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Fundação de Ensino Euŕıpides Soares da Rocha
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Abstract
Instrumentation is a technique frequently used in software engineering for several different

purposes, e.g. program and/or specification execution trace, testing criteria coverage analy-
sis, and reverse engineering. Instrumenting a software product can be divided into two main
tasks: (i) deriving the software product structure and (ii) inserting statements for collecting
runtime/simulation information.

Most instrumentation approaches are specific to a given domain or language. Thus, it is very
difficult to reuse the effort expended in developing an instrumenter, even if the target languages
are quite similar. To tackle this problem, in this paper, we propose an instrumentation-oriented
meta-language, named IDeL, designed to support the description of both main tasks of instru-
mentation process, namely: (i) the product structure derivation and (ii) the insertion of the
instrumentation statements. In order to apply IDeL to a specific language L, it should be in-
stantiated with a context-free grammar of L. To promote IDeL’s practical use, we also developed
a supporting tool, named idelgen, that can be thought of as an application generator, based
on the transformational programming paradigm and tailored to the instrumentation process.
We illustrate the main concepts of our proposal with examples describing the instrumentation
required in some traditional data flow testing criteria for C language.

Keywords: Software Engineering, Programming Languages, Program Instrumentation.
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1 Introduction

Many activities in the software development process involve the analysis of program code, for
instance in reverse engineering, program visualization, debugging and testing. In general, the
analysis of a program includes scanning it, retrieving useful information and producing an abstract
view of its main elements. One important kind of abstract view we can derive from a program
is its control and data flow information [14]. The program (or a function thereof) is represented
as a graph, usually refereed to as “program graph”, whose nodes and edges are, respectively, the
program’s statement blocks and the possible control transference between blocks. The relevant
information about manipulation of variables is attached to nodes or edges of the program graph.

In addition to deriving the program graph, it is often also necessary to inspect the actual program
execution. For example, in order to assess conformance to some testing coverage criteria, one may
want to know which statements were executed and in which order. Analogously, considering the
program graph, one may want to know which paths are traversed. With this purpose, special log
statements are inserted into the program, producing the so-called instrumented program. These
log statements register the execution information in a trace file, without changing the program
semantics. Taken together, program graph derivation and log statement insertion are often referred
to as program instrumentation. Being a lengthy and error-prone process, program instrumentation
is usually performed in an automatic way by a so-called instrumenter.

An instrumenter analyzes the program according to the grammar of its language, recognizes
the relevant structures of the program, and derives both the program graph and the instrumented
program based upon the semantics of the language. Thus, some techniques and tools employed in
the construction of compilers are usually useful for the development of instrumenters. For example,
the analysis of the program structure can be done with compiling tools like yacc and lex [12]. The
drawback of this approach is the difficulty in reusing the effort expended in a past development of
an instrumenter in the development of other instrumenters. Even in the case of similar languages,
each new instrumenter will demand a complete development cycle.

Another approach for the development of instrumenters is the use of transformational systems,
such as TXL [6] and Draco [13]. However, those systems are not tailored to instrumentation and,
the development of an instrumenter demands a substantial effort, requiring the definition of suitable
data structures and statements. Moreover, this approach has the same drawback of the previous
one, that is, the difficulty in reusing.

In this paper, we propose a system to support the instrumentation process. Our approach can be
thought of as an instrumenter generator, based on the transformational paradigm and graph theory
and restricted to the program instrumentation domain. The system consists of (i) a language, named
IDeL (Instrumentation Description Language), and (ii) a “compiler” (named idelgen, standing for
IDeL Generator) that will generate an instrumenter based on the IDeL description. The IDeL
language embodies constructions suitable for describing the features of the intended instrumenter.
It aims at achieving a good trade-off between generality and complexity. It hides the complexity of
traditional transformational languages. In order to describe an instrumenter in the IDeL language,
one has to write down only the features that are specific to the application in mind. idelgen will
automatically provide the data structures (and the respective statements) that are common to any
instrumenter.

2

CLEI ELECTRONIC JOURNAL, VOLUME 6, NUMBER 1, PAPER 7, DECEMBER 2003



IDeL is part of a larger effort we are endeavoring to specify, design and implement a generic,
multi-language tool for supporting Mutation Testing [7] and control/data flow testing criteria [11,
14]. Our work involves the definition of a general framework, as well as mechanisms to instantiate
it for a particular purpose. Thus, our primary motivation in developing IDeL is to provide the basis
of these mechanisms with respect to (w.r.t.) testing criteria, enabling us to derive program graphs
[14] and instrumented programs in order to trace their executions. So far, we have been able to use
IDeL in some case studies, such as C, C++ and Java program instrumentation for testing coverage
analysis and program visualization.

This paper is organized as follows. In Section 2 we present work related to our approach. In
Section 3 we introduce background concepts of program graphs and grammar theories. In Section 4
we present the main features of IDeL. In Section 5 we describe idelgen, a supporting system
for generating instrumenters based on an IDeL description. Finally, in Section 6 we make some
concluding remarks and point future work.

2 Related Work

Several software engineering activities use instrumentation as a mechanism to support program
analyses. Moreover, instrumentation is often used to trace program execution. In this section, we
discuss some work related to instrumentation.

Kotik and Markosian [10] describe a piece of work carried out with a transformational system —
called Refine — to generate test cases. In their approach, the authors provide a means to derive
boundary values appropriate to each suitable control structure of the program. The program is,
then, changed in order to incorporate the drivers for testing these boundary values. Observe that,
although Kotik and Markosian’s approach indeed changes the program with a purpose different
from instrumentation, it is related to our work in the sense that a transformational based system
is employed to handle programs and support the testing activity.

