CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 1

Automatic ObjectPascal Code Generation from Catalysis

Specifications
Jodo LuisC de Mor aes Antonio F do Prado
moraes.uol @uol.com.br prado@dc.ufscar.br
Universdade Federal de Sdo Carlos— UFSCar,

Departamento de Computacéo — DC,
S&o0 Carlos— SP, Brasil, CEP 13565-905

ABSTRACT

This paper presents a Component-based Framework Development Process, of the
Cadiology Domain. The Framework, caled FrameCardio, was developed in 4 deps 1-
Problem Domain Definition, 2-Components Specifications, 3Components Internal Design
and 4-Components Implementation. In the firs sep the framework requirements were
identified, based on experiences in the development of a cardiology system with 320 classes.
The main models specified in this step are the Use Cases, Actions and Collaborations Models.
In the Component Specification step component externd behaviors were defined with their
respongbilities, operations and interfaces The man models are the Types Modd, that
decribes an object externa behavior, regardiess of implementation decisons, and the
Component Interactions that details the behavior of each case used in the Sequence Diagrams.
Right after, in the third dep, the Specified Components are refined, consdering the
implementation technologies. Among the modes of this sep, the components Classes
Diagram, Components and the Component Packages stand out. The modding was supported
by a CASE todl. Findly, in the Components Implementation step the components code was
generated in the ObjectPascal language, usng a Transformation System.

FrameCardio was dructured in layers and organized in components packages,
avalable in the CASE tool, to be reused by the applications. In the same way as in the
development of FrameCardio, the Trandormation Sysem is used to generate the
ObjectPascal code of the applications. A Cardiology domain Application is presented to show
Framework components reuse.

Key words: Trandormation System, Framework, Catayss, Component-Based
Development.

1 INTRODUCTION

The reuse is an essntid principle in Software Engineering to assure the reduction of
efforts and cods in the Software Development and code redundancy. Different Software
Development Processes have been researched to improve the software production. Researches
have been exploring different technologies, including the use of CASE tools (Computer-
Aided Software Engineering), frameworks, Software Transformation System and object-
oriented programming languages, to obtain high quality software with affordable cost.

Aiming to improve the Software Development Processes, this paper presents a
Component-Based Framework Development, accomplished in four steps - development for
reuse and deveopment with reuse. The firg three seps, responsble for modding the
framework, are accomplished supported by a CASE tool, and correspond to the three levels of
the Component-Based Development Catadysis Method [1]. The fourth step is responsible for
the Components Implementation in ObjectPascal language [2], and it is supported by a
Software Transformation System, caled Draco-PUC [3, 4]. The framework components can
be reused (deveopment for reuse) in the Cadiology doman gpplications fadiliteting the
modeling, reducing the code redundancy and the costs of the maintenance.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 2

To fadlitate the applications development (development with reuse), reusng the
framework components, the CASE tool Rationd Rose 2001 [5] is dso used, for modeling,
and the Draco-PUC Transformetion System to generate ObjectPascal code. The code in the
ObjectPascal language is generated from the descriptions of the applications project
specifications. The class structure and the component interface codes are generated with thelr
aributes and methods prototypes. Based on the code, specified by the Software Engineer, for
the methods behavior, we can have a more complete implementation of the gpplications.

To support the development of the framework FrameCardio and the Applications,
different technologies are used:

a) The Component-Based Software Development Catalysi's Method,;

b) Draco-PUC Transformation System, for ObjectPasca code generation; and

c) The Object-oriented language, ObjectPascd, for implementing the framework
FrameCardio componentes agpplications, according to the Software Development Processes
proposed.

This paper is organized in the following way: Section 2 presents the main technologies
integrated in the development process, Section 3 presents the Component-Based framework
Development Process, for a Cardiology domain; Section 4 presents a Case Study, of an
gpplication reusng FrameCardio; and, findly, Section 5 presents a concluson of this research
project.

