software or system, use cases represent a means to specify the functional requirements
that have to be implemented, in a more detailed and concrete way. Use cases can be also used to drive the generation
of the test cases [1], [10] that will be executed to verify that the software meets the requirements.

A test case (TestCase) specifies the information required for the execution of a test. It comprises the preconditions
that should be held before initiating the execution of the corresponding test (TestPreconditions), the set of expected
inputs and outputs of the test (TestInput and TestExpectedOutput), the instructions to perform the test (how the inputs
are passed to the test object and how the outputs are read from the test object), and the expected post-conditions
(TestExpectedPostconditions) [1]. The conceptual model presented in Fig. 5 represent theses definitions.

A test case is executed by passing the specified input in the test case to the test object (TestObject). Therefore,
the execution of a test case comprises a sequence of interactions between the elements in the context of the test (for
example, the testers or users) and the object of the test (a system, a component, a function, etc.). When defining a test
case, the corresponding interactions can be defined by means of scenarios at different levels of abstraction. Pohl
defines in [10] the concept of test case scenario (TestCaseScenario) to refer to "types of test cases", which describe
sets of test cases that have certain types of inputs and certain types of expected outputs (TestInputType and
TestExpectedOutputType, respectively).

In this paper, the main concepts of the model-based test-case derivation approach proposed by Pohl [1] were
included in the conceptual model of the proposed ontology. to allow traceability between the requirements artifacts
and the test artifacts. That approach employs use cases and intermediate artifacts (called “test models”) to

5 www.jflap.org

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

systematically generate the test cases. In the ontology, the concept of “test model” is extended with the DFA artifact
type that the authors have proposed on previous research to formalize a use case.

Figure 5: Test Cases Conceptual Model

The proposed ontology includes the necessary elements to represent the test cases derived from the use cases

artifacts and maintain the traceability links between the involved artifacts. The traceability links make possible to
know, for example, which test cases cover certain flows of a use case, and what is the coverage percentage applied.
The conceptual model in Fig. 6 depicts that a test model is developed from a set of grouped use case scenarios (which
are part of a use case). Then, on the basis of the test model, which is an intermediate artifact, a set of individual test-
case scenarios are identified (identified-on-the-basis-of relationship). While the test cases scenarios are defined for
certain types of inputs and certain types of expected outputs, the test cases have to specify the information required
for the test execution. Therefore, the test cases are derived from test-case scenarios, by giving specific values to the
inputs and outputs.

Figure 6: Using DFAs as intermediate test models

In this work, deterministic finite automata are employed as test models to generate the scenarios to test. A DFA

models the behavior described by a use case; each path through the DFA is a “test flow” (TestFlow) that starts in the
automata’s initial state and ends in one of its final states. By choosing a coverage criterion, the paths to be tested are
selected, and a subset of test-case scenarios is determined. Examples of possible criteria are “Number of tested states
/ total number of states”, “Number of tested transitions / total number of transitions”, or “Number of tested exception
paths / total number of possible paths”. Additionally, the quality of the test can be determined not only by the selected
test coverage criterion but also by the percentage to which the criterion should be fulfilled.

An example to illustrate the use of a test-model is given for the use case CU-01. The full definition of CU-01 is
provided in the form of a use case template in Fig. 3. By following the transformation rules indicated previously, the
corresponding test model is obtained (the DFA in Fig. 4.a). This DFA is employed for guiding the test cases derivation.

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

Therefore to select the test flows that are going to be covered by the test cases, the criterion “Number of tested states
/ total number of states” is considered and the coverage percentage set in 84% (16 tested states / 19 total number of
states). Fig. 7 shows the test flows that were selected, which are the paths represented by the strings NNN,
NNANNNNANNNNAAN, and NAANNNNNNNN. These strings are valid sequences of input symbols that are accepted
by the DFA. In Fig. 6, the TestFlow concept is equivalent to a sequence of input symbols, which is associated with a
test case scenario.