The model behind data flow criteria definitions [11, 14] is the def-use graph, which is a program
graph enriched with information about the definitions (assignments) and uses of variables attached
to its nodes and edges. The def-use graph of a particular program is, then, analyzed in order
to derive the testing requirements. The program is instrumented with statements to register the
execution flow, which is used to verify whether the testing requirements were exercised by a given
test case set. In [11], Maldonado proposes data flow testing criteria that are based on potential
uses of variables. These testing criteria also employ program instrumentation and use a slightly
different version of the def-use graph. These criteria were implemented in the tool Poke-tool [5].

In [4], Bueno and Jino use program instrumentation in an approach for employing genetic
algorithms to generate test cases. In that work, besides information about the number of nodes,
definitions and uses of variables, the fitness function of a genetic algorithm requires other kinds
of information, e.g. the value of expressions related to a predicative node after the execution of a
test case. The way the instrumentation is carried out allows to collect the required information to
automate the test case generation.

There are cases in which either program alteration or graph derivation is required, but not
both. For example, program instrumentation made for performance analysis only includes that
will collect useful information about the dynamic aspects of a particular execution, allowing the
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identification of performance problems, such as bottlenecks [1]. For this case in particular, the
program graph is not necessary. On the other hand, the abstract view provided by the program
graph is often more appropriate in tasks that require an overall insight of the program structure,
e.g. reverse engineering. For this case, the program does not need to be altered.

Program instrumentation is, therefore, related to several software engineering activities, in
particular, to activities of Validation, Verification and Testing. In general, different types of in-
strumentation are required according to the objective pursued. In this way, an instrumentation
tool should be flexible and, at the same time, suitably tailorable, in order to demand a minimum
instantiation effort.

3 Basic Concepts

In this section, we present background concepts related to program graphs and grammars, needed
for the understanding of the remaining of this paper.

3.1 Program def-use Graphs

The structure of a program can be represented in a so-called program graph. The topology of the
graph reflects the possible flows of control that can occur in an actual execution of the program.
The graph nodes represent the relevant components of the program. Usually, those components
are the executable statements, although other kinds of components may be represented as well,
e.g. declaration and function definitions. The graph edges represent the relationships between the
components (the graph nodes). An edge from node a to node b means that b may be executed after
a in some execution of the program.

Consider a set S of statements that share the property that, in any normal execution of the
program, when the first of them is executed, all the others will also be executed in sequence. In
other words, the control flow can only branch to the first statement of S, or from the last one. Such
a set is called a statement block. Therefore, a program can be completely represented by a graph
whose nodes are the distinct statement blocks and whose edges are the flows to the beginning and
from the end of statement blocks.

A def-use graph is an extension of the program graph and includes information about the
variables that are defined or used. It is often used as the underlying representation for most of the
data flow testing criteria (e.g. [11, 14]). There are three kinds of information:

variable definitions: A variable definition occurs in the points of the program where a value is
assigned to a variable.

variable uses: A variable use occurs in the points of the program where a value assigned to a
variable is used in some expression. The variable uses are partitioned in:

predicative uses: A predicative use (p-use) is a variable use that occurs in an expression
which controls the execution flow.

computational uses: A computational use (c-use) is a variable use that is not a predicative
use, i.e. a variable use that does not occur in a control expression.
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In order to illustrate the concepts presented so far, Figure 1 presents a simple C program and
its corresponding def-use graph. Actually it presents a single function that computes z = xy. We
omit the operational details (e.g. the main function required in a C program), since they are not
relevant in this example. The block that corresponds to a statement is written in comments. For
example, we can observe that node 6 is a block statement composed of two statements. The graph
also includes information about the definitions, p-uses and c-uses of variables, abbreviated to d, p
and c, respectively. For example, a p-use of the variable w in the control expression of the while
statement (node 5) is represented by the two labels near to the edges (5, 6) and (5, 7), which are
the possible control flow branches in this point.

f loat power ( f loat x , int y ) {
f loat z ;
int w;
i f ( y > 0) { /∗ 1 ∗/

w = y ; /∗ 2 ∗/
} else {

w = −y ; /∗ 3 ∗/
}
z = 1 . 0 ; /∗ 4 ∗/
while (w != 0) { /∗ 5 ∗/

z ∗= x ; /∗ 6 ∗/
w−−; /∗ 6 ∗/

}
i f ( y < 0) { /∗ 7 ∗/

z = 1 / z ; /∗ 8 ∗/
}
return z ; /∗ 9 ∗/

}

(a) (b)

Figure 1: (a) A simple function that calculates z = xy and (b) its corresponding def-use program
graph, extracted from [14].

3.2 Grammars and Syntax Trees

Syntax grammars are finite devices that are often used to describe infinite languages. Given a
grammar G, we let L(G) be the set of all sentences that can be generated by the productions in
G. Most, if not all, programming languages are characterized by a grammar. Indeed, the grammar
is usually part of the sound definition of the language. Grammars can be classified based on the
kind of productions they possess. An important class is the context-free grammars. They are
simple but expressive enough to catch most constructions that are usually found in programming
languages. Moreover, the algorithms to recognize them are computationally tractable. Context-
free grammars are usually described in BNF [19]. We will refer to them as BNF grammars, as a
shortcut for context-free grammar described in BNF. A BNF grammar G is formed by a four-tuple
G = (N,T, S,R), where N is the set of non-terminal symbols, T is the set of terminal symbols,
S ∈ N is a non-terminal symbol referred to as the initial symbol, and R ⊆ N × (N ∪ T )∗ is the
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set of production rules. A production rule of the form (n, α) states that the non-terminal symbol
n (the left-hand symbol) can be replaced by the sequence α (the right-hand symbol sequence) of
terminal and non-terminal symbols without “inflicting” the grammar.