2 MAIN TECHNOLOGIES OF COMPONENT-BASED SOFTWARE
DEVELOPMENT PROCESSES
The Catalyss Method is presented, used in the Framework and Applications
modeling, in the CASE tool Rationa Rose 2001.
2.1 CatalysisMethod

Catalysis is a Component-Based Software Development that integrates techniques,
Patterns and Frameworks. Catalyss began in 1991 with of OMT and had influences of the
methods Fusion [6] and UML [7, 8]. It supports the characteristics of the oriented-object
technologies like Javay, CORBA and DCOM and its notation is based on Unified Modeling
Language (UML).

Catalysis is founded on three principles. Abstraction, Precison and Pluggable parts.
The Abstraction guides the Software Engineer in search of the essentid aspects of the
system, deferring detalls that are not relevant for the system context. The Precision ams to
reveal misgakes and inconsstencies in the modeling and the Pluggable parts seek the reuse of
components to build other components [9].

Software Development Processes in Catalysis follow the characteristics of the Spird
modd of the Software Enginesring [10], and is divided in three logicd levds Problem
Domain, Components Specification and Components I nternal Design, corresponding to the
traditiona activities of the software lifecyde Planning, Specification, Design and
Implementation, that are executed in an incrementa and evolutionary way, resulting in the
generation of anew verson of a prototype to each accomplished cycle.

To facilitate the modding, according to Catadyss, the CASE tool used is Rationd Rose
2001.

2.2 Draco-PUC Transformation System

In the Draco-PUC Trandformation System, a domain is composed of three parts,
Language, Prettyprinter and Transformers, according to Figure 1. The language is defined
through its grammar and its parser, that andyze any program of the domain, and generates its
internal representation in Draco-PUC. This internd representation, named Draco Abgtract
Sintaxe Tree (DAST), is used to goply the transformation components to generate a new
DAST in the same or in another domain. The prettyprinter is responsble for showing the

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 3

DAST, in the textud form, oriented by the doman language syntax. The trandformers are
transformation components packages that act in a DAST, to generate a new DAST, according
to Figure 1.

DOMAIN

L anguage
Parser

Pretty-Printer DAST

(Unparser)

Transform

Figure 1: Partsof a domain in Draco-PUC Transformation System.

The Draco-PUC Trandformation System was used as a main mechanism for the
code generation of FrameCardio and their agpplications. To support the code generation two
domains have been built: MDL (Modding Domain Language) and ObjectPascal. The UML
specifications, modeded in the CASE tool, according to Caadyss, are sored in a textud
descriptions file. Based on these textud descriptions language, the MDL modeling domain has
been built. To generate the ObjectPasca code from MDL descriptions, the ObjectPascal
domain has dso been built. The transformations that generate code, are based on the
grammars of these both domains, MDL and ObjectPascal, and are partiadly presented in
Figure 2.

MDL ObjectPascal
class Object : 'CLASS' STRI classAttributes; | compilation_file : program_file
classAttributes: quidu .nl stereotype | unit_file
| quid classAttributes_Attr ; | library_file
classAttributes Attr : (documentation)? | object_form
(stereotype)? (superClasses)? _ | package_file ;
(used_nodes)? package file: 'PACKAGE' .sp IDENTIFIER ;'
superClasses : 'superclasses' .nl requires_clause contains_clause
inheritance_relationship_list*;) ;
inheritance_relationship_list: ‘(list .sp requires clause: /* empty */
'inheritance_relationship_list’ | 'REQUIRES' .sp

requires_units_list ';" ;
unit_file : unit_heading interface_part?
implementation_part?
initialization_part? '.

inheritance_Relationship*')" ;
inheritance_Relationship : ‘(object' .sp
Inheritance_Relationship' .nl
attributes? .nl quid .nl
stereotype? .nl label? .nl

supplier .nl quidu? *)";
used nodes. ‘used_nodes' .sp
uses_relationship_list;

unit_heading : 'UNIT' IDENTIFIER ';'

IDENTIFIER : [A-Za-z_][A-Za-z_0-9]*:

Figure2: Grammar MDL e ObjectPascal

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

2.3 ObjectPascal Language

ObjectPascal is the Ddphi enviroment Component-Based development language
[11]. The Visual Component Library (VCL) [12] is a hierarchy of classes, written in
ObjectPascal, that supports the applications development through the reuse of components
and Object Inspector, using the latter for inspection and definition of objects.