Figure 7. A DFA that is used as a test-model for deriving a set of test case scenarios.
The selected paths depend on the chosen coverage criterion and percentage.

4.4 Traceability Model

Requirements traceability is defined as the ability to describe and follow the life of a requirement in both forward and
backward direction (i.e. from its origins, through its development and specification, to its subsequent deployment and
use, and through periods of ongoing refinement and iteration at any of these phases) [22], [23]. The motivations for
requirements traceability are diverse. Requirements traceability helps to identify the source of a requirement whether
issued by a person, or document, or group of persons. Additionally, requirements traceability allows performing
impact analysis, since it is possible to trace what other artifacts are affected due to changes in related requirements.
Regarding verification activities, requirements traceability helps in test case verification, thus enabling to keep
traceability links between test cases and functional requirements.

Traceability information is often recorded in the form of traceability relationships or links. Between two
development artifacts, different types of traceability relationships can exist [23]. Pohl recommends using an
information model to define and structure the traceability information and relationship types for a specific project [1].
Within the scope of this research work, a traceability model is proposed (Fig. 8), which include the concepts that the
ontology requires for representing traceability knowledge. Fig. 8 introduces, on the one hand, the type of artifacts
whose traceability is important to maintain. They are defined as specializations of the concept TraceableArtifact. On
the other hand, the possible types of traceability relationships that can exist among the artifacts are defined as
TraceabilityRelationship specializations. The TraceabilityRelationship concept is related to the TraceabilityArtifact
concept by two relationships denoting the source and the destination of a traceability relationship. The cardinality of
the relationships can be restricted for specific pair or artifact types.

Pohl proposed five categories of types of traceability relationships: Condition, Content, Abstraction, Evolution
and Miscellaneous [1]. The proposed ontology contemplates these five categories. However, this work is focused
mainly on traceability relationships types to representing the “evolution” of artifacts during the development process,
from preliminary requirements specifications to test cases artifacts, as well as the intermediate artifacts for test cases
derivation. For this reason, just Evolution and Miscellaneous categories are considered in the conceptual model in Fig.
8.

The types of traceability relationships corresponding to the Evolution category enable documenting temporary
relationships that can be established between diverse requirements artifacts, and between requirement artifacts and
other artifacts of the development process. Within this category, Formalizes and Refines relationships types are
defined. Formalizes establishes a traceability relationship between two artifacts A and B, if A constitutes a formal
specification of the artifact B. For example, this kind of relationship can be maintained between a use case and a Petri

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

network, which formalizes the behavior of the use case [24], or between a use case and a UML activity diagram. It
should be noted that both Petri nets and UML activity diagram are artifact types that can be specialized from TestModel
(although these artifacts are not included in the conceptual models of Fig. 6 and Fig. 8). In addition, the Replaces
relationship type enables to express that an artifact A has been replaced by another artifact B during the life cycle of
the development process. This situation can occur when an artifact that specifies a requirement (UseCase, Goal,
FunctionalRequirement, UseCaseScenario, etc.) is corrected or improved as a consequence of verification &
validation requirement activities.

Figure 8: Traceability conceptual model

Moreover, the Refines relationship type is established between two artifacts A and B if A describes the artifact B in
greater detail. An example of this relationship is a use case scenario (UseCaseScenario in Fig. 8) that refines certain
goal (Goal in Fig. 8) since the scenario depicts and illustrates an example of how to achieve the goal. Another example
is a template-based specification of a use case (UseCase in Fig. 8) that refines certain UML use case diagram
(UMLUseCaseDiagram in Fig. 8), in the sense that the specification shows further information about use case than
the diagram (like the interactions or steps comprised by a use case, which are not present in the diagram).