As an example of a BNF grammar, Figure 2 presents a grammar that defines a sim-
ple language. This language includes if and while statements. The non-terminal set of
this grammar is N = {〈S 〉, 〈SL〉, 〈W 〉, 〈IF 〉, 〈E 〉, 〈ID〉, 〈C 〉} and the terminal set is T =
{‘break’, ‘while’, ‘if’, ‘else’, ‘(’, ‘{’, ‘}’, ‘)’, ‘;’, ‘+’, ‘-’, ‘>=’, ‘=’, ‘,’}. The initial symbol S = 〈S 〉.
For sake of simplicity, we do not specify the productions for 〈ID〉 and 〈C 〉. We assume them to be,
respectively, any identifier and integer symbols valid in C language.

〈S〉 ::= 〈W 〉
〈S〉 ::= 〈IF 〉
〈S〉 ::= ‘break’ ‘;’

〈S〉 ::= 〈ID〉 ‘=’ 〈E〉 ‘;’

〈S〉 ::= ‘{’ 〈SL〉 ‘}’

〈SL〉 ::= 〈S〉
〈SL〉 ::= 〈SL〉 〈S〉
〈W 〉 ::= ‘while’ ‘(’ 〈E〉 ‘)’ 〈S〉
〈IF 〉 ::= ‘if’ ‘(’ 〈E〉 ‘)’ 〈S〉
〈IF 〉 ::= ‘if’ ‘(’ 〈E〉 ‘)’ 〈S〉 ‘else’ 〈S〉
〈E〉 ::= 〈ID〉 ‘>=’ 〈C 〉
〈E〉 ::= 〈ID〉 ‘+’ 〈ID〉
〈E〉 ::= 〈ID〉 ‘-’ 〈ID〉
〈E〉 ::= 〈ID〉 ‘(’ 〈E〉 ‘)’

〈E〉 ::= 〈E〉 ‘,’ 〈E〉
〈ID〉 ::= some identifier

〈C 〉 ::= some integer

Figure 2: A BNF grammar of a sub-language of C.

From a sequence γ〈n〉δ, we can derive another sequence of the form γαδ, for any production
(n, α). This is represented by

γ〈n〉δ ⇒ γαδ

The language L(G) defined by G is the set of all sequences of terminal symbols that can be
derived from the initial symbol S with the productions in R, i.e., ϕ ∈ L(G) if and only if ϕ ∈ T ∗ and
S ⇒ . . . ⇒ ϕ. The derivation of ϕ from S can be summarized in a syntax tree for ϕ. The syntax
tree is a tree where the internal nodes are non-terminal symbols, the leaf nodes are terminal symbols
and the root node is the initial symbol. If a node 〈n〉 has child nodes with labels α1, α2, . . . , αk,
then there has to exist a production of the form

〈n〉 := α1α2 . . .αk

If when traversing a syntax tree t of a grammar G and collecting the terminal symbols we obtain a
sequence ϕ, then t is the syntax tree of ϕ w.r.t. G. The sequence ϕ belongs to L(G) if there exists
such a syntax tree t for ϕ. Figure 3(b) presents the syntax tree for the statements in Figure 3(a),
w.r.t. the BNF grammar in Figure 2.
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while ( a >= 1)
i f (b >= 0)

break ;
else

a = a − b ;

<S>

<W>

’while’ ’(’ <E>

<ID>

’a’

’>=’ <C>

’1’

’)’ <S>

<IF>

’if’ ’(’ <E>

<ID>

’b’

’>=’ <C>

’0’

’)’ <S>

’break’ ’;’

’false’ <S>

<ID>

’a’

’=’ <E>

<ID>

’a’

’-’ <ID>

’b’

’;’

(a) (b)

Figure 3: (a) Part of a C-like program and (b) its corresponding syntax tree.

Pattern Syntax Trees

A syntax tree represents the syntactical structure of a program. An instrumenter can use this
structure to derive the program graph, as well as to decide where to include the log statements
into the program. IDeL uses this approach. Therefore, there must exist a generic way to specify,
select and handle portions of the syntax tree to which the IDeL constructions can be applied. This
is done with pattern trees and matching. A pattern tree denotes a set of sub-trees of a syntax tree.
The matching is an operation that will identify a particular sub-tree that is denoted by a pattern
tree. These two points are further discussed in the following paragraphs.

We introduce a set M of meta-variables and extend the syntax tree by allowing for leaves to be
meta-variables as well as terminal symbols. Moreover, in this extension the root node can be any
non-terminal symbol (not only the initial one, as in a syntax tree). We call this extended syntax
tree pattern tree. Each meta-variable has an associated non-terminal symbol, which is called its
type. A meta-variable can only occur where a non-terminal of its type also could. A meta-variable
can be either free or bound. Every bound meta-variable is associated to a sub-tree which can be
derived from its type. Figure 4 shows an example of a pattern tree for a statement in C language1.
We prefix the meta-variables with a colon (:), as a way to distinguish from ordinary identifiers.

Patterns are specified in the following notation. The simplest pattern is formed by an anonymous
meta-variable, as its root node. This pattern is expressed by the non-terminal symbol that is its root
node enclosed in squared brackets. For example, [S] is a pattern whose root node is an anonymous
meta-variable of type 〈S 〉. In a more elaborated notation, the non-terminal root symbol is put in
squared brackets, as before, but following it, in angle brackets, is included a sequence of terminal

1Throughout this paper, we assume a simplified grammar of C language. This simplification is carried out to make
the examples self-contained and, hopefully, more understandable. The most important non-terminal symbols of this
grammar are 〈S〉 (standing for statements), 〈E〉 (standing for expressions) and 〈ID〉 (standing for identifiers).

7

CLEI ELECTRONIC JOURNAL, VOLUME 6, NUMBER 1, PAPER 7, DECEMBER 2003



symbols and meta-variables that should be parsed to generate the pattern tree. For example, the
pattern tree in Figure 4 is expressed by [S< while ( :e ) :s >]. Note that inside the angle brackets
the grammar of the product, rather than the IDeL’s grammar, is to be respected. Nonetheless,
meta-variables come from IDeL itself and, thus, the previous pattern will only be valid if the meta-
variables :e and :s are declared with proper types.