Figure 3 illugrates the main screens of Dephi, where the windows with Tool Bar,
Components Page, Object Inspector and Form Designer and its Source Code stand out.

[Delphi 6 - Project1
| File Edit Search Wiew

Weck Run Component Database Tools Wing

Components Paletes

=Lt

ﬂ-

DS @

Appointrent I Data dug

ata Contrnlxi dbEr:l:uressi DataSnan EBDE LI.L

|"|||ﬁ'u

|Falze

| AutoSize
!.-’-‘-.II shown

interface

IE|F .
[l SQL gni

~=10] x|
= o=

Sour ce Code

uses
Windows, Messages, SysUtils,
Dialogs:
= -
L o
| 411 Modfied |Insett | ¥

Figure 3. Delphi Enviroment.

3 DEVELOPMENT OF FRAME CARDIO
FrameCardio was developed (development for reuse) in four steps. Defining
Problem Domain, Specifying Components, Designing Components and Implementing

Components, according to Figure 4.

D
= [Catalysis
*'Method
.,T'l
A
()
Requirements Define Abstraction Level:
— Problem F—» .
Domain Interations Domain/
Model Business
i P '
~— c Spemfyt e Component
CASE | omponents Type Specification
—| — Rational = [— _r_Mom__.____________
Rose \ J Components
Design Model
¥ N > Component
CASE | Components ObjectPascal |mplementation
| Ratomalgy] (T&x & [language
Rose I Components
Implemented in
.y ’n ___,| !mplement |objectpascal
) Components
Rational =
SE
Rose I
[n'l Imglementation
4 usig
Draco-PUC Trahsformation
\ / \ / \ / Transformation System

Figure 4. FrameCardio Development Process.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 5

It begins with the common requirements of the Cardiology domain, to build
components to be reused by the applications of this doman. The horizontd lines (blue)
separate the steps of the development process, according to the levels Abstraction of the
Catdyss Method: Problem Domain, Components Specification, Components Internal
Design and Components Implementation usng Transformations, shown to the right of
Figure 4.

3.1 Define Problem Domain

In the Defining Problem Doman gep the Problem Doman terminology, the
business process understanding, the actors roles and the collaborations to specify the behavior
of objects group of the cardiology doman have been defined. The man interactions models
used in this step were the Use Cases, Actions and Collaborations. The identified requirements
are specified initidly by the Businesses Rules that date the Problem Domain understanding,
represented in a Collaboration Modd, including associations and use cases, reflecting the
exigent processes. Figure 5 illudrates a framework Collaborations Modd with the actors:
Doctor, Petient and Employee and the actions. Accomplish Appointment, Accomplish Exam,
Emit Decision and Accomplish Surgery.

Accomplish
Surgery

Accomplish
Exam

Doctor

Accomplish
Appointment

Patient Patient

Emit
Decision

Employee J

Figure5— Collaboration Model

Professonds and doctors of the cardiology area and a software system of the
Heart Ingtitute of Marilia (ICM - Ingtituto do Coracdo de Marilia-SP) were the main sources
for requirements identification. The ICM software was developed and implanted by one of the
authors that has been accomplishing its maintenance since 1997.

Mesetings, interviews, legacy systems studies and observations of the system use
sceneries have been used in the requirements identification. With the sysem in use, new
requirements came adong and, as time passed by, updatings have been made necessary to
follow the technology changes. All these experiences were important to know the Cardiology
domain, facilitating the Framework development.

Through the Collaboration Modd refinement, in search of a better understanding
of the framework functiondities, the main actions of the sysem are defined specifying the use
cases. The use cases represent the actors use sceneries.