Miscellaneous traceability relationship class defined by Pohl [1] comprises additional traceability relationship
types that can be defined between artifacts. It is specialized in ExampleOf, Rationale, and CoveredBy relationship
types. The ExampleOf relationship type makes possible to represent that an artifact A is an example of another artifact
B. The Rationale relationship type enables representing that one artifact A documents the justification of another
artifact B. For instance, a “rationale” relationship can be used to relate a text fragment to a use case scenario, thereby
documenting that the text fragment contains a justification for the existence of the use case scenario.

Another type of Miscellaneous traceability relationship is the CoveredBy relationship type. It enables linking a
test artifact A with a requirement artifact B, thus stating that A is used to verify B. For example, when a test case is
used to verify the correct implementation of a use case, by covering a certain flow or sequence of steps.

In the proposed ontology, some of the traceability relationships are explicitly defined, whereas others are
computed through the definition of inference rules, which are based on the explicit relationships between artifacts
types included in the conceptual models of Fig. 1, Fig. 2, Fig. 5 and Fig. 6.

5 Ontology Formalization and Evaluation

The ontology was formalized in OWL 2. The main component of an OWL 2 ontology is a set of axioms, which are
statements that say what is true in the domain. OWL 2 axioms can be declarations, axioms about classes, axioms
about object or data properties, datatype definitions, keys, assertions (sometimes also called facts), and axioms about
annotations.

In particular, by means of axioms OWL 2 allows to express the following different types of properties: (i) object
properties, which allow defining relationships between individuals; (ii) datatype properties, which define relationships
between individuals and literals (for example, strings, integers, etc.); and (iii) annotation properties, which can be used
to describe individuals, classes and properties metadata, such as the language in which a definition is found,

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

descriptions, and comments on these concepts. In addition, for the object properties that were defined, their domain
and range were specified. For the data type properties, their type, admitted values and cardinality were indicated.
Fig. 9 partially presents the taxonomy of Requirements Engineering concepts that were introduced, which was
implemented in the Protégé tool.

Figure 9: Ontology specification in Protégé

Next, certain details of the implementation of ontology are addressed, focusing on the concepts of traceability that are
of interest in this work. The TraceableArtifact concept (Fig. 8) was implemented as a class (constructor owl:Class).
As subclasses of TraceableArtifact, all the concepts about which it is wanted to keep trace links were defined
(UseCase, UseCaseScenario, TestCase, TestModel, etc.). On the other hand, the concepts representing the different
types of traceability relationships (covers, refines, formalizes, etc.) were implemented as object properties, by using
the OWL constructor owl:ObjectProperty. It is important to note that, to achieve navigability through the traceability
relationships both forward and backward, the corresponding inverse relationships were also defined, as it is indicated
in the Object property hierarchy shown in Fig. 9 (coveredBy, isRefinedBy, isFormalizedBy, etc). Moreover, the domain
and range properties were defined to indicate the type of source artifact and the type of destination artifact expected
for the relation.

To complete the implementation of the ontology, and given Protégé's open-world assumption, axioms of
disjunction, closure, and coverage were added, so that it is possible to execute reasoners in the ontology. Since OWL
assumes that the classes overlap each other unless explicitly stated otherwise, disjunction axioms were incorporated
indicating which classes are disjoint.

The ontology was initially populated with knowledge taken from two software development projects, as it is said
later. In practice, populating an ontology implies the creation of the individuals (owl:NamedIndividual) or instances
for the proper classes and setting the adequate object properties between these instances, in order to add the necessary
semantics to express the relations among them. The axioms about individuals and their properties are called “facts”,
“assertions” or “asserted axioms”.

Besides, OWL 2 does not make the unique name assumption. That is by having different names two resources
are not necessarily different individuals, they could be the same resource with different names. Therefore, in the closed
domain in which the ontology is being proposed, when creating the instances, it was necessary to explicitly specify
that they were different individuals.

To illustrate how instantiation of concepts was carried out to represent the artifacts that are generated during
requirements engineering and testing, some examples are given below.