<S>

<W>

’while’ ’(’ :e ’)’ :s

Figure 4: The pattern tree for ‘while ( :e ) :s’ in a simplified grammar of C language. The types
of ‘:e’ and ‘:s’ are 〈E 〉 and 〈S 〉, respectively.

For matching, we take a tree pattern p and a syntax tree t and try to unify them, using an
algorithm similar to the one employed by the Prolog language [3]. A matching can either fail or
succeed. In case of success, the meta-variables in the tree pattern, if any, are bound to sub-trees
of t, in a way that makes them unrestrictly interchangeable. In case of failure, no meta-variable
unification occurs. Figure 5 presents a successful matching for the tree in Figure 3(b) and the
pattern tree in Figure 4.

<S>

<W>

’while’ ’(’ :e ’)’ :s

<S>

<W>

’while’ ’(’ <E>

<ID>

’a’

’>=’ <C>

’1’

’)’ <S>

<IF>

’if’ ’(’ <E>

<ID>

’b’

’>=’ <C>

’0’

’)’ <S>

’break’ ’;’

’false’ <S>

<ID>

’a’

’=’ <E>

<ID>

’a’

’-’ <ID>

’b’

’;’

Figure 5: Matching of the tree in Figure 3(b) and the pattern tree in Figure 4.

4 IDeL: Main Features

In order to design an abstract mechanism to instrument programs, it is necessary to select a generic
intermediate format, so that, for every language, the programs must be translated into this format.
This mechanism must then provide methods to handle the intermediate format and to specify the
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aspects relevant for the instrumentation. For example, in the approach undertaken by Chaim [5],
a language — called LI — was devised. In the IDeL’s approach, we decided to use syntax trees
as the intermediate format. The reason for our choice is twofold. Firstly, programs written in
most languages can (with more or less effort) be translated into a syntax tree and the techniques
for this are well-established and well-defined in grammar theory [2]. Secondly, by using concepts
from the transformational programming paradigm (exemplified by languages such as TXL [6] and
Refine [10]) we can define methods for handling the syntax tree. We have already employed similar
techniques in a case study with TXL [17] and in defining a language for describing and generating
mutants [16].

4.1 Extended Syntax Tree

Recalling our goals, we need some mechanism to: i) derive the program graph; ii) annotate some
relevant information (e.g. variable definitions and uses); and iii) insert proper statements into the
program, in order to collect the relevant runtime data.

For this purpose, we extend the syntax tree with the ability to store some special data. An inner
node in a syntax tree has two associated objects: a graph node mapping and an insertion list. The
graph node mapping represents the relationships between a symbolic name and the actual graph
node. For example, the graph node mapping can associate the name $begin to the graph node 56.
The insertion list records what kind of statements should be inserted in order to implement the
instrumentation for this particular tree node.

4.1.1 Graph Node Mapping

There is some information in an instrumentation process that depends on the context. For example,
if we find a break statement in a C program, it is necessary to insert an edge in the program graph
from the current graph node (the one in which the break statement occurs) to the graph node
after the innermost iteration or switch statement. However, to keep IDeL simple, we have decided
that the constructions of a program will be analyzed individually. Therefore, it is necessary to
provide some way to make the relevant context information available when examining a particular
construction.

We tackle this problem by associating graph node mappings to every tree node. In a graph node
mapping, actual graph nodes can be assigned to, and retrieved from, symbolic names. The graph
node mappings are arranged in a hierarchical structure, in such a way that if a particular symbolic
name is not defined in the graph node mapping of a tree node, this symbolic name is recursively
searched in the graph node mappings of the ancestors of this node. For example, in the case of
the break statement mentioned above, we can assign the symbolic name $break to the graph node
after the iteration statement being currently processed in the tree node referring to the body of the
statement. Thus, whenever a break statement is found, one simply needs to refer to the symbolic
name $break.

4.1.2 Insertion List

As mentioned before, one of the steps in the instrumentation process may require the insertion of
log statements into program, in order to register some information about its execution. The actual
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statements that are inserted depend not only on the structure of the program and the semantics
of the language, but also on the purpose of the instrumentation. The insertion of new statements
in the program would imply in an alteration in its syntax tree. As the syntax tree is the element
that guides the whole process of instrumentation, if alterations in the syntax tree were allowed,
it would be necessary to deal with them, bringing an unnecessary complexity to the semantics of
IDeL. Therefore, instead of immediately inserting the log statements, the required insertions are
appended to the insertion list attached to the respective tree node. After the analysis of the syntax
is finished, all the insertion lists are traversed and the required insertions are made (see Section 4.3).

4.2 Instrumenter Description

An instrumenter description in IDeL is divided into three parts: unit identification, unit processing
and program transformation. In this section we discuss each of these parts and illustrate the con-
structions of the IDeL language with examples related to an instrumenter for a simplified grammar
of C language. A complete example can be found elsewhere [18]. We used the instrumentation
schema presented in [11].

4.2.1 Unit Identification

In this part, it is defined what will be recognized as an instrumentation unit (e.g. a function in C
or a method in Java). For each unit, a separate program graph will be generated. The units are
characterized by a list of one or more patterns. The syntax tree is traversed and, if a subtree t
matches any of these patterns, t is processed as a unit. Figure 6 presents the declaration of the
pattern used to identify units in our example.

1 unit
2 var
3 : s as [ S ]
4 :name as [ ID ]
5 : p a r s as [ f u n c t i o n a r g umen t l i s t ]
6 : t ype as [ t y p e s p e c i f i e r ]
7 named by
8 :name
9 pattern
10 [ f u n c t i o n d e f i n i t i o n < : t ype :name : pa r s : s >]
11 end unit

Figure 6: Unit Identification Pattern.

