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Abstract

The use of software agents as Database Management System components lead to database systems
that may be configured and extended to support new requirements. We focus here with the self-tuning
feature, which demands a somewhat intelligent behavior that agents could add to traditional DBMS modules.
We propose in this paper an agent-based database architecture to deal with automatic index creation.
Implementation issues are also discussed, for a built-in agents and DBMS integration architecture.

1 Introduction

The software agents’ research area aims at building systems that deal with heterogeneous, distributed and
dynamic environments [33]. The agent technology has been used in many complex environments [4, 32].
When agents are present, systems can detect the external environment where they are inserted and react in
different ways according to the existing system configuration. Agents are used mainly in applications where
autonomy and reactivity are very important [6].

In general, Database Management Systems (DBMSs) are known as passive systems that become active
only in response to requests from end users or application programs. A possible approach is to make use of
the agents’ technology to add a reactive capacity to the system, that enables autonomous reconfiguration
and extensibility.
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Extensions due to new systems requirements have created multiple extended DBMS instances, such as
active database systems [30]. Active databases and software agent systems are quite similar as both may be
used on reactive applications [4]. However, active rules are usually limited to deal with database internals,
like its objects and transactions, while agents may apply to the whole system environment.

There are many application domains for which Database Management Systems (DBMS) could be ex-
tended and configured [28]. Database systems would, ideally, be configured in such a way that no tuning
activities would ever be needed. All the resources would be placed and adjusted in the best possible way.
However, data and transactions are continuously evolving and a DBMS initial configuration may not any-
more be effective. 'When modifications are imperative, the DBMS should then be able to execute them
automatically. This capacity of perception and automatic adjustment is known as self-tuning. In this paper
we propose the use of software agents to deal with self-tuning and DBMSs operational requirements.

The database tuning task consists of fine manipulations aiming at obtaining better performances of
applications by means of an efficient use of the available computational resources. It is one of the main
tasks of a database administrator. Commercial DBMSs offer a number of operational parameters that can
be adjusted. Tuning can also be done in hardware configuration, physical design and query specifications.

A good prompt for the tuning process is to ”think globally, fix locally” [27]. This means that we must
understand the functioning of the entire system, but only carry through adjusts in specific points each time.
Some factors have made the tuning process more complex, as for parallel machines and systems, that bring
new questions such as the data allocation in multiple disks. Moreover, at each new release of commercial
DBMSs, additional operational parameters appear to be adjusted. So, tuning becomes even more important
and, as well, more expensive, due to the need of highly specialized professionals [3, 12].

We are mainly concerned here with index self-tuning for database systems. Due to the high complexity
of DBMSs’ current implementations, self-tuning solutions are still very restricted. In order to achieve an
actual self-tuning behavior, we need to rethink DBMSs’ architecture [12]. We propose here an approach that
matches agents systems and DBMSs in a feasible architecture. The agent architecture chosen is based on a
object-oriented framework for building agent systems proposed in [17].

It should be noted that some of the existing approaches for index self-tuning, mostly in commercial
DBMSs, are based only on index suggestion for specific workloads, leaving to the database administrator the
decision on choosing the right representative workload and of the index creating. In our work we propose an
index self-tuning complete process with automatic creation of indexes in a agent-based database architecture.
This paper extends the work presented in [8], showing revised heuristics for an index selection agent’s decision
process and discussing an object-oriented design for the implementation of this agent in a real DBMS.

In the next Section we give more details on software agent systems and the way they may interact with
database systems. We discuss some existing works related with semi-automatic index tuning and propose
a self-tuning engine on an agent-based database architecture. An application focused on automatic index
self-tuning is presented in Section 4. Then, in Section 5, we discuss implementation and architectural issues.
Finally, we conclude in Section 6 listing our contributions and comment on future and ongoing work.

2 Agent-based Databases

There exist multiple definitions for the agent term [33, 6, 16, 23] and only the autonomous characteristics
have come to a consensus. Indeed, this is a central point related to the agency concept. We consider
here basically the definition given in [33]: an agent system is a computational system that lives in a given
environment, being able to execute autonomous actions over this environment in order to achieve its goals.

2.1 Software Agents

The agent architecture that will be implemented here is based on an object-oriented framework for building
agent systems proposed in [17]. This framework defines a layered architecture (Figure 1) which identifies
each agent function and can be used for both simple and complex agents.

Each layer communicates only with the layers that are located above and below it, with exception of
the Mobility and Sensory layers, that communicate with other agents/environment regions to execute their
functions. This is the main reason why this layered architecture was chosen: each layer (except the extreme
ones) depends only on its neighbors, making easier the implementation of new functionalities.
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Figure 1: Layered Architecture for Software Agents

There exists, in Figure 1, two basic streams of information: one from the Mobility layer to the Sensory
layer, and the other bottom-up in the opposite direction. The first one can occur when a message is received
from another agent while the latter can occur when the agent uses the information captured by the Sensory
layer to bring up to date its Believes, which are used to make decisions and execute some actions.

2.2 Agents and Database Systems

In [4] active databases are compared with agent systems. That work states that the integration of both
technologies would even increase the complexity of the systems. It would be imperative to develop debugging
tools as the control becomes more difficult. The focus was in a high level abstract comparison of both
paradigms, with no direct consequences. However, a relevant point mentioned is that an important barrier
to the integration of both technologies is the lack of methodologies for building plans and rules.