Fig. 10 presents an objects model that partially represents the different instances that make up the CU-01 use case
artifact, whose template-based specification was presented in Fig. 3. In addition, the corresponding test-model, test-

Inverse of

Inverse of

Inverse of

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

case-scenario and test-case artifacts (named DFA-01, TSc-01 and TC-01 respectively) are included. To simplify the
objects model for the CU-01 artifact, the instances of ScenarioStep are not included, and the instances of ForkStep are
considered as plain associations between scenarios.

Figure 10: Instances related to CU-01 artifact (asserted object properties)

On the other hand, besides asserted axioms that are explicitly present in the ontology, other axioms can be “inferred”.
Inferred axioms are those which are obtained by means of a reasoner executed on the ontology axioms. Automated
reasoners [25] such as Pellet, FaCT++, HerMiT, ELK and so on take a collection of axioms written in OWL 2 and
offer a set of operations on the ontology’s axioms. There exist two main approaches to reasoning: consequence-driven
reasoning and tableau-based approaches. Consequence-driven approaches have been shown to be very efficient for
so-called Horn fragments of OWL 2 given an ontology O, they apply deduction rules to infer entailments from O and
other axioms that have already been inferred. Tableau-based reasoners try to build a model of the ontology by applying
completion rules to the individuals in that model – possibly generating new ones – to ensure that all of them (and their
relations) satisfy all axioms in the ontology.

To add inference capabilities to trace non-explicit relationships between artifacts, a set of rules was defined in the
ontology. They allow the inference of knowledge that is not explicit in the ontology and add checking restrictions to
the ontology.

In Fig. 11, some of the rules that were defined in the ontology are shown. Rules R1, R2, R3, and R5 were specified
to infer the relationships that link the UseCase instances with the Goal, Precondition, Postcondition and Result
instances (infHasGoal, infHasPreCondition, infHasPostCondition, and infHasResult, respectively). In all cases, the
inferred relationships are obtained by navigating through the explicit associations that link a use case with its scenarios,
and the scenarios with their objectives, preconditions, postconditions, and results.

Examples of this kind of rules are R6, R7, R8, R9, and R10. Fig. 12 shows the traceability links that can be
inferred applying the specified traceability rules, on the instances of the example in Fig. 10. Fig. 12 also shows two
partial views of the Protegé tool, which list the results of the computed inferences (using the Pellet reasoner).
Therefore, it should be noted that the traceability relationships instances and their inverses are not explicitly defined
in the ontology but are deduced through rules and the execution of a reasoner.

In particular, the section (a) of Fig. 12 shows that the instance representing the requirement Req1 is refined
(isRefinedBy, the inverse of the relation Refines) by the scenarios 4b, SC-01, 3b, 4a, 3a. Therefore, the ontology
permits to answer the question: “What scenarios (main/alternative/exception) were defined to refine a certain
preliminary functional requirement?”. This is also possible because rules R7, R8, and R9 were specified in the
ontology.

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

Figure 11: Examples of rules defined in the ontology

Also, it is inferred that the use case CU-01 is related to TC-01 (an instance of TestCase) by means of the traceability
relation coveredBy. Additionally, it is inferred that the same instance called CU-01 is related to the instance DFA-01
(an instance of DFA concept) by means of the traceability relation isFormalizedBy. The inferred properties axioms
are shown in section (c) of Fig. 12, which can be obtained running a reasoner. In this way, the defined rules allow
determining: (i) which test cases were defined to cover the possible flows of a use case, and, (ii) by means of which
artifacts were formalized the covered flows of the use case.

Going back to the competency questions that were established when the ontology development process was
initiated (Table 1), it is possible to validate the ontology analyzing how the represented knowledge enables to
answering them. For example, the above example permits to find out “What test cases cover the different paths to be
tested on a use case?”. On the other hand, it is possible to answer to the question “What test model was generated as
an intermediate artifact for the analysis of a use case and the subsequent derivation of test cases?”. Rules 6 and 10
plays an important role in obtaining this knowledge.