Lines 2-6 declare the meta-variables used in this pattern. The pattern is presented in Line 10.
The declaration in Line 8 indicates that the units found will be named by the identifier unified to
the meta-variable :name.

4.2.2 Unit Processing

Unit processing is the main part of an intrumenter description. It is responsible for defining how to
derive the program graph and to append some special marks to the insertion list of the syntax tree
nodes, when necessary. These marks indicate what kind of transformation must be made in the
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syntax tree in order to insert the log statements. The unit processing part is divided into a sequence
of processing steps. A processing step consists of the sequential application of instrumentation rules.
An instrumentation rule defines how a particular element of the program unit must be instrumented.
For instance, in our example there are instrumentation rules that define how to deal with while
statement, if statements, control expressions, and so on.

An instrumentation rule is composed of seven sections: name definition, meta-variable declara-
tion, pattern definition, graph node creation, graph topology definition, assignment and insertion
marking. Among these, only the name and pattern sections are mandatory. Figure 7(a) presents a
rule to instrument while statements. The application of this rule triggers the following tasks (not
necessarily in this order):

Task 1. to create a graph node to represent the control expression of the while. Let control be
this graph node.

Task 2. to insert into the graph the edges necessary to reflect the potential control flows [11]. Let
begin and end be the graph nodes representing the statement that is immediately before
and immediately after the while, respectively. Thus, the edges that must inserted are:

i) from begin to control,
ii) from control to the graph node representing the beginning of the body statement of

the while,
iii) from the graph node representing the end of the body statement to control and
iv) from control to end.

Task 3. to set up the relevant context information:

i) every break statement in the body statement can refer to end,
ii) every continue statement in the body statement can refer to control,
iii) the uses of variables in the control expression are p-uses.

Task 4. to include marks to indicate that log statements should be inserted in the control expres-
sion, the body statement and the end of the while, respectively.

Now, we discuss the instrumentation rule in Figure 7(a), illustrating its sections and relating
them to these tasks. Line 1 is the name section, which, in this case, defines the name of this
rule as “While”. Indeed, this name is only for documentation purpose and has no impact on the
rule semantics. Lines 2 to 4 are the meta-variable declaration section, which introduces the meta-
variables that may appear in the remaining of the instrumentation rule. In this example, the
meta-variables :e and :s are declared with types 〈E 〉 and 〈S 〉, respectively.

Lines 5 and 6 define the pattern to which the sub-trees of the syntax tree must match in order for
this instrumentation rule to be applied, unifying the meta-variables accordingly. In this pattern, the
meta-variables :e and :s are unified to the control expression and the body of the while, respectively.
Line 7 is the node declaration section. This section is related to Task 1. In this example, it creates
a new node, adds it to the graph and assigns it to the symbolic name $control in graph node
mapping corresponding to the matched sub-tree.

In the next three sections of this instrumentation rule, it is necessary to refer to nodes assigned
to symbolic names. We use the following notation. A reference of the form $begin refers to the
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1 rule While
2 var
3 : e as [E ]
4 : s as [ S ]
5 pattern
6 [S<while ( : e ) : s> ]
7 declare node $con t r o l
8 graph
9 $begin −> $con t r o l
10 $con t r o l −> $beg i n : s
11 $end : s −> $con t r o l
12 $con t r o l −> $end
13 assignment
14 assign $break : s to $end
15 assign $con t i nue : s to $con t r o l
16 assign $puse : e to $con t r o l
17 instrument
18 add checkpo intBe fore $ con t ro l to : e
19 add checkpo intBe fore $beg i n : s to : s
20 add checkpo intAf te r $end to se l f
21 end rule

$end:s

$end

$begin:s

$control

$begin

$continue:s
$puse:e

$break:s

(a) (b)

Figure 7: (a) Instrumenting a while statement; (b) graph alteration during the instrumentation of
an while statement.

graph node assigned to the symbolic name “begin” in graph node mapping of the sub-tree to which
the instrumentation rule is being applied. A reference of the form $begin:s refers to the graph node
assigned to the symbolic name “begin” in graph node mapping of the sub-tree to which the meta-
variable :s is unified. Any construction in the instrumentation rule that refers to a non-assigned
symbolic name is ignored.

Lines 8 to 12 are the graph topology definition section, which declares graph edges and is related
to Task 2. For example, Line 9 creates the edge that links the graph node assigned to $begin and
the graph node assigned to $control. Line 10 creates the edge that links the graph node assigned
to $control and the graph node assigned to $begin in the sub-tree unified to the meta-variable :s .

Lines 13 to 16 are the assignment section. This section is used to assign symbolic names and
are related to Task 3. For example, Line 14 assigns the symbolic name $break of the graph node
mapping of :s to the graph node assigned to $end. Therefore, in whichever instrumentation rule is
applied to the statements in the subtree :s , any reference to the symbolic names $continue and
$break will refer to the nodes assigned to, respectively, the control expression and the statement
after the while. In line 16, we assign the symbolic name $puse (that stands for predictive use) of the
graph node mapping of :e to the graph node assigned to $control. Therefore, any instrumentation
rule applied to :e can refer to $puse (See the discussion on Figure 10).

Lines 17 to 20 are the insertion marking section. In this section, which is related to Task 4,
the instrumentation rule appends special markings to the insertion lists in order to indicate where
log statements must be insert. For instance, Line 18 appends a marking checkpointBefore in the
insertion list of :e. The program transformation part (Section 4.2.3) defines how the program must
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be changed to insert the statements related to this marking. The keyword self in line 20 refers to
the matched sub-tree.

