
1

Automatic ObjectPascal Code Generation from Catalysis
Specifications

João Luís C de Moraes
moraes.uol@uol.com.br

Antonio F do Prado
prado@dc.ufscar.br

Universidade Federal de São Carlos – UFSCar,
Departamento de Computação – DC,

São Carlos – SP, Brasil, CEP 13565-905

ABSTRACT
This paper presents a Component-based Framework Development Process, of the

Cardiology Domain. The Framework, called FrameCardio, was developed in 4 steps: 1-
Problem Domain Definition, 2-Components Specifications, 3-Components Internal Design
and 4-Components Implementation. In the first step the framework requirements were
identified, based on experiences in the development of a cardiology system with 320 classes.
The main models specified in this step are the Use Cases, Actions and Collaborations Models.
In the Component Specification step component external behaviors were defined with their
responsibilities, operations and interfaces. The main models are the Types Model, that
describes an object external behavior, regardless of implementation decisions, and the
Component Interactions that details the behavior of each case used in the Sequence Diagrams.
Right after, in the third step, the Specified Components are refined, considering the
implementation technologies. Among the models of this step, the components Classes
Diagram, Components and the Component Packages stand out. The modeling was supported
by a CASE tool. Finally, in the Components Implementation step the components code was
generated in the ObjectPascal language, using a Transformation System.

FrameCardio was structured in layers and organized in components packages,
available in the CASE tool, to be reused by the applications. In the same way as in the
development of FrameCardio, the Transformation System is used to generate the
ObjectPascal code of the applications. A Cardiology domain Application is presented to show
Framework components reuse.

Key words: Transformation System, Framework, Catalysis, Component-Based
Development.

1 INTRODUCTION
The reuse is an essential principle in Software Engineering to assure the reduction of

efforts and costs in the Software Development and code redundancy. Different Software
Development Processes have been researched to improve the software production. Researches
have been exploring different technologies, including the use of CASE tools (Computer-
Aided Software Engineering), frameworks, Software Transformation System and object-
oriented programming languages, to obtain high quality software with affordable cost.

Aiming to improve the Software Development Processes, this paper presents a
Component-Based Framework Development, accomplished in four steps - development for
reuse and development with reuse. The first three steps, responsible for modeling the
framework, are accomplished supported by a CASE tool, and correspond to the three levels of
the Component-Based Development Catalysis Method [1]. The fourth step is responsible for
the Components Implementation in ObjectPascal language [2], and it is supported by a
Software Transformation System, called Draco-PUC [3, 4]. The framework components can
be reused (development for reuse) in the Cardiology domain applications, facilitating the
modeling, reducing the code redundancy and the costs of the maintenance.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

2

To facilitate the applications development (development with reuse), reusing the
framework components, the CASE tool Rational Rose 2001 [5] is also used, for modeling,
and the Draco-PUC Transformation System to generate ObjectPascal code. The code in the
ObjectPascal language is generated from the descriptions of the applications project
specifications. The class structure and the component interface codes are generated with their
atributes and methods prototypes. Based on the code, specified by the Software Engineer, for
the methods behavior, we can have a more complete implementation of the applications.

To support the development of the framework FrameCardio and the Applications,
different technologies are used:

a) The Component-Based Software Development Catalysis Method;
b) Draco-PUC Transformation System, for ObjectPascal code generation; and
c) The Object-oriented language, ObjectPascal, for implementing the framework

FrameCardio componentes applications, according to the Software Development Processes
proposed.

This paper is organized in the following way: Section 2 presents the main technologies
integrated in the development process; Section 3 presents the Component-Based framework
Development Process, for a Cardiology domain; Section 4 presents a Case Study, of an
application reusing FrameCardio; and, finally, Section 5 presents a conclusion of this research
project.

2 MAIN TECHNOLOGIES OF COMPONENT-BASED SOFTWARE
DEVELOPMENT PROCESSES

The Catalysis Method is presented, used in the Framework and Applications
modeling, in the CASE tool Rational Rose 2001.
2.1 Catalysis Method

Catalysis is a Component-Based Software Development that integrates techniques,
Patterns and Frameworks. Catalysis began in 1991 with of OMT and had influences of the
methods Fusion [6] and UML [7, 8]. It supports the characteristics of the oriented-object
technologies like Java, CORBA and DCOM and its notation is based on Unified Modeling
Language (UML).

Catalysis is founded on three principles: Abstraction, Precision and Pluggable parts.
The Abstraction guides the Software Engineer in search of the essential aspects of the
system, deferring details that are not relevant for the system context. The Precision aims to
reveal mistakes and inconsistencies in the modeling and the Pluggable parts seek the reuse of
components to build other components [9].