The extension of the agency level of an active database is investigated in [2]. They use an active database
system based on autonomous objects, each of which has data and goals to achieve. The extension of the
agency level is obtained by changing objects to agents. This way the agent abstraction can be used to
model applications and implement DBMS functionalities. Each DBMS component could be an agent with
own strategies and goals. This work was maybe the first one to argue in favor of an agent-based database.
Nevertheless, for the best of our knowledge, this architecture was never implemented.

In [22] an agent implementation model based on a DBMS layered architecture is proposed. They claim
it is a good idea since the system would get flexibility with agents and robustness with a DBMS. All agent
operations are mapped to DBMS operations, i.e., the DBMS scheduler manages every possible conflict. The
cooperation among agents is executed through a nested transaction model. Each subtransaction is executed
as regular DBMS transactions. The goal of the proposed model is to permit the representation of a layered
architecture for building agents which considers these nested transactions.

Another important work describes a formal approach to agent-based federated DBMS design [29]. A fed-
erated DBMS is seen as an agent federation, with multiple agents as mediators. For each DBMS component,
there is a mediator to access it. In a similar way, for each federated DBMS, there exists an agent which is
responsible for constructing and maintaining the federation. Considering the decentralized approach, only
the mediators communicate between themselves. Each mediator agent has the knowledge of all other agents
that are part of the federation. The paper also discusses the fundamental properties of each agent.

Finally, we can cite the work in [18], where the authors extend the active capacity of a relational DBMS
with an approach based on agents. The extension is done by the incorporation of a mediator between the
DBMS and its users. The agent is responsible for rule creation, event notification and action firing. This is
possible because the agent provides an user interface where E-C-A (Event-Condition-Action) rules may be
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Figure 2: Architectures for the integration of Agent Systems and DBMS

created, as well as events. Although they use the term agent, this work does not define the agency properties.
An 7agent” is presented as a multi-threaded program that defines an interface between users and the DBMS.

Some other details of these and other related works can be found in [21]. There we describe some practical
aspects of agents and database integration. We will see next some proposed architectures to make agents
and database systems work together.

2.3 Agent-based Database Architectures

In [20] three integration architectures between agents and DBMSs are proposed: Layered, Integrated and
Built-in (Figure 2). Each one of the three integration architectures has advantages and disadvantages (we
omit here a detailed discussion due to space limitations). The Layered architecture is the one implemented
in most existing approaches but is also the one where less functionalities are supported. In the Integrated
architecture the maximum agency level is obtained, as agents systems replace all (or almost all) of the DBMSs’
components. However, building such an integrated system is extremely complex. The Built-in architecture
enables the reuse of DBMSs’ existing components. The degree of extension of DBMSs’ functionalities depends
on the coupling level between agents and components.

We will consider in this paper the built-in architecture to implement the self-tuning feature in an agent-
based database architecture. This was also the case for a previous work [20] in which an agent-based
database was built to further tailor the workload balancing process during parallel joins. We will discuss
implementation aspects of this previous work and the one proposed here later in Section 5.

3 Self-tuning

We describe here some self-tuning previous studies related to the our work. We present an architecture
where most DBMSs self-tuning approaches fit and show how it can be implemented by the use of software
agents. We enhance, still, the importance of the communication between diverse self-tuning agents for the
establishment of a true integrated system that makes possible a full and effective DBMSs self-tuning process.

We will give in this section the main stages of an automatic adjustment engine and its insertion in the
context of traditional DBMSs. The self-tuning process has been mainly studied in the evaluation of particular
problems. We will discuss the importance of making the self-tuning engine a global process to the DBMS
operation and not a specific process for a given problem or component.

3.1 Self-Tuning in Databases

The self-tuning feature has been studied in many different areas. Transactions tuning and memory manage-
ment are studied in [31]. In [19] a self-tuning engine is presented for the data allocation problem in parallel
systems. In [12] the authors claim that deep architectural changes must be done in databases to enable
actual self-tuning processes. A framework for tuning a physical database design is given in [25].

The work presented in [13] generates index sets from the monitoring of DBMS activities in a determined
time interval. The indexes selection is achieved by considering index ”benefit graphs”. These structures
represent the index sets that are presented and chosen by the optimizer, together with their execution costs.
Each of the index sets selected by the optimizer is viewed as a graph node. The construction of a benefit
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graph for all the alternatives of index sets possibly tested and chosen, for each query, is unfeasible. Thus, a
graph is generated only for those sets that will be chosen according to following criterion: given an initial
set P of considered indexes and a subset C, of P, containing indexes chosen by the optimizer, |C| subgraphs
are generated, starting with P — C;, where 1 < ¢ < |C|. Two heuristics are also considered: (a) if a set of
n indexes induces a benefit S, each index will generate a benefit of S/n; and (b) the maximum value of a
index benefit in a benefits graph is considered the index benefit for the query. The query optimizer must,
then, be capable to generate an execution plan taking into account indexes that are not actually present in
the database catalog?.

In [9, 10, 11, 1] tools for indexes suggestion implemented in Microsoft’s SQL Server are discussed, as part
of the AutoAdmin project. Particularly, in [1], the indexes suggestion tool is presented with a materialized
views suggestion tool. The objective of the index suggestion tools is to generate an index set considered
for one determined input workload. This workload could be built from a log archive. Given a workload W
with n operations, the tool generates n workloads, each one with a single operation, partitioning the initially
submitted load. Then, it chooses the best configuration for each one of these loads, independently. Finally, it
considers all the indexes belonging to one of the configurations chosen for the diverse workloads as candidates
for W as a whole. From a workload with only one operation we have the selection of candidate indexes -
in this stage only simple indexes are considered. Then, a greedy algorithm considers diverse configurations
for each query. These configurations are submitted to the query optimizer (the existence of an index is only
worth if it is effectively used in a query plan execution). However, not all the possible indexes exist in the
DBMS catalogue. Therefore, another module exists that makes it possible to the query optimizer to choose
hypothetical indexes during elaboration of a query execution plan.