Figure 6 illugtrates the Use Cases Model, obtained from the Collaborations Mode
refinement of Figure 5. Actions can be modified or added, as for ingtance, the use cases
regisgerPatient, registerDoctor, regiserAppointment and sendAppointment, identified <arting
from the Accomplish Appointment action.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 6

N
[

@ Q registerEmplayes

rfrom P ess oas)
registe rAppointment

send Appoi rme nt
fom Conse fom Corer B
extends: > extends s+ registerPatient
(fom Pessoge)

walidate Patient walidate Do tor

Pati ent
fom Peseoas) from Peszcag) =

Figura 6 — Use Case M odel

3.2 Specify Components
In the second step, Specifying Components, the components externd behaviors
were defined, with their respongbilities, operations and interfaces.
l:|[:| Businesz Services

&'I:i Surgerny e
=3 Appointment
~{H| Component &ppointment * Yj\
..... @ Type of Model “TPatiert> e <TDactar:
- < TActivitg: realize
F : 1 1.n 1.n
- <TCid» \-ﬁx <T) intrm et hakiid o <TCid>»
#-E «<TAppaintmenty [<T4pp SppAINtme 0.n i
H-E «Tagreement: f_‘fg DMJ
B <TEmployees <TAgreement > ; 1'3--” <TProc edure >
#-B «TDoctars k 0.1
#-E <TPatient ER‘NE“H{TM' - }'3'- Wi
#-E <TProcedures LA
Er] <TUszer:

Figure7 —Types M odel

The main modd is the Types Modd, that describes the externa behavior of an
object, regardless of the implementation decisons. Figure 7 illustrares the Modd Types
obtained from the Use Cases Modd refinement. The notation < > indicates the types that can
be reused by FrameCardio applications.

The types are rdated through associations, aggregations or inheritance, with the
respective cardindity, that dates the minimum and maximum occurrences of participant
objects of a relationship. Another mode specified in this step is the Interaction Modd,
represented in Sequence Diagrams witch detail the Use Cases behavior.

3.3 Design Components
Then, in the Design Components gtep, the Components Specified, in the Types
Modds and Sequence Diagram, are refined, consdering the implementation technologies.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 7

The Components Mode represents the components physical architecture, with
thar interfaces for connection and their dependences, specified from the Classes Modd
refined of the Types Modd. In this modd we have the components interfaces, represented by
little cirdes. An inteface gpecifies the sarvices accomplished by the component. A
component can accomplish severd interfaces, supplying a group of methods able to
implement the services specified in the interface.

The connection among the components, or between a component that has access
to the services of another component, occurs through the interface and is represented by a
dependence reationship. Figure 8 illustrastes a Components Diagram, diciting their
interfaces and associations. In this case the TAppointment component is connected with the
TPatient component through the IPatient interface.

[DataBase
Interface Business DataBase
Sermvices

C o

¢ ==FrameCardio==
FrameCardio Q:E?‘:g <TPatient> =
... = %

IPatie

-] |
==FrameCardiox= i i
L . Py ==FrameCardio== ==FrarmeCardio=>=
% <TFormAppointment > . ;“O <TAppointment - _|_ ey <TFCDataBase>

IAppoint

| ent |
| e S ==FramaeCardio=>= |__l_ —i - |
| Oé_% <TDoctor>] |
| |

IDocto

\ W
==Delphi== == Delphi== —— Z=Oelphi==
Dd pl I <TForm> % <TCueny> g_ e % <TDataBase>

Figura 8: Components M oddl —Appointment Package.

To facilitate the reuse of the 320 components of FrameCardio, they were
organized in a Packages Modd according to Figure 9. The packages were didtributed in the
folowing layers User Services, Business Services and Data Services.

The firg layer, User Services, provides component for development of graphic
and visud interfaces. The second layer, Business Services, provides components of the
cadiology ares, in three packages. Appointment, Surgery and Decision. These packages are
reused by different Cardiology domain agpplications. The third layer, Data Services, provides
access components to relationa databases, that are used by the business rules.

Other available packages, as the one of Delphi components, can be reused, as the
Modd of Figure 9 shows.

The three-tier architecture makes the components reuse possible, increases the
independence and facilitates the agpplications portability, that can be written in different
languages, to access different databases managers and to use the same businessrules.