Figure 12: Inferred Object Properties (The Pellet reasoner is active)

R4 is a rule for checking consistency
among use cases and the scenarios that
are part of them

R6, R7, R8, R9, and R10 are rules for
inferring traceability links between
artifacts

R1, R2, R3, and R5 are rules for
inferring not explicit relationships
among use cases and goals,
preconditions, postconditions, and
results

(R1)
(R2)

(R3)

(R4)

(R5)

(R6)

(R7)

(R8)

(R9)

(R10)

(b) (a)

(c)

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

In addition to the rules that allow inferring new knowledge, another set of rules incorporates model consistency
restrictions. For example, it is possible to define rules to indicate that if a main scenario is associated with certain
alternative scenarios, then, all of them are scenarios of the same use case. Similarly, if one scenario step is the next
step of another scenario, then, both steps belong to scenarios of the same use case.
The definition of the former consistency rule can be seen in Fig. 11 (rule R4). In particular, this rule specifies that if a
main scenario ?ms, associated with a use case ?uc, has an alternative scenario ?as and, at the same time, this alternative
scenario is associated with another use case ?uc2, thus ?uc and ?uc2 are the same individual. However, during the
creation and population of the ontology, it was specified that all individuals are different from each other. Therefore
SameAs(?uc, ?uc2) consequent makes the ontology inconsistent.

In order to show how this rule allows detecting violations of the constraints represented, an instance of
AlternativeScenario (named 3adeOtroCaso) is added to the ontology, which is linked to the main scenario already
defined (SC-01 in Fig. 10) and with a new use case CU-02. In addition, a statement that specifies that this new CU-
02 individual is different from the individual named CU-01 is added. Due to fact that OWL 2 does not assume the
unique name principle, two individuals that have different names not necessarily are different individuals and a
reasoner may infer that they are the same entity. So, if two instances are different entities it is necessary to specify
explicitly such situation in order to avoid the reasoner infers them as the same individual. This new state of the
ontology violates the restriction indicated in the previous paragraph (that a main scenario must be associated with the
same use case to which its alternative scenarios are associated). Therefore, new individuals are incorporated into the
ontology to represent this situation, then the reasoner is synchronized, and as a result, it detects that the ontology
becomes inconsistent after these changes and presents an explanation (Fig. 13).

 Figure 13: Explanation about a consistency violation of the ontology

Fig. 13 shows nine statements that are found by the reasoner when checking the ontology consistency, which explain
the detected inconsistency. These statements are explicitly defined or inferred by the reasoner in the checking process.
The statements that are shown in Fig 13 indicates that:

• The individuals labeled as CU-01 and CU-02 are both instances of the UseCase class (4 and 7).
• CU-01 and CU-02 are different individuals (1).
• The individual SC1 is an instance of MainScenario (5) and it is related to CU-01 through the mainScenario

relationship (6)
• 3aDeotroCaso is an instance AlternativeScenario class (8) and is linked to SC1 through the

isAlternativeScneario association (9) and to CU-02 through the association labeled as alternativeScenario
(3)

• SC1 is the main scenario of UC-01 use case and it has an alternative scenario labeled as 3aDeotroCaso,
which in turn is an alternative scenario of the UC-02 use case. So, when applying Rule 4 (R4 in Fig. 11 and
statement 2 in Fig. 13), UC-01 and UC-02 are inferred as being the same individual, which triggers an
inconsistency with the assertion 1.

The proposed approach for artifacts traceability was validated with a proof of concept. Some of the authors have

worked on the project for the development of the SIAR tool, aimed to support the specification and consistency
checking of requirement artifacts [18]. The authors also have experience in the use of an open source test management

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

software. To prove the feasibility of the proposed ontology for tracing artifacts and making possible to different tools
interoperate, they carried out a series of tests. Firstly, a minimal API was developed to access the metamodel of the
SIAR tool for requirements specifications. The test management tool provides its own API, which was used to access
its repository. On the other hand, a Java component based on Apache Jena6 was developed to manage the ontology
model and manipulate the instances and RDF triples. By using the services of this component, it was possible to create
and keep synchronized the instances in the ontology with the artifacts from the different tools, as well as the links
among the instances corresponding to the requirements artifacts and test artifacts. The component works together with
a reasoner to infer the non-explicit traces and, in this way, to perform queries about related artifacts. Previously, it
was necessary to extend some concepts of the ontology to adjust the model to the metamodels of both management
tools.