The selection of the input workload (or system time period observation) is the main difficulty for tools
as the ones discussed. This happens because the database administrator does not always have all the
information on what will actually be affected by specific operations when defining a workload [7]. Index
suggestion engines do not take care of automatic adjustment of the DBMS, being highly dependent on
decisions and actions made by the system or database administrator. They do not represent, then, a real
self-tuning engine.

3.2 Self-tuning stages

In [31] three main stages are identified in the self-tuning process. Here we define four stages that are part of
a generic self-tuning process:

e Information Retrieval (IR) - when system observation occurs or, specifically, the observation of the
system’s region where self-tuning is active;

e Situation Evaluation (SE) - according to measures obtained in IR stage and with metrics related to
the level of system’s performance, the performance is evaluated and the need of adaptations is defined;

e Possible Alterations Enumeration (PAE) - when it is detected that a determined component is not
answering adequately, the possible alterations to be done are enumerated;

e Alterations Accomplishment (AA) - from the enumerated alternatives, the self-tuning engine can make
alterations in multiple DBMS’s components;

It is important to stand out that the choice of the evaluation metric, in the SE stage, is a difficult step
in the self-tuning process, as performance evaluation criteria is very dependent on the particular situation

The domain of possible alternatives is, generally, numerous and very complex. However, it is in the
PAE stage that the bigger overhead to the system is generated. Some alternatives are elaborated and their
benefits/costs are calculated. This process is similar to and as costly as the process of plan generation done
by conventional query optimizers. Not always the best alternative will be among the feasible ones.

It is important to note that, in some cases, this PAE stage is not considered in a self-tuning engine. This
happens because in the IR stage it can be decided that it is not necessary to modify the system or that
it will not be possible to reach better solutions. Then, PAE and AA will not be executed. On the other

IHypothetical Indexes are indexes that do not physically exist in the database but are treated by the query optimizer as if
they did [13]. The ones that belong to the database will be called Real Indexes.
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Figure 3: Component’s Local Self-Tuning Architecture

hand, some engines need to enumerate the alternatives before deciding whether or not to modify the system.
Therefore, the PAE stage as well as IR and SE stages will always occur in these cases, while the last stage
may not occur.

3.3 Local self-tuning model

In Figure 3 we propose an architecture to accomplish the self-tuning tasks discussed previously. The archi-
tecture’s goal is to improve component’s operations performance. This is made by a local component which
is specialized in capturing a determined task.

This structure observes a set of DBMS’s components with intention to capture a low performance. Then,
information is sent to diverse components listing alterations in determined task’s execution and collects
information of the results obtained. The self-tuning component can, also, use other DBMS’s components to
simulate the intended modifications. In this case, it collects results in an intermediate stage, before all the
involved components in the operation have concluded its execution. This enables it to restart the process
with new parameters. When the intermediate results fetched are the expected ones, it allows the complete
execution of all the operations.

It can be noted that the IR stage can occur more than once in the self-tuning process. Therefore this is
the predominant self-tuning stage. For the extreme case where no tuning activity is needed only IR and SE
stages (or, still, PAE, as argued Section 3.2) would occur.

3.4 Self-Tuning Global Model and Persistence

It is generally worthy, however difficult, to make self-tuning component learn with decisions previously made.
This is important because what seems good for a DBMS’s component can harm others and, consequently,
harm the whole system performance. Moreover, as self-tuning is an automatization process, it is important
to gain experience. Some self-tuning engines need to store, in a consistent way, data and statistics about
decisions taken, as represented in Figure 4. In this figure the possibility of communication between self-
tuning components is also represented. This communication can be very useful, even if the system becomes
more complex.

For example, consider two self-tuning components, one taking care of the indexes existence and another
that takes care of memory’s allocation and page’s substitution policy. The creation or exclusion of an index
can intervene, for example, in the choice of a join operation execution method. This could modify, for
example, the memory area for sort operations. If the index self-tuning component informs the memory’s
component on decisions taken, alterations could be made preventively, before a problem occurred.
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Figure 4: Self-Tuning global model

3.5 Self-Tuning Agent

The self-tuning component must possess:

e Autonomy: capacity of act/react to reach an objective without any intervention;

e Reactivity: by capturing what occurs in the environment, it is the capacity of responding to changes
so that its objectives are reached;

e Pro-activity: to act in order to reach its objectives, anticipating changes in the environment;

e Sociability: capacity to interact with other participants of the environment;

Beyond these, the possibility of learning also exists: a decision in a given moment can be different from
a decision made previously, according to the consequences measured in the first decision. These are exactly
the features of intelligent software agents [32, 33].

Therefore we claim that an agent could act as a self-tuning component. We will give in Section 5 an
agent architecture that will satisfy these features of a DBMS’s self-tuning component.

3.6 Self-Tuning with Multiple Agents

A DBMS is a very complex system for a stand-alone agent to take care of all system’s self-tuning tasks. In
practice, we need a multiple agents system, which cooperate to achieve their particular goals.

In an agent-based database system, we could create different self-tuning agents specialized on different
DBMS’s tasks. Interaction techniques enable jobs exchanges between tuning agents of different DBMS’s
areas.

The interaction could be only for information flow on observed situations. Let us consider that an agent
perceive that the response time for a join operation is very high. This agent sends then a message to the
index and memory agents and to another one responsible for join operations. The index agent tests indexes
creation. The memory agent can modify the memory size or modify the buffer page’s substitution policy.
The last one can qualify the hash join method and a new execution plan for the join operation can be
generated.