Figure 7(b) illustrates how the While rule works. The symbolic names $begin, $begin:s,
$end:s and $end are already assigned to the suitable nodes prior to applying this rule. The node
and edges that were created by this rule are highlighted with dashed lines, whereas the newly
assigned symbolic names are in italics.

Figure 8(a) presents the instrumentation rule of an If-Then-Else statement. Note that the same
overall structure is applied. Lines 9 to 12 link the graph node assigned to $begin in the matched
sub-tree to the graph nodes assigned to $begin in the meta-variables :s1 and :s2 (that correspond
to the Then and Else statements, respectively). Analogously the graph nodes assigned to $end in
:s1 and :s2 are linked to graph node assigned to $end in the matched sub-tree. Figure 8(b) presents
the corresponding graph alteration for the IfThenElse instrumentation rule.

1 rule I fThenElse
2 var
3 : e as [E ]
4 : s 1 as [ S ]
5 : s 2 as [ S ]
6 pattern
7 [ S< i f ( : e ) : s 1 e l s e : s2> ]
8 graph
9 $begin −> $beg in : s 1
10 $begin −> $beg in : s 2
11 $end: s1 −> $end
12 $end: s2 −> $end
13 assignment
14 assign $puse : e to $begin
15 instrument
16 add checkpo intBe fore $beg in : s 1 to : s 1
17 add checkpo intBe fore $beg in : s 2 to : s 2
18 add checkpo intAf te r $end to se l f
19 end rule

$begin:s1

$end:s1 $end:s2

$begin:s2

$end

$begin
$puse:s

(a) (b)

Figure 8: (a) Instrumenting an if-then-else statement. (b) graph alteration during the instrumen-
tation of an if-then-else statement.

Figure 9 presents the instrumentation rule of the Break statement. The only task that should
be carried out is to link the graph node assigned to $begin in the matched sub-tree to the graph
node assigned to $break (line 5). The hierarchical structure of the graph node mapping (discussed
in 4.1.1) ensures that the graph node to be retrieved will be the one assigned in the closest antecessor
of the matched sub-tree. Thus, the instrumenter will respect the context of the Break statement.

Figure 10 shows other two examples of instrumentation rules that illustrate some important
features of IDeL. The instrumentation rule in Figure 10(a) deals with the assignment statements of
the C language. Note that the control flows directly from the beginning to the end of the statement
(line 8). Line 9 marks the information about a definition of the identifier unified to :d at the graph
node $begin in program graph. Note that the mark declaration collects information about the
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1 rule Break
2 pattern
3 [S< break ; >]
4 graph
5 $begin −> $break
6 end rule

Figure 9: Instrumenting a break statement.

program in the form of relationships between an element of the program and a node in the graph,
e.g. the meta-variable :d and the node $begin. Line 11 assigns the symbolic name $cuse (that
stands for computational use). Different treatments are employed w.r.t. definitions and c-uses of
variables in the Assignment rule. While this rule marks a definition of :d, the marking of the c-uses
in :e is made by the rule Use, shown in Figure 10(b). The reason for this distinction is that :d is
an identifier, whereas :e is an expression, possibly composed of identifiers and other elements (e.g.
operators).

1 rule Assignment
2 var
3 :d as [ ID ]
4 : e as [E ]
5 pattern
6 [S< :d = : e ; >]
7 graph
8 $begin −> $end
9 mark d e f i n i t i o n of :d at $begin
10 assignment
11 assign $cu s e : e to $begin
12 end rule

1 rule Use
2 var
3 :u as [ ID ]
4 pattern
5 [ID< :u >]
6 graph
7 mark puse of :u at $puse :u
8 mark cuse of :u at $cuse :u
9 end rule

(a) (b)

Figure 10: (a) Variable definition handling; and (b) variable use handling

The instrumentation rule in Figure 10(b) deals with the uses of variables. Whenever an identifier
is matched (line 5), the instrumenter marks a p-use and a c-use of the identifier (respectively, lines 7
and 8). Recall that if a declaration refers to a symbolic name that is not assigned, this declaration
is ignored. Therefore, the p-use and c-use will be only marked if the respective symbolic names is
actually defined, and, thus, the kind of use of an identifier can be controlled by assigning one or
another of these symbolic names. Note that we mark the p-use in the node where the identifier
occurs, and not in the edges of graph (as discussed in Section 3.1). Nevertheless, this does not
reduce the expressiveness of IDeL in this case, since the edges of a p-use can be defined as the edges
that originate in the graph node where the p-use was marked.

Figure 11(b) presents the program graph obtained by the application of the proper rules to the
program in Figure 11(a). Every rule described in this paper was applied at least once in order
to derive this graph. For example, the nodes a, i, c, d and b correspond to, respectively, the
symbolic names $begin, $control, $begin:s, $end:s and $end in Figure 7(b). Note that c is to
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the symbolic name $begin:s in the While rule, but to the symbolic name $begin in the IfThenElse
rule.

while ( a >= 1)
i f (b >= 0)

break ;
else

a = a − b ;

(a) (b)

Figure 11: (a) Part of a C-like program and (b) the program graph (before the reduction and
rearrangement).

4.2.3 Program Transformation

In the unit processing, the instrument declarations append markings in insertion lists of the syntax
tree nodes to indicate where log statements must be insert. In the program transformation, it is
defined how the program should be changed in order to insert such statements. Note that the
alterations depend not only on the language of the program being instrumented, but also on the
purpose of the instrumentation. It is composed by a list of replace declarations. For example,
Figure 12(a) defines how to transform the program due to the instrument declaration in line 18 in
Figure 7(a), which appends a checkpointBefore marking in the tree node of the while control ex-
pression. Analogously, Figure 12(b) defines how to transform the program when a checkpointBefore
marking is found in a tree node that represents a statement.