This organization in tiers turns the sysem more flexible to support the
technologica changes without damaging its sructure, increasing itslife cycle.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 8

Business Services Data Services

User Services i
— |
I
I

Dredision
(from Business Servoes

- 4/—|$ \‘\—I

I
Irterface | SUrgEry | dbFrameCardo
(from User Service } (from Business Serdoes } (from Daa Services
| |
i -
]
Appaintnent

(from Business Servoes

I
I
|
*—éd hi y

(from Business Servoes

Figure9: Framework FrameCardio - Three-tier Architecture.

3.4 Implement Components

The components are implemented based on their Internd Desgns. The Draco-
PUC Transformation Systems was used to generate ObjectPascal Code, from the components
design MDL descriptions.

Figure 10 shows the Transform ‘Classes ModeloLogic’, that recognizes the
specification of a class in MDL, in the control point LHS and generates the correspondent
ObjectPascal code, according to the subgtitution pattern specified in the control point RHS.

TRANSFORM Classes ModeloLogic | RHS: {{dast ObjectPascal
LHS:{{dast MDL uses Windows, Messages, SysUtils, Classes, DB,
Dialogs, DBTables;
| type v Unit Declaration
(object Class[[STRI clasd] quid [[STRI [[IDENTIFIER classType]] = class(TQuery)
nrquid]] [[not_field_definition* ListAttributes]]
private A Class Attributes
public
oper ations ([[operations* methodd] [[not_method_definition* ListM ethods]]
end;}} Method Declaration 4
class_attributes ([[classAttribute* RHS: {{dast delphi.unit_file;umt name
pttributesClasd])) unit [[IDENTIFIER nameClasq];
[[interface part DeclaracaoUnit]]
} implementation
MW [e[ri]r;}p;_decl_sect* ListBodyM ethods]]

Figura 10: MdIToDephi Transform
Figure 11 illugrates, to the left, the TAppointment Class MDL specification, and
to the right, the correspondent ObjectPascal code generated. In this case, the specification
object Class “TAppointment” created Type TAppointment, that implements a derived class of
the TQuery class of Delphi. The specification object Operation InsertAppointment created the
procedure FClnsertAppointment. The specifications object ClassAttribute 1dAppointment and

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 9

DtAppointment crested the attributes FIdAppointment, of the Integer type and
FDtAppointment of the TDateTime type. The libraries of classes Windows, Messages and
others are added according to the implementation needs.

MDL Specification ObjectPascal Code Generated
(object Class "< TAppointment>" unit UnitAppointment;
quid "3C52D05602F 7" interface
operations (list Operations uses Windows, Messages, SysUtils,

(object Operation "Insert Appointment™ Clases, Didogs, DB, DBTables,
..... UnitDoctor, UnitPatient;

class attributes (list class attribute list Type
(object ClassAttribute "l dAppointment” TAppointment = clasy(TQuery)
type "Integer) FIdAppointment : Integer;
(object ClassAttribute "DtAppointment” FDtAppointment : TDa€eTime;
type "Daé’) procedure FCInsertAppointment;

Figure 11: ObjectPascal Code Generated, from MDL specifications

A Figure 12 illugtrates a generated code of a component with their interfaces.
[#: Delphi 6 - Project1

‘ File Edit Search Wiew Project Run Component Dakabase Tools Window Help “Im
FrameCard Appointment I Standardl I:Dnsultal .-“-‘-.l:lditiunall 'W'ir132| Susteml Data .-“-‘-.ccessl Crat

L f@Ee AN D

Package - Appoi m A Unitsppaintment |

FT:E_ [."3 Ap (ﬂma* unit Unitippointment;
Carnpile fdd et interface
Flas uses lindows, Messages, IysUtils,

P : t
E[:I Cantaing - mi : S 5
@ UnitActviti Ifupulntrnent = plas=s [TOusry]
rivate

----- @ nitdgreement. pas

Gejeerated FIdippointment : integer:
FIdhoctor : integer:

FIdPatient : integer;

Fhoctor @ TDoctor:

FPatient : TPatient:

FDhtippointment : ThateTime:

] Unitlser.pas | FWalue : Currency:

Figure 12 —TAppointment Componén't _implemented in ObjectPascal

3.5 Framework LifeCicle

The Software Development Processes presented follows the characteristics of the
Spird modd of software development, in which the Software Engineer can return to the
previous steps to refine the specified models and to obtain new Components Implementation.
Next, a Case Study of the cardiology domain will be presented, reusng the FrameCardio
components.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 10

4 CASE STUDY

It is about a Medica Service System to the Patients in the Cardiology Clinic. The
patient is assgted in the reception of the Clinic by an employee and led to the cardiologist's
room. The agppointment is accomplished and the results are registered in the database. The
Doctor can verify if the Patient had dready been registered in the sysem and update his
informetion.