This type of action is exclusively reactive and it does not make use of the agent’s pro-active capacity.
In this situation, the ideal would be that the index had been created during the elaboration of the query
execution plan. It would have to take into account the hash join technique and possible substitutions in
the buffer’s page replacement policy. A self-tuning agent with total autonomy and pro-activity for the
creation/destruction of indexes will be presented in the next Section.



CLEI ELECTRONIC JOURNAL, VOLUME 6, NUMBER 1, PAPER 6, DECEMBER 2003

4 Indexes Self-Tuning Based on Differences

In this section we describe a method that allows the total automatization of the choice, creation and ex-
clusion of indexes. The process is done during DBMS’s normal operation, without the intervention of the
administrator, through the use of a self-tuning agent.

The Self-Tuning Agent Based on Differences [7, 8] will use hypothetical indexes. We will not detail the
indexes choice engine, as this problem is already sufficiently known. We focus our attention will be given to
the process that controls the creation and the exclusion of the indexes, exactly the most critical point of the
problem. The whole process will be done through a agents based architecture.

4.1 General model

The main difficulty in the implementation of an automatic project of indexes creation and exclusion refers
to the choice of the moment where indexes must be created/destroyed, since such operations imply in costs
that cannot be forgotten. For one given operation submitted to the DBMS, the query optimizer generates
the best plan with the best real configuration (it only uses objects materialized in the database) and its
execution cost. Then, the self-tuning component will decide if hypothetical indexes may participate in an
execution plan whose execution cost is lower than those of the real configurations. When such indexes do
not exist, the execution of the operation continues normally. When good hypothetical indexes exist, these
are submitted to the optimizer and a plan is generated according to a hypothetical configuration.

The costs of the best plan according to real configuration (Cr) and of the best plan according to hypo-
thetical configuration (Cp) are compared and a decision on creation/destruction of an index is taken. Some
details on specific situations are presented in the next subsections.

4.2 Queries costs evaluation strategy

For a query operation, a factor C' is defined as the difference between the cost of the best plan according to
real configuration and the cost of the best-established plan according to hypothetical configuration.

When the C factor is positive, we compare it with the cost of creation of the necessary indexes used in the
hypothetical configuration, called CC (creation cost). If C' is higher than C'C, then it will be advantageous
to create the indexes before the query execution. These will be created and the query executed. On the other
hand, if C is lower than C'C' the query will be executed without the index creation and, then, an evaluation
of previous operations will be carried through, in accordance with the stored statistics. This procedure is
represented in Figure 5.

The evaluation of the previous operations is extremely simple. It consists on deciding if an index should
be created or not by analyzing the time that could have been saved in the last queries in consequence of the
existence of such index. The creation decision is taken when the total costs that could have been already
saved, in case that index existed, reaches the forecasted index creation cost. This is represented in Figure 5,
where Cp is the stored value representing the total cost’s reduction if the related index had already been
created.

On the other hand, in case that Cp is equal or bigger than Cg, the query is executed according to real
configuration. Note that if the optimizer always find the best plans, C'y would never be bigger than Cg, as
C'y would represent the same plan as Cr. We should consider that the indexes that are used in the query
execution plan, in the real configuration, are reducing the query execution costs. So, we should add to the
Cp factor of the used indexes the diference between the query execution cost in the real configuration and
the query execution cost in a configuration where the indexes that are being used in the real configuration
do not exist.

4.3 Updates/exclusions costs evaluation strategy

The case of updates and exclusions is a little more complex than the one of queries: actions that could be
taken include create and/or destroy an index. We call CD the destrucion cost of an index. As presented
before, C'C' is the creation cost of an index.

When C is negative or equal to zero, the actions to be taken are similar to those taken in the query
operations evaluation. We must add to the C'p factor of the used indexes the difference between the execution
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C=Cr-Cy;
If C> 0, then
If C> CC, then
Create Indexes;
Execute the query;
Else
Execute the query;
Co=Cp+ G
If Co >= CCthen
Create indexes;
Endif;
End if;
Else
Cr = Cost of execution if the indexes
used in the real configuration
were dropped;
Co=GCp+ Cri;
Endif;

Figure 5: Queries and previous operations evaluation

cost in the real configuration and the execution cost in a configuration where the indexes that are being used
in the real configuration do not exist.

On the other hand, when C is positive, we should evaluate if C' will be greater then the sum of the
indexes creation costs and the indexes destruction costs (CC + CD). If it is, then we create/destroy the
indexes and carry through the query.

If C is lower then CC + CD, then we should obtain Cg¢ that is the cost of execution of the operation if
the sugested indexes are created but no index is dropped. C'yc + CC should be compared to Cr . If Cye
+ CC is lower then Cr the indexes are created and the update/delete is executed. If Cye + CC is not
lower then Cpr, then we should obtain Cyp. Cyp is the cost of execution of the operation if the sugested
indexes are destructed but no index is created. If Cyp + CD is lower then C'y the indexes are dropped and
the update/delete is executed.

The other way around, we only make an evaluation of previous operations. The evaluation of previous
operations for the case of an update/delete is composed of two parts: (i) for the indexes which were proposed
to be created, Cp is increased of the value of (Cgr - Ch¢); (ii) for the indexes proposed which were proposed
to be dropped, we update the value of Cp deducting (Cr - Cyp).

When Cp is positive and |Cp| reaches the cost of indexes creation, these are created. When Cp is
negative and |Cp| reaches the cost of indexes creation, these are destroyed. The procedure for update/delete
operations is represented in Figure 6.