Consider the replace declaration in Figure 12(a), which defines how to instrument an expression
with a mark checkpointBefore. Line 5 defines the pattern that should be matched for this replace
declaration to be applied, as well as the mark that should be in the insertion list of the matched
sub-tree. Line 8 is the substitution pattern that will replace the matched sub-tree. Note that the
statement check(:n) is inserted before the expression matched by :e, separated by a comma. The
meta-variable :n is bound to the graph node assigned to $node in order to be used in the substitution
pattern. Note that $node is not part of the target language grammar and, therefore, it cannot occur
in a pattern. Thus, it is necessary to bind a meta-variable to symbolic name and, then, use this
meta-variable in the pattern. Observe also that, in what concerns IDeL, the choice of check(:n) is
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1 replace
2 var
3 : e as [E ]
4 :n as [C ]
5 checkpo intBe fore $node [E< : e >]
6 binding :n to node $node
7 by
8 [E< check ( :n ) , ( : e ) >]
9 end replace

1 replace
2 var
3 : s as [ S ]
4 :n as [C ]
5 checkpo intBe fore $node [S< : s >]
6 binding :n to node $node
7 by
8 [S< {
9 check ( :n ) ;
10 : s
11 } >]
12 end replace

(a) (b)

Figure 12: Implementing a checkpoint before (a) an expression and (b) a statement, respectively.

arbitrary. IDeL only requires that a syntactically correct statement be inserted. This statement
should be defined elsewhere in a suitable way, so that it will gather the appropriate information.

4.3 Applying an Instrumenter Description

The application of an IDeL instrumenter description is ruled by three elements: a program P to
be instrumented (written in a language L), a context free grammar G for L and an instrumenter
description (in accordance to L). The execution is accomplished in five phases:

1. Parsing: The program P is parsed and, if it is correct w.r.t. G, its syntax tree is built.

2. Unit Identification: The syntax tree is traversed in order from the root node, trying to match
the patterns defined in the unit identification part of the instrumenter. Whenever a sub-tree
matches one of those patterns, a new program graph is created and the matched sub-tree is
processed (phase 3). After traversing the tree, the transformation phase begins (phase 4).

3. Unit Processing: During the application of an instrumenter description in IDeL, every pro-
cessing step (as defined in Section 4.2.2) is applied, in sequence. For each node in the syntax
tree, each instrumentation rule in the step is tried. If the pattern of the rule matches the tree
node, the instrumentation rule is applied. After the application of the last step, the resulting
graph is reduced, rearranged and output.

(a) Graph Reduction: The program graph produced by processing an IDeL description may
have nodes that can be merged without loosing any information about the program it repre-
sents. For example, in Figure 11(b) the graph node h will always be executed after the graph
node g. To reduce the graph, an algorithm is applied in order to merge nodes that would
be executed in sequence. Two nodes n1 and n2 are merged if n2 is the only successor of n1

and n1 is the only predecessor of n2 (i.e., n2 is always executed just after n1). Moreover,
unreachable nodes (i.e. nodes to which there is no path from the initial node) are removed
(e.g. node f in Figure 11(b)).
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(b) Graph Rearrangement: The graph rearrangement algorithm chooses unique labels to the
graph nodes, trying to resemble the program structure as much as possible. Figure 13 shows
the program graph in Figure 11(b) after the reduction and rearrangement.

Figure 13: Reduced program graph.

(c) Graph Output: After the reduction and rearrangement of the graph, it can be output. Cur-
rently, the program graph (its nodes, edges and the information marked in the nodes) is out-
put in XML format. Alternatively, it can be output in dot digraph format of GraphViz [8].
GraphViz is a powerful tool for drawing graphs and is able to generate several different kinds
of image format (e.g., JPEG, PNG, EPS).

After outputting the graph, the instrumenter resumes phase 2, searching for another unit.

4. Unit Transformation: In this phase, the syntax tree is traversed, starting from the root node,
verifying in the insertion lists of its sub-trees whether it is necessary to insert log commands.
When an insertion is requested, the replace declarations are inspected until identifying one that
is applicable for the respective sub-tree and insertion type. If an applicable replace declaration
is found, the syntax tree is accordingly changed and the tree traversal goes on.

5. Unparsing: The syntax tree (eventually changed in the previous phase) is traversed and every
terminal symbol is collected. The sequence of terminal symbols obtained is the instrumented
program. Considering the sample program in Figure 11(a), the instrumentation process will
produce the instrumented program presented in Figure 14. As discussed previously, the state-
ment check was arbitrarily chosen as being a statement to register the execution of each node.
It can be noted that, for keeping the program syntactically correct w.r.t. the C grammar, it was
necessary to include extra open/close curling brackets around the statements.

4.4 Reusing Instrumenter Descriptions

IDeL language was designed so that an instrumenter description could be changed as easily as
possible, either to include new features or to change existing ones. This design increases the
potential reuse of an instrumenter description for other similar goals. For example, the declarations
that impact on the graph topology can be changed without, in principle, worrying about how the
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{
check ( 1 ) ;
while ( check (2 ) , a >= 1)

{
check ( 3 ) ;
i f (b >= 0)
{

check ( 4 ) ;
break ;

}
else
{

check ( 5 ) ;
a = a − b ;

}
}

check ( 6 ) ;
}

Figure 14: Instrumentated program.

source program should be transformed in order to log its execution. Conversely, it is possible to
change the way the program is transformed without any impact on the graph topology.

To illustrate the reuse of an instrumenter description, consider a situation where, besides logging
the fact that an if statement with a relational operation was executed, one wants to log i) the
values used in the control expression; and ii) the results of the expression. This example was
inspired in the instrumenter description proposed by Bueno and Jino [4] for deriving program test
cases with genetic algorithms. In order to specialize the instrumenter to behave in this way, it is
only necessary to include new replace declarations to customize the handling of if statements, in
contrast to the declaration in Figure 12(b), which handles any statement. These more specialized
declarations should be placed before the general one in the instrumenter description, so that they
will be found and applied first. Figure 15 presents an example of the replace declaration related
to the relational operator ‘>=’. Observe that, in this case, the addition of a new functionality
only requires a change in a delimited location, keeping all the remaining description unchanged.
Figure 16 presents the instrumented program that would result from the application of this changed
instrumenter description to the program in Figure 11(a).