A presentation of each step of the development of this application is proceeded:
Mode Application, | mplement Application and Execute Application.

4.1 Model Application

Initidly, the Software Engineer, in the CASE tool, modes the application
according to the fird leved of Cadyds. The gpplication requirements are specified,
concerning about their busness rules. Figure 13 illudtrates the main gpplication use cases,
with an abbreviation description, their entrances and exits.

Nr | Desciption Use Case Entrance Exits

01 | Doctor accomplishes Appointment accomplishAppoint | InfoApp MsgO1
02 | Doctor verifies Appointments generateA ppoint InfoGenerateApp Msg02
03 | Employee registers Doctor registerDoctor InfoDoctor Msg03
04 | Employee regigters Patient registerPatient InfoPetient Msg04

Figure 13: Use Cases- Application
The use cases are modeled, in Use Cases Diagrams that show the actors
interacting with the sysem. Figure 14 illudraes, for ingance, the doctor actor interacting to
accomplish an appointment. In this leve of the problem, the actors relationships with the use
cases are Suitable sparing details that are not relevant for the system context.

Infodpp
™, Mg 1 =gccomplish&ppoint =

om Deck by
from Use Case View: u E

Figure 14: Use Case M odel accomplishAppoint
In this firs leve, the Types Modd of the goplication is Hill specified, concerning
about "what " the gpplication should do to asss ther requirements. It is a modd of high leve
of abdraction of the Problem Domain, where the essentid types of the application are
searched. Figure 15 illugtrates a Types Model in thislevel of the development.

TPerson

<TPatent: <TAppa Nim ent FERIEE
1 1o N 1

Figure 15: Modd Types
Then, according to the second level of Catdyss the models of the firs levd ae
refined, specifying the gpplication components. In this level the Software Engineer concerns
about the identification, behavior, and responshilities of the components. Figure 16 illustrates
the Application Modd, obtained from use cases refinement, with the man types imported

<TDoctors

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 11

from FrameCadio. In this case, Patient, Doctor and Appointment, import the types
<TPatient>, <TDoctor>, <TAppointment>, respectively from FrameCardio.
‘\<TPatient>

Patient Sl
o~ ~~\<TAppointment>
(FrameCadio)
/\/\\\ /// \\\A
-7 T Appointment
Doctor & <TDoctor>

Figure 16: Application Types Model
The Types Modd of the firs leve is refined in the Class Diagram Modd that
represents the gpplication components, without concerning about therr physical
implementations. Figure 17 illusrates the new Class Modd, where we can observe the new
types Doctor, Appointment and Patient, derived from the FrameCardio types.

TPerson
{fram Appointrment]
/ <TAppointment> \
<TDoctor= (fram é\ppnintrrjent) <TPatient>
{from Appaintment] |4 1 %gﬁﬂxpppput:inr:tr:neen;t.: lBt:ther 1.n 1 | tfrom Appointment)
? &'value Currency Zﬁ
Doctor Appointment Patient

0.1 1.n 1.n 0.1

Figura 17: Application Class Diagram
Findly, in the third level of Cadyss the Software Engineer Specifies the Internd
Dedgns of the Components, giving emphess to ther implementations and physicd
digributions. Figure 18 illugrates the Class Diagram of the Appointment component, obtained
from the Types Modd refinement, with its interface. In the |Appointment interface are the
methods prototypes, implemented in the TAppointment component. In this case the
validateAppointment, deleteAppointment, insertAppointment and selectAppointment methods.