5 Implementation Issues

In this section we will present some issues related to the implementation of a self-tuning agent. We will
show an agent architecture that makes possible to implement all the self-tuning characteristics presented
in previous sections. We will also present the UML design for the implementation and a discussion on an
implementation on PostgreSQL.

5.1 Architecture

To implement the self-tuning agent we have chosen a built-in agent-based database architecture. It is the one
that better fits in our approaches as we do not intend to directly change DBMS’s components functionalities,
only extend them.
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C=Cr-CH;
If C> 0, then
If C> CC+ CD, then
Create proposed indexes;
Drop indexes that were proposed
to be dropped;
Execute the query;
Else
If Chc + CC < Crthen
Create proposed indexes;
Execute the query;
Reset CP;
Exit;
End if;

If Chp + CD < Cgthen
Drop proposed indexes;
Execute the query;
Reset CP;
Exit;

End if;

Execute the query;
Cr= Cp+ (Cg- CHo);
Cr= Cp - (Cg- CHD);

If |Cr| >= |CC| and Cp > 0 then
Create index;
Reset CP;

End if;

If |Cp| >= |CD| and Cr < O then
Drop index;
Reset Cr
End if;
End if;
Else
Cr = Cost of execution if the indexes
used in the real configuration
wer e dropped;

Cp=Cpr+ Cri;
Endif;

Figure 6: Engine of costs evaluation for updates/exclusions

10
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Figure 7: The self-tuning agent layer’s functionalities

The layered agent presented in Section 2 can be used as we can attribute all the self-tuning process stages
described in Section 3.2 to agent’s layers, as shown in Figure 7.

The Sensory layer will be responsible for Information Retrieval. The Reasoning layer does the Situation
Evaluation and Possible Alterations Enumeration. This layer will be the one where the greater processing
activities will take place. The Action layer will receive an intentions plan from the Reasoning layer, and will
transform it into attitudes to be carried through and will also pass these to the Translation layer, which will
transform the attitudes into commands that the DBMS’s components can understand. These are passed to
the layer Mobility that executes them, finishing with the Alterations Accomplishment phase. The Believe
and Collaboration, Translation and Mobility layers provide the functionalities of learning and communication
between components, respectively.

The global self-tuning system can be implemented by the use of Collaboration, Translation and Mobility
layers, what allows better tuning results. The architecture presented in Figure 8 presents this cooperation.
Although systems with some agents cooperating between themselves bring a series of advantages, they also
bring some implementation challenges.

A self-adjust multiple-agents systems allows that the existing studies on self-tuning are implemented
separately; each developed engine is transformed into an agent. Thus, the existing studies would have part
of the four inferior layers ready, as well as the stream of data that has broken of Sensory in route to Mobility,
until the Action layer. It would be enough that, for the integration of the components, the interaction policy
between the agents were defined. These would be implemented in the three upper layers and the stream of
information would be from the upper layer to the bottom one.

These definitions are not trivial. First, interfaces for the communication between agents must be defined.
Then, each agent will have to know which agent must be notified on its actions, intentions or observations
(”think globally, fix locally”). Moreover, in a system with some agents, each can need to keep Believes on
itself, but, also, on the states and actions of the other agents [4].

In [20] an implementation of an agent-based database is briefly described. The agents were placed in
Minibase [24], a public domain database management system, in a built-in architecture. They were used to
act in parallel join load balancing in a ARCOJP Architecture [14] implementation.

Agent Layers

The Self-Tuning Agent Based on Differences that implements the engine described in the Section 4 fits very
well in the layered agent architecture. The main functions of each layer are listed below:

e Sensory: Measures carried through in the DBMS, such as, assembled queries submitted and execution
plans, with its costs and used indexes;

e Believe: It controls the storage and backup of Cp;
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Figure 8: DBMS’s Self-Tuning Architecture with cooperation between agents

Reasoning: It verifies the necessity of index creation (it verifies existing indexes). Generation of
possible alterations based on indexes suggestion. Plan of action: immediate/posterior indexes cre-
ation/destruction with statistics update, or continuation of the DBMS operations without any inter-
ference;

Action: It transforms the decisions taken from Reasoning into a series of logical commands. For
example: for a request of costs for one given hypothetical configuration, it detects the need of activation
of the hypothetical index and submission of the query to the optimizer with the new active hypothetical
configuration;

Collaboration: Possibilities of collaboration with other agents are analyzed. Responses to other agents
requests are evaluated;

Translation: It translates commands for other agents languages and for DBMS’s calls for components
procedures;

Mobility: Communication by sending messages between agents in different places and calls for DBMS’s
components procedures;

We can state that the information used in the evaluation processes of the previous operations, nominated

values of Cp, are stored as acquired knowledge. The Believes layer will do its manipulation.

A possible objection here would be the eventual need of extra storage space to contain information of all

the indexes tested for the system. Some statistics will remain much time without being brought up to date.
In case there is a physical limitation for the storage space, the least recently information could be discarded.