Then, the ontology was initially populated with knowledge about artifacts generated during two projects, which
were extracted from the repository of the tool for specifying use cases [19]. This activity was quite straightforward
and simple, and a Jena based import software was used. Then, another portion of knowledge was imported into the
ontology from the repository of the test management software, which has also been employed for the same two projects
[5]. Since the artifacts created came from different databases, it was necessary to link the use case scenarios individuals
and the corresponding test models individuals (by means of defining corresponding object properties axioms). This
was possible because the related artifacts have the same “id” data type property value that has been derived from an
“id” field in the original data sources. This activity was carried out by executing SPARQL7 insert queries.
The tests were carried out on requirements and test artifacts of small software projects for the developing of two
research prototypes, which allowed the authors to obtain preliminary results to conclude that the proposal is valid and
of potential application in the software industry.

6 Related Works
Several authors have defined the concepts that intervene in requirements artifacts specifications and their relationships.
In [26] a generic meta-model for textual representations of use cases was proposed with the goal of creating an
essential and easily extendable meta-model that can be used directly in Model-Driven Engineering activities. It is
based on an analysis of 20 studies, that propose templates or meta-models. The more common elements of these
studies were represented in a meta-model, together with their more frequent attributes. In [21] the authors proposed
requirements templates that can improve requirements elicitation and expression, and two kinds of patterns: linguistic
patterns, which are very used sentences in natural language requirements descriptions that can be parameterized and
integrated into templates, and requirements patterns, which are generic requirements templates that are found very
often during the requirements elicitation process and that can be reused with some adaptation. The conceptual models
in these two proposals define specific requirement artifacts and the involved concepts and relationships, which helped
us in the definition of the conceptual model for the ontology developed in this work.

A recent work [10] reports the state of the art about strategies for the generation of test cases from requirements
artifacts. That paper analyzes the literature on the automatic derivation of test cases, classifying it according to various
criteria, like what type of input device is used, whether they use intermediate test models or not, the transformation
techniques applied, and the degree of coverage considered. Among the results, there are mentioned some proposals
that focus on the traceability between the artifacts and how to implement it. However, their approaches differ from
the adopted in this work, which achieves interoperability between use cases specification supporting tools and test
case management tools. Neither they are intended to infer traceability relationships between different artifacts of
requirements, and between these and artifacts of use cases, nor to detect problems of inconsistency in the specification
of artifacts. Having inferred traceability relationships facilitates the maintenance of the traceability links when the
involved artifacts change, without the need to eliminate and generate new links. This represents an advantage over
approaches that employ traceability matrices and static links between artifacts.

There are several ontology-based approaches for the improvement of Requirements Engineering activities, but
few of them have employed ontologies to address interoperability between use case specification tools and test case
management tools. A systematic review of the literature on the use of ontologies in requirements engineering, which
covers 66 publications between 2007 and 2013 [6], reports that there are few proposals with an ontology-approach
that comprise more than one phase of the requirements engineering process. Most are limited to the specification
phase, and just a few others include analysis, management, and elicitation phases. Moreover, only 7% of the literature
included in the study considers the stages of validation of requirements.

In relation to the types of requirements artifacts that these proposals have addressed, the same study [6] reports
that 43% is based on textual requirements (using natural language), being around of 24% the approaches that include

6 https://jena.apache.org/documentation/ontology/
7 https://www.w3.org/TR/rdf-sparql-query/

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

scenarios and use cases within the artifacts of requirements. However, such a review of the literature does not mention
works that maintain traceability relationships between requirements artifacts and testing artifacts.