<<FrameCardiozz= =TAppointment=
<TFomé&ppointment= l%Itieﬂappu:ui_n‘[rnem :Integer
{fram Interface) O %E{g?\upep?lgturﬂir;tc} Date

IA ppointrment
= . .
o SyalidateAppointment() \
¥deleteAppointrnent()

: Appaintrment
FormAppointment SinsertAppaint ment() {fram Application)
(from Interface) YselectAppointmenty)

Figure 18 — Component Appointment Class Diagram
Figure 19 illusrates the application Components Modd, where the components
reused from FrameCardio, are indicated by the placeholders "<” and ">". We can observe that
just the FormAppointment, Appointment and DSAppointment components, are specific of the
goplication <<Application>>. The others are from FrameCardio or from Delphi itsdf. The
stereotypes <<FrameCardio>> and <<Delphi>> illugtrate the Framework components.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 12

niedace Busskes | Database
ERprT R | Sepnoes
T . — - :
' = SEE \ Rplication
e A L S I = Femicaicn e
o i pgperiine . DSAppoiniment 1 o7 Dojeinimetit : T FcDataBased
I G IS e = e T Ty =
|- rﬂm E— TAppointment> }‘_ =T <TFCDataBases
_ ;;r:r‘r:;;::;‘mﬂb i - L = SR
[] | | -— i ; ; dhFramaCadin
L | Woctr LT T ermwetwae] |
| X L = FramuCandio
| | 1 e
| | I"ﬂ‘l;HTt e Fanalaie
| | :— <TPafiet>
T i e
| [T i “WDalphi
-:'-Ci'u_qpr-'.-:- y Dol ot -E-Eu‘gm:-:-_“_ [neipree
| T Iﬂ'!ulm J N ..:10;;;|“¢, T T ey T 2T Dalafnses
-:-'L.l,‘;l-‘..w
- wTiatat nrinke s

Figure 19: Application Component Moddl.

4.2 Implement Application

In this gep, the gpplication is implemented in a component-oriented language. In
this case, the application specifications, stored in a MDL file, are transformed, by Draco-
PUC, into the ObjectPascal language. The code is generated based on the Classes Modds of
the application components. Interface components, generate another file, with .DFM
extengon, containing the definitions of the graphic part of the interface.

Figure 20 illugrates, to the left, pat of an unitDM.pas, with the ObjectPascal
code, of the Appointment component of the gpplication and, to the right, the correspondent
Diagram that shows the reuse of the FrameCardio implemented components. The Patient and
Doctor components were connected with the Appointment component, demondrating the
Components “Plug-1ns’ principle of the Cataysis Method.

unit UnitDM;
interface

uses SysUtils, Classes, DB, =5
DBTables, FCDatabase, +
UnitDoctor, UnitPatient, + T

UnitAppointment; =] Appointment ‘E'
* Z-'.'}:-:ll:l.l.:.,“.tl:ll” E

(: DS Appaointment

=

ol

='+- -
w3 Patient Shncion

type ——
TDM = das(TDaaModule) | | Paient | —]
Patient: TPatient;
Doctor: TDoctor;

Appointment: T /A"
TAppointment; .

B o (e
TFCDatabase;

DSPeciente: TDataSource;

DSConaulta: TDataSource;

DSMedico: TDataSource;

Figure 20: ObjectPascal Code Generated

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 13

4.3 Execute Application

In this step, the Software Engineer imports the generated code, in the Delphi
enviroment, to execute it. In Delphi, the code is gathered in an gpplication project to facilitate
its management. The implementation in ObjectPascal, generated in the Implement System
dep, cannot be enough to assst dl the requirements, manly the non-funciona ones, related
with the interface, safety, vdidation of data and access to database. Thus, the Software
Engineer, usng the visud resources of Dephi, can complement the project with other
components that implement these requirements The code generated by Draco-PUC,
integrated to the code developed in Dephi, results in the implementation of the whole system.
With the whole system implemented, it can findly be executed to verify if it suits to the
specified requirements. In case of problems, or new requirements, the previous steps can be
refferred to for corrections or additions of new requirements and, again, re-implement the
system.

Figure 21 illudrates, to the left, an interface component generated and, to the
right, FrameCardio FCVadidateAppointment's method, being accessed by the IAppointment
Interface of the Appointment Component.