Life Cycle

As long as our agent is pro-active for indexes creation (whenever the agent believes that the existence
of determined index is good/harmful for the system’s performance, it creates/destroys the index at the
right moment), when a request of indexes creation/destruction is received, the agent already evaluated the
possibility of indexes creation/destruction indexes for the attributes in question. There are three possible
responses:

e After having analyzed the queries and updates submitted to the system, the agent considers that either
no index should be created for a creation request, or no index should be destroyed, for a destruction
request;

12
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Figure 9: The cycle of a query/update operation

e The indexes creation or destruction is already determined and will happen at an adequate moment -
for creation or destruction requests, respectively;

e Indexes already had been created/destructed, taking care of the request before it was done;

As a complement, aiming at a better understanding of the query or update operation cycle in a DBMS in
the presence of the self-tuning agent, the life cycle is illustrated in Figure 9. There are some blocks separated
and identified by the most important layers in each block. When an operation is submitted to the DBMS and
its execution plan is generated (according to real configuration), the agent acts with the DBMS’s operations
before code generation. Statistics are accessed by Believes. Reasoning can decide that the real plan is
the best one to be executed and, then, makes with that Mobility initiates the code generation operation
(breaking the cycle). In case that Reasoning needs more information on execution plans of a hypothetical
configuration, Mobility will request that such plan is assembled. In this case, Sensory will get information
on the generated plan, closing the cycle. Believes will access statistics on this hypothetical configuration.
Reasoning will have, now, new information to use in its decision-making. This cycle will happen again until
Reasoning decides what to do, which will be passed to the upper layers until Mobility. This will interact
with the DBMS’s components, executing the definitive actions and going off the code generation.

But in the implementation considered in the next section, there is no need for cooperation between agents.
So, Collaboration, Translation and Mobility are not present.

5.2 Agent Design

In this section, we present the UML design of the Self-Tuning Agent Based on Differences described pre-
viously. The design follows the ideas in [15]. As we have seen in Section 5, the Collaboration, Translation
and Mobility layers in the agent’s architecture deal primarily with the interaction with other agents possibly
present in the database system. In our design, we focus on the implementation of the local self-tuning model
shown in Section 3.3. Therefore, only the Sensory, Belief, Reasoning and Action layers are present. Below,
we give a detailed description of the implementation rationale of each of these layers.

Sensory Layer

The Sensory layer is responsible for capturing the necessary information from the agent’s environment.
Figure 10 shows the classes present in this layer. The classes SQLInformation and BeliefFacade are not
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actually part of the Sensory layer, but are shown in the diagram to ease understanding.

SensoryFacade
0..n
<<Thread>> BeliefFacade
ASensor
1
‘ 0..n
SQLSensor melief
‘ 1
v

SQLInformation

Figure 10: The Sensory layer classes

The class SQLInformation is responsible for the integration of the agent with the system’s optimizer. We
use this class to encapsulate the information retrieved from the DBMS. In this fashion, we can adapt the
agent to distinct DBMS implementations and concentrate the changes in a few adapter classes. The code
of the optimizer must be altered to inform to a SQLInformation instance the access plan used in the query
along with its cost. As we will see in Section 5.2, it must also be altered to give the optimizer the ability to
generate an access plan with a hypothetical configuration.

SQLSensor extends the abstract class ASensor. The existence of ASensor allows easy extension of the
Sensory layer to include new sensors, if necessary. For example, we could include a sensor to monitor the
amount of system resources used, such as CPU and memory. In the event of excessive resource consumption,
the Reasoning layer could make a decision to stop the agent. Another useful sensoring ability that could be
included is the measurement of the amount of free disk space in the system. This information can be used
to avoid index creations that would compromise disk availability.

One important decision regarding the SQLSensor class is how to make it sensible to changes in the DBMS
internal variables. There are two basic options to consider. In the first one, the sensors continually poll the
DBMS’s internal structures and check for changes. This can create considerable computational overhead if
the polling interval is short. The second option is to instrument the DBMS to notify the sensors with fresh
information. We belive this option brings advantages over the polling alternative because it is allows greater
performance and more flexibility in the integration of the agent threads with the DBMS process model.

All the layers use the Facade design pattern [35]. This pattern creates a unified point of access to the main
functionalities offered by each layer. In the Sensory layer, this is implemented through the SensoryFacade
class. All the interaction with the Beliefs layer is done through the BeliefFacade. The use of the Facade design
pattern thus decouples the layers, permitting each layer’s implementation to occur with no dependency on
the internal details of other layers.

In figure 11, we can see a typical interaction among the classes described. When the DBMS processes a
new SQL statement, an instance of the SQLSensor class is notified. This implementation of this notification
mechanism depends on the inner workings of the database system. As we will discuss later in this section,
we have implemented this mechanism in the open-source DBMS PostgreSQL.

The SQLSensor instance records the query’s text, access plan and cost information in an SQLInformation
object. This object is given to the facade of the Beliefs layer, that then modifies the agent’s beliefs to take
the new information into consideration.
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Figure 11: A typical interaction in the Sensory layer

Beliefs Layer

The Beliefs layer is responsible for representing the agent’s knowledge about its environment and to store
significant statistics derived from this knowledge. The Beliefs layer is also responsible for notifying the
Reasoning layer about the availability of new information to be analyzed.

In Figure 12, we show the class model of the Beliefs layer. The class ReasoningFacade is not actually
part of the Beliefs layer, but is shown on the diagram to illustrate the points of contact of this layer with its
upper layer. The Observer and Subject classes are a generic implementation of the Observer design pattern
[35]. In this pattern, a subject may have any number of dependent observers. Changes made to subjects are
published to all of its observers, which are updated.

BeliefFacade ReasoningFacade
Observer
0..n
0..n
ABelief | Subject
SQLIndexBelief PreviousOperationsBelief

Figure 12: The Beliefs layer classes

The ABelief class hierarchy defines the types of believes that the Beliefs layer can represent. For the index
selection problem, we must be able to represent a SQL query with associated cost and index set information.
This is done by the SQLIndexBelief class. The PreviousOperationsBelief class offers a way to store and
query the value of Cp for each index considered in the differences heuristic (see Section 4). It also stores
other important information about the candidate indexes, such as their individual creation/destruction cost.