7 Conclusions

In this paper, an ontology-based approach for the specification of functional requirements based on structured use
cases and test cases was presented, which allows the representation of the traceability links between these artifacts
and the intermediate artifacts that support automatic test cases generation. The proposal has the following advantages:
i) it enables the documentation and specification of several functional requirements types, such as template-based use
cases artifacts;
ii) introduces the concept of “test model” as an intermediate artifact based on formal models, which allows the
derivation of a set of test cases scenarios, specifying a certain coverage criterion. In particular, a method of
transforming use cases into deterministic finite automata was proposed;
iii) achieves interoperability between use cases specification supporting tools and test case management tools, since
it is based on a conceptual model that supports the metamodels of these tools;
iv) it allows to infer traceability relationships between different requirements artifacts, and between these and test
artifacts, as well as to detect problems of inconsistency in their specification;
v) the possibility of having inferred traceability relationships favors the maintenance of the traceability links when the
involved artifacts change, without the need to eliminate and generate new links. This represents an advantage over
approaches that employ traceability matrices and static links between artifacts.

Despite numerous advances, the software industry still faces challenges and needs [12] regarding the specification
of well-structured and unambiguous requirements, the generation of tests based on requirements artifacts, and the
management of traceability links between requirements and test cases.

Future works include extending the ontology with other requirements artifacts, such as UML models (class
diagrams, state machine diagrams, and activity diagrams), and other types of traceability links that involve other
artifacts of the design process.

Acknowledgments

This work was supported by Universidad Tecnológica Nacional (Proyecto IPN4409 "Herramientas y Métodos de
soporte a la Ingeniería de Software: requerimientos, estrategias ágiles, y calidad de procesos y productos") and
CONICET.

References

[1] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques, Springer, 2010.

[2] C. Allmann, C. Denger, and T. Olsson, “Analysis of Requirements-based Test Case Creation Techniques,” IESE-
Report No. 046.05/E, 2005.

[3] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergad,	Object Oriented Software Engineering. A Use Case
Driven Approach.	Addison Wesley, 1992.

[4] M. Uschold and M. Gruninger, “Ontologies: Principles, Methods and Applications,” Knowledge Engineering
Review, 11(2), 93-136, 1996. Available: https://doi.org/10.1017/S0269888900007797

[5] M. L. Roldán, M. Vegetti, S. Gonnet, M. Marciszak, and H. Leone, “Un Modelo Conceptual para la
Especificación y Trazabilidad de Requerimientos Funcionales basados en Casos de Uso y Casos de Prueba,”
Congreso Nacional de Ingeniería en Informática/Sistemas de Información (CONAISII 2017), Santa Fe, 2017.

[6] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito, and A. Silva, “Applications of ontologies
in requirements engineering: a systematic review of the literature,” Requirements Engineering, Volume 21, Issue
4, pp 405–437, 2016. Available: https://doi.org/10.1007/s00766-015-0222-6

[7] T. Gruber, “A translation approach to portable ontology specifications,” Knowledge Acquisition, 5, pp. 199-220,
1993. Available: https://doi.org/10.1006/knac.1993.1008

[8] Institute of Electrical and Electronics Engineers: IEEE Standard Glossary of Software Engineering Terminology
(IEEE Std 610124990). IEEE, New York, 1990.

[9] O. Gotel and A. Finkelstein, “An Analysis of the Requirements Traceability Problem,” in Proceedings of the
First IEEE International Conference on Requirements Engineering (ICRE’ 94), IEEE Computer Society Press,
Los Alamitos, 1994, pp. 94-101.