+[" FormaAppointment [=10 =]

Select Appaintrent |

Delete Appointment Yalidate Appointment
|d Appaintrett ldPa [tm| n

2 | DM. Appointment.FCIdAppointment
Id.s'-\ppointment| ldPatient ! |dD actar ! Dt ppaintrmert |Valuq'ﬂ = 3]"TO| nt(EdI tlT@(t) ;

L 2 2 2| it DM.Appointment.FCValidateAppoint
ment;

end;

procedure
TFormA ppointment.ValidateAppointment(
Sender: TObject);

Figure 21: Application Execution
5 CONCLUSION

This paper presented Component-Based Software Development Processes that
integrates different technologies, diciting the Catdyss Method and a Transformation System,
to develop a component framework of the Cardiology domain (FrameCardio). The man
contribution of this work is to propose an Component-Based Software Development
Processes, that integrates severd mechanisms, guiding the software engineer as much in the
development as in the reuse of components of a problem domain.

In the CASE tool, reusng the FrameCardio components, the Component-Based
Application Design is obtained. The descriptions of the MDL specifications, that represent the
design, are used to generate the code of the system in a Component-Based language. Draco-
PUC Transformation System automated great part of the ObjectPascal code generation, of the
framework and their gpplications.

Integrating an ewironment of visud programming, as Dephi, with the propose
Software Development Processes, was possible execute the application to vdidae the
specified requirements. In the find versdon it can be added, in the Ddphi environment,
components that treat the non-functiond requirements, that had not been treated in the
modding of the sysem. A cycle of life of the software, that generates archetypes, facilitates
the purification of the components, through successve refinements The use of software

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003 14

components reveds each time more important to speed and to facilitate the Software
Devel opment Processes.

Due to the capacity of Draco-PUC Trandormation System, of supporting different
modding domains and gpplication, other languages, different from Cadyss and
ObjectPascal, can be used in the proposed Software Development Processes. Although the
process has been inganced for the Cardiology Doman and its applications, the authors
believe that the steps of the presented processes and the integrated technologies to support it,
can be used for the devdopment of frameworks and applications of other domans of
goplications, particularly the amilars.

Software Development Processes proposed give one more step in the automation of
great pat of the Software Engineer tasks, which can contribute in the reduction of time and of
development cogts of an gpplication of the Cardiology Domain.

6 REFERENCES

[1] D’'SOUZA, D.; WILLS, A. Objects, Components and Frameworks with UML — The
Catalysis Approach. USA:Addison Wedey, 1998.

[2] BORLAND/INPRISE. Object Pascal Reference.

[3] LETE, JCS, FREITAS FG, SANTANNA M. Draco-PUC Matine A Tedhndogy Assarhly
far Doman Oneted Software Devdopmet. 3rd International Conference of Software Reuse
|EEE Computer Soddly Press In proossdings pp. 94-100. Rio de Jnaro. 1994.

[4 NHEGHBORS JM. The Draco goproech to Condruding Software from Reussble Componants
| EEE Transactions on Software Engineering. v.se- 10, n.5, pp.564-574, September, 1984.

[5] RATIONAL SOFTWARE CORPORATION.,
http://mww.rational .com/products/rose/prodinfo/index.jtmpl.

[6] COLEMAN, D. et d. Object-Oriented Development — The Fusion Method. Prentice
Hall, 1994.

[7] FOWLER, M. UML Destilled. Applying the Standard Object Modeling Language.
England:Addison Wedey, 1997.

[8] BOOCH, G. et a. The Unified Moddling Language — User Guide. USA: Addison
Wedey, 1999.

[9] FUKUDA, Ana Paula. Refinamento Automético de Sistemas Orientados a Objetos
Digtribuidos. Dissertacdo de Mestrado. UFSCar, 2000

[10] PRESSMAN, R. S. Engenharia de Software. Makron Books: S&o Paulo, 1995.

[11] BORLAND/INPRISE. Programming with Delphi 2001.

[12] BORLAND/INPRISE. Visual Component Library Reference.