The BeliefFacade class offers a set of methods for believes management. Not only does it provide facilities
for updating believes, but also it permits that any Observer registers itself to be notified of believes changes.
The ReasoningFacade, in particular, observes all believes.
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The instances of the classes derived from ABelief represent the knowledge accumulated by the agent so
far. Every time an instance of ABelief changes (Subject), we notify the instance of ReasoningFacade of this
happening (Observer). This flow of information can be better understood by looking at Figure 13.

sglSensor : beliefFacade : belief : reasoningFacade :
SQLSensor BeliefFacade SQLIndexBelief ReasoningFacade

update(belief, sqlinfo)
update(newValue) ‘

notify( )

—

update(info)

|

|

|

|

1

|

| |

| | | |
| |

Figure 13: A typical interaction in the Beliefs layer

When the Sensor layer detects a new SQL statement submitted to the database, it forwards this infor-
mation, represented as an instance of SQLInformation, to the BeliefFacade. The BeliefFacade object will
search for the appropriate belief that represents the current SQL query submitted to the database. This
is an instance of SQLIndexBelief. The belief will be updated with the value of the SQLInformation object
and will, therefore, contain the most recent information sensored. This update will trigger a notification of
the ReasoningFacade. On the Reasoning layer, the new SQL statement, with associated cost and index set
information, will be analyzed and index creations or destructions will be decided.

Reasoning Layer

The Reasoning layer is responsible for deciding how the agent will interact with its environment in order
to achieve its goals. In our design, this layer has weak agency characteristics [33]. We do not create an
inferencing mechanism for the agent to derive its next steps. Instead, we systematically apply a set of
heuristics specific to the index selection problem.

To better understand this idea, let us focus our attention in Figure 14, which illustrates the layer’s class
model. The APlan class hierarchy represents the heuristics that can be applied to the believes of the agent.

Its first subclass, CandidateIndexesGeneratorPlan, represents an appropriate hypothetical index genera-
tion heuristic. This kind of heuristic has been sufficiently discussed in the literature (we refer the reader to
Section 3.1 for an indication of some related work). Basically, when a new SQL statement belief is received,
this heuristic will conduct an enumeration of possible hypothetical index configurations. Each possible
configuration must be costed by the optimizer for the given query.

In order to interact with the optimizer, the plan uses services available in the Action layer. The plan
instantiates an ActionPlan instance and forwards the action plan to the ActionFacade instance for execution.
The action plan contains a sequence of action requests. In this interaction, action requests are commands
to create/drop hypothetical indexes and optimize the statement using the hypothetical configuration. The
appropriate cost information is directly returned from the call to ActionFacade. After a number of hypo-
thetical index configurations have been tested, the candidate indexes generator heuristic will select a given
best configuration. This best configuration will be stored in the Belief layer through the BeliefFacade.

This is an example of an information flow from the upper layers of the agent down to lower layers of the
agent. The cost information returned from the Action layer to the Reasoning layer will be used to prune
hypothetical index configurations that do not represent performance gain. The Reasoning layer will then
select an index configuration to be stored in the Belief layer. In the literature, the most usually implemented
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Figure 14: The Reasoning layer classes

information flow is from the Sensory layer to the upper layers of the agent. In our work, we not only
implement this kind of information flow, but also an information flow in the opposite direction.

The storage of this hypothetical configuration in the Belief layer will trigger the plan represented by
the class DifferencesHeuristicEvaluatorPlan. This plan is responsible for the evaluation of the differences
model shown in Section 4. In case there is a need to create or drop indexes, the appropriate service will be
requested by instantiating an action plan. So, once again, the information flows from the lower layers of the
agent to its upper layers.

So, as we can notice, the APlan class hierarchy permits that we easily code new heuristics for the
evaluation of candidate indexes once the agent is integrated with a real DBMS. This extensibility is very
important to permit making investigations on the performance and quality trade-offs involved on using
different heuristics for index enumeration and selection.

In Figure 15, we can see an interaction that causes index enumeration. First, a belief with information
from the last executed SQL statement in the DBMS is updated in the Beliefs layer. As we discussed in the
previous subsection, this will trigger the Subject/Observer mechanism, notifying the ReasoningFacade.

The ReasoningFacade will try to select all the plans that have some interest in this belief. We achieve
this through the use of the Chain of Responsibility design pattern [35]. This design pattern decouples the
belief update from the plans that will actually process the update.

In the case of the SQL statement belief, only the CandidateIndexesGeneratorPlan instance will evaluate
itself, causing hypothetical index enumeration and further optimizer interaction through the use of an Action-
Plan instance. When a best hypothetical configuration is found, we will update the PreviousOperationsBelief
instance to reflect this new information.

This will, in turn, trigger a new cycle of plan evaluation on the Reasoning layer. This time, only the
DifferencesHeuristicEvaluatorPlan instance will evaluate itself. If any index should be actually created or
destroyed, an action plan will be instantiated and given to the Action layer.

Action Layer

The Action layer is responsible for the execution of the decisions made in the Reasoning layer. These
decisions are the results of plan interpretation and are represented in the Action layer through intentions.
There are two main types of intentions: collaboration intentions and reaction intentions. In our design, only
reaction intentions are employed, because we do not yet interact with other self-tuning agents. Figure 16
shows the classes involved.