5 Operational Aspects

We have developed a system, named idelgen (standing for IDeL Generator), to support the ap-
plication of an instrumenter description. In order to use IDeL to describe an instrumenter for
programs in a language L, it is necessary to provide a context-free grammar G for L. Grammar G
will be used to check whether both the programs and the patterns in the instrumenter description
are syntactically correct. Given G, idelgen will produce a program called idel.G. In its turn, this
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1 replace
2 var
3 : i as [ ID ]
4 : c as [C ]
5 : s 1 as [ S ]
6 : s 2 as [ S ]
7 checkpo intBe fore $node
8 [S< i f ( : i >= : c ) : s 1 e l s e : s 2 >]
9 binding :n to node $node
10 by
11 [S< {
12 check ( :n ) ;
13 i f ( : i >= : c ) {
14 l o g va lu e ( : n , ( : i ) , ( : c ) , GE) ;
15 : s 1
16 } e l s e {
17 l o g va lu e ( : n , ( : i ) , ( : c ) , LT) ;
18 : s 2
19 }
20 } >]
21 end replace

Figure 15: Implementing a checkpoint before an if statement.

{
check ( 1 ) ;
while ( check (2 ) , a >= 1)

{
check ( 3 ) ;
i f (b >= 0)
{

l o g va lu e (3 , (b ) , ( 0 ) , GE) ;
check ( 4 ) ;
break ;

}
else
{

l o g va lu e (3 , (b ) , ( 0 ) , LT) ;
check ( 5 ) ;
a = a − b ;

}
}

check ( 6 ) ;
}

Figure 16: New instrumentated program.

program can then be run with an instrumenter description ID and a program P , producing the
respective instrumented program and graphs (one for each program unit).

In order to manipulate G and generate idel.G, idelgen uses the tools bison and flex, which
are open source programs similar to, respectively, yacc and lex [12]. Although these tools ease the
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Figure 17: idelgen Execution Schema

task of manipulating grammars, they, on the other hand, restrict the set of grammars that idelgen
can currently deal with to LALR(1) grammars [2, 12, 15]. G is input to idelgen in two files: G.y
and G.l. File G.y is a set of grammar rules, written in a subset of yacc syntax [12]. File G.l
contains the rules to lexically analyze L, defining the actual form of the terminal symbols of G. It
is a subset of the lex syntax [12]. Indeed, these files can be thought of as minimal standard yacc
and lex files, from which all the so-called semantic actions were stripped off.

The program idel.G, generated by idelgen from G, can be divided in two parts: one with
the elements that depend on G and another with elements that do not. Figure 17 depicts how
these parts interact and illustrates the overall schema by which idelgen builds idel.G. The part
depending on G is handled by three modules of idelgen: treegen, instrdescgen and linker.
The grammar independent part is embodied in the so-called IDeL Kernel, which is responsible for
interpreting the instrumenter description and manipulating the syntax tree accordingly.

Module treegen analyzes G and generates two components:

(i) STP (Syntax Tree Processor), which is responsible for syntactically analyzing a source program
P w.r.t. G and to generate the syntax tree; and

(ii) Unparse, which is responsible for converting the resulting syntax tree into the instrumented
program.

Module instrdescgen analyzes G and generates the component IDP (Instrumenter Description
Processor), which analyzes an instrumenter description ID w.r.t. G and generates an internal
abstract representation of it. Finally, the linker module will link all these grammar-depending
components and the IDeL Kernel and generate the program idel.G. The program idel.G can then
be used to instrument a source program P w.r.t. an instrumenter description ID (Figure 18). Both
P and ID are input to idel.G and internally processed by STP and IDP, respectively Then, IDeL
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Kernel will apply ID, generating one or more program graphs (one for each unit). The resulting
syntax tree is processed by Unparser in order to generate the actual instrumented program P ′.
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Figure 18: idel.G Execution Schema

6 Concluding Remarks

Program instrumentation is a technique largely employed in software engineering, suitable to ob-
tain an abstract view of an program, as well as to inspect its execution. The instrumentation
is usually conducted with a specific purpose in mind, such as testing coverage assessment and
program visualization. In this paper we presented a language for describing instrumenters. This
language abstracts and captures the most important concepts of the instrumentation process. It
embodies these concepts by providing simple constructions to determine how to derive the program
graph, collect important data about the program and insert log statements to register the program
execution.

Currently, IDeL does not provide mechanisms to cope with goto statements. Actually, a goto
statement demands that nodes be referred to by means of label identifiers. This point can be
tackled by including a global lookup table of identifiers. However, we think that a goto statement
will only be a special case of reference to some element of the program and we are studying how
to generalize the construction to be useful for more general cases, such as referring to entry and
return nodes of an inter-procedural call [9].

The primary motivation for the development of IDeL (and its primary use) is within a larger
project we are undertaking to devise a generic testing tool; generic in the sense that the same
tool may be used for different languages, namely, C, C++ and Java. This generic tool will be a
framework with built-in features for the common tasks that should be made by a testing tool. The
framework should provide some way to describe the specific characteristics. IDeL will be used for
describing how the instrumentation takes place for a specific language. Note that the instrumenter
description requires that just the relevant parts of the grammar be considered. Therefore, even
the description (or, at least, part of it) can be reused, by carefully constructing the grammar (e.g.
choosing nonterminal names consistently) and writing the description (i.e. isolating features that
are particular of a given language).
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