Software Development Processes in Catalysis follow the characteristics of the Spiral
model of the Software Engineering [10], and is divided in three logical levels: Problem
Domain, Components Specification and Components Internal Design, corresponding to the
traditional activities of the software lifecycle: Planning, Specification, Design and
Implementation, that are executed in an incremental and evolutionary way, resulting in the
generation of a new version of a prototype to each accomplished cycle.

To facilitate the modeling, according to Catalysis, the CASE tool used is Rational Rose
2001.
2.2 Draco-PUC Transformation System

In the Draco-PUC Transformation System, a domain is composed of three parts,
Language, Prettyprinter and Transformers, according to Figure 1. The language is defined
through its grammar and its parser, that analyze any program of the domain, and generates its
internal representation in Draco-PUC. This internal representation, named Draco Abstract
Sintaxe Tree (DAST), is used to apply the transformation components to generate a new
DAST in the same or in another domain. The prettyprinter is responsible for showing the

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

3

DAST, in the textual form, oriented by the domain language syntax. The transformers are
transformation components packages that act in a DAST, to generate a new DAST, according
to Figure 1.

2

DAST

Source

Pretty
Printer

DAST

TransformParser

DOMAIN

Parser

DAST

(Unparser)

Transform

Pretty-Printer

Language

Figure 1: Parts of a domain in Draco-PUC Transformation System.

The Draco-PUC Transformation System was used as a main mechanism for the
code generation of FrameCardio and their applications. To support the code generation two
domains have been built: MDL (Modeling Domain Language) and ObjectPascal. The UML
specifications, modeled in the CASE tool, according to Catalysis, are stored in a textual
descriptions file. Based on these textual descriptions language, the MDL modeling domain has
been built. To generate the ObjectPascal code from MDL descriptions, the ObjectPascal
domain has also been built. The transformations that generate code, are based on the
grammars of these both domains, MDL and ObjectPascal, and are partially presented in
Figure 2.

MDL ObjectPascal
class_Object : 'CLASS' STRI classAttributes;
classAttributes : quidu .nl stereotype
 | quid classAttributes_Attr ;
classAttributes_Attr : (documentation)?
 (stereotype)? (superClasses)?
 (used_nodes)?
superClasses : 'superclasses' .nl
 inheritance_relationship_list*;
inheritance_relationship_list: '(list' .sp
 'inheritance_relationship_list'
 inheritance_Relationship* ')' ;
inheritance_Relationship : '(object' .sp
 Inheritance_Relationship' .nl
 attributes? .nl quid .nl
 stereotype? .nl label? .nl
 supplier .nl quidu? ')';
used_nodes: 'used_nodes' .sp
 uses_relationship_list;

.

compilation_file : program_file
 | unit_file
 | library_file
 | object_form
 | package_file ;
package_file : 'PACKAGE' .sp IDENTIFIER ';'
 requires_clause contains_clause
 ;
requires_clause : /* empty */
 | 'REQUIRES' .sp
 requires_units_list ';' ;
unit_file : unit_heading interface_part?
 implementation_part?
 initialization_part? '.
 ';
unit_heading : 'UNIT' IDENTIFIER ';'
 ;
IDENTIFIER : [A-Za-z_][A-Za-z_0-9]*;

.

Figure 2: Grammar MDL e ObjectPascal

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

4

2.3 ObjectPascal Language
ObjectPascal is the Delphi enviroment Component-Based development language

[11]. The Visual Component Library (VCL) [12] is a hierarchy of classes, written in
ObjectPascal, that supports the applications development through the reuse of components
and Object Inspector, using the latter for inspection and definition of objects.

Figure 3 illustrates the main screens of Delphi, where the windows with Tool Bar,
Components Page, Object Inspector and Form Designer and its Source Code stand out.

Figure 3: Delphi Enviroment.

3 DEVELOPMENT OF FRAME CARDIO
FrameCardio was developed (development for reuse) in four steps: Defining

Problem Domain, Specifying Components, Designing Components and Implementing
Components, according to Figure 4.

Define
Problem
Domain

Specify
Components

Design
Components

Implement
Components

Requirements

ObjectPascal
Language

CASE
Rational

Rose S E

Interations
Model

Type
Model

Components
Model

Components
Implemented in
ObjectPascal

Catalysis
Method

Abstraction Level:

Domain/
Business

Component
Specification

Component
Implementation

Implementation
using
Transformation

S E

S E

Draco-PUC
Transformation System

CASE
Rational

Rose

CASE
Rational

Rose

Figure 4: FrameCardio Development Process.

Form Designer

Object Inspetor
Source Code

Components