The Alntention class hierarchy is used to implement intentions. A ReactionIntention will be created
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Figure 15: A typical interaction in the Reasoning layer
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18




CLEI ELECTRONIC JOURNAL, VOLUME 6, NUMBER 1, PAPER 6, DECEMBER 2003

by the ActionFacade every time an ActionPlan instance is received for processing. Action plans contain a
sequence of AActionFactory objects. In the AActionFactory hierarchy we apply the Abstract Factory design
pattern [35]. This allows us to create actions dynamically when the intention attempts to execute the action
plan.

The AAction class hierarchy represents the actions that can be created by an action plan. These actions
are concrete executions of interactions with the agent’s environment. In our case, actions are responsible for
the integration of the agent with DBMS components. Each given DBMS component, in this context, is said
to be an effector of the action. The possible actions in our agent are:

e hypothetical and real index creations (CreateIndexAction class);
e hypothetical and real index destructions (DropIndexAction class);

e optimization of a SQL statement under the current hypothetical configuration defined in the DBMS
(OptimizeWithIndexConfigurationAction class);

To carry off an intention and its associated actions, we use the Command design pattern [35], that
encapsulates each action as an object. The intention is dynamically configured with action objects and the
intention’s execution is done by the execution of its component actions. To better grasp this concept, analyze
the interaction shown in Figure 17.

reaction :
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Il instantiates

addPlan(actionPlan) ‘

differencesHeuristic :
DifferencesHeuristicEvaluatorPlan

actionFacade :
ActionFacade

actionFactory :
CreatelndexFactory

actionPlan :
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o | | |
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[ =—
te
execute( ) ‘ L ag_create_index() ‘

Figure 17: A typical interaction in the Action layer

When the differences heuristic plan decides that a new index configuration should actually be materi-
alized, it passes an action plan to the ActionFacade. The ActionFacade then creates a ReactionIntention
instance and configures it with the given ActionPlan instance. We will dynamically create each action in
the actin plan and store these actions in the reaction intention.

Following, the reaction intention will be executed in a synchronous fashion. The execution of the intention
is actually the execution of each of its actions. The actions interface with DBMS components to carry out
the creation or destruction of indexes.

5.3 PostgreSQL Implementation Considerations

We have shown the design of all the layers that comprise the Self-Tuning Agent Based on Differences.
However, we have not shown how to assemble those layers when the DBMS is started. We can see the
necessary classes in Figure 18.
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We introduce a new Agent class that keeps references to each layer’s Facade. When the DBMS is started,
if the agent is to be activated, an instance of the IndexAgent derived class is created and it takes care of the
instantiation of the Facade classes. Each Facade class will create the necessary internal classes of each layer,
in a recursive fashion. The IndexAgent instance will pass to the Facade instances configuration information
in order to create the correct believes and plans for the agent.

SensoryFacade BeliefFacade ReasoningFacade ActionFacade CollabFacade

1 1 1 1 1

Agent

IndexAgent

Figure 18: The Agent class

It is important to emphasize that, even though the agent is created in the DBMS’s execution context, is
not a module of the DBMS. The DBMS does not need the agent to carry out its tasks and the agent can
be activated or deactivated causing no harm to DBMS functionality. The agent’s goal is to improve DBMS
performance through the tuning of the indexes used by the queries submitted.

The design we have shown can be used to integrate the agent with any standard relational DBMS. To
achieve a full implementation, we must define the appropriate integration structures in the Sensory and
Action layers. That demands some knowledge of the DBMS’s internal structure. Presently, we are working
with the PostgreSQL open-source database system [36]. Our goal is to build a fully operational Self-Tuning
Agent Based on Differences for this DBMS and conduct detailed performance impact and index generation
quality studies.

PostgreSQL follows a client-server model for communication. Each client is handled by a dedicated server
process. A master process is created by the system to control all dedicated server processes and also to handle
special tasks such as initialization, shutdown and checkpoints. It is important to integrate the agent with the
system respecting this process model. The agent should be run as an independent process and comunicate,
for example via message passing, with all the other processes in the system to obtain information about the
SQL statements processed by the database system.

Another important point is that the database does not have at present the capability to optimize a
query with a given hypothetical index configuration. Therefore, we plan to extended PostgreSQL to include
hypothetical index creation and destruction commands. We also plan to extend the system’s optimizer to
permit the planning of a SQL statement using hypothetical indexes [26].

6 Conclusions

In this work we have defined the stages of a self-tuning process and we have showed how to use an intelligent
software agent to accomplish it. We apply this agent in the DBMS’s context and show the need of some
cooperative agents. We also define precisely a DBMS’s self-tuning architecture. The works described in
Section 2 represent a small part of the operations to be carried through for each indexes self-tuning agent
defined in Section 4. It can be observed, therefore, that they are not properly self-tuning engines, but, tools
that help the database administrator to decide upon tuning the system.

We define the structure of an indexes self-tuning agent in accordance to the architecture proposed.
An engine that enable the automatic indexes creation/destruction, from the evaluation of the indexes cre-
ation/destruction costs and the benefits (or not) of the indexes presence is presented. In this process the
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indexes creation (destruction) costs that do not exist (and also for the existing ones) in the DBMS are
considered.

As main contributions we can mention the idea to use an agent-based database architecture implement
the self-tuning process and the proposal of a generic architecture, validated by a detailed case study. We
have also presented an object-oriented design of the index tuning agent that indicates the feasibility of our
implementation using a real DBMS. As future works there are some possibilities already being investigated.
It is interesting to study communication interface between self-tuning agents their cooperation policy. Also
we intend to implement this architecture as it was done in [20] and be able to make a detailed performance
study, comparing them with the possibilities offered by the commercial DBMSs.
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