CLEI ELECTRONIC JOURNAL, VOLUME 22, NUMBER 1, PAPER 2, APRIL 2019

[10] A. Mustafa, W. M. N. Wan-Kadir, and I. Ibrahim, “Comparative Evaluation of the State-of-art Requirements-
based Test Case Generation Approaches,” International Journal on Advanced Science, Engineering and
Information Technology, vol. 7, no. 4-2, pp. 1567-1573, 2017. Available: http://dx.doi.org/10.18517/ijaseit.7.4-
2.3409

[11] S. Hesari, R. Behjati, R., and T. Yue, “Towards a systematic requirement-based test generation framework:
Industrial challenges and needs,” 21st IEEE International Requirements Engineering Conference (RE), Rio de
Janeiro, 2013, pp. 261-266. Available: https://doi.org/10.1109/RE.2013.6636727

[12] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner,
“One evaluation of model-based testing and its automation,” Proceedings of the 27th international conference
on Software engineering (ICSE '05), ACM, NY, USA, 2005, pp. 392-401. Available:
https://doi.org/10.1145/1062455.1062529

[13] A. Reuys, S. Reis, E. Kamsties, K. Pohl, “The ScenTED Method for Testing Software Product Lines,” Software
Product Lines, Springer Berlin Heidelberg, pp. 479-520, 2006.

[14] M. Gruninger and M. S. Fox, “Methodology for the Design and Evaluation of Ontologies,” IJCAI Workshop on
Basic Ontological in Knowledge Sharing, Montreal, Canada, 1995.

[15] M. Fernández-López, A. Gómez-Pérez, J. P. Sierra, and A.P, Sierra, “Building a chemical ontology using
methontology and the ontology design environment.” IEEE Intelligent Systems and their Applications, 14, 37–
46, 1999. Available: https://doi.org/10.1109/5254.747904

[16] M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, E., and A. Gangeni, Ontology Engineering in a Networked
World, Springer, Berlin, 2012. Available: https://doi.org/10.1007/978-3-642-24794-1

[17] K. E. Wiegers, Software Requirements, 3rd Edition, Microsoft Press, 2013.

[18] M. M. Marciszack, M. Perez Cota and M. A. Groppo, “Metodología y herramienta de soporte para validar
modelos conceptuales a través de máquinas abstractas,” Ciencia y Tecnología, Universidad de Palermo, 15, pp.
165-180, 2015.

[19] J. Hopcroft, R. Motwani, J. Ullman, Introducción a la teoría de autómatas, lenguajes y computación, 3 ed.,
Pearson, 2007.

[20] A. Cockburn, Writing Effective Use Cases (1st ed.), Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[21] A. Durán Toro, B. Bernárdez Jiménez, A. Ruiz Cortés and M.A. Toro Bonilla, “Requirements Elicitation
Approach Based in Templates and Patterns,” Workshop em Engenharia de Requisitos (WER 1999), Buenos
Aires, 1999.

[22] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the Requirements Traceability Problem,” Technical
Report TR-93- 41, Department of Computing, Imperial College, 1993.

[23] B. Ramesh and M. Jarke, “Toward Reference Models for Requirements Traceability,” IEEE Transactions On
Software Engineering, Vol. 27, No. 1, 2001. Available: https://doi.org/10.1109/32.895989

[24] J. Zhao and Z Duan, Verification of Use Case with Petri Nets in Requirement Analysis.” Lecture Notes in
Computer Science, vol 5593. Springer, Berlin, Heidelberg, 2009. Available: https://doi.org/10.1007/978-3-642-
02457-3_3

[25] B. Parsia, N. Matentzoglu, R.S. Gonçalves, B. Glimm, and A. Steigmille, “The OWL Reasoner Evaluation
(ORE) 2015 Competition Report,” Journal of Automated Reasoning, Vol. 59 (4), pp 455–482,
https://doi.org/10.1007/s10817-017-9406

[26] F. L. Siqueira and P. S. Muniz Silva, “An Essential Textual Use Case Meta-model Based on an Analysis of
Existing Proposals,” Workshop em Engenharia de Requisitos (WER 2011), pp. 419-430, 2011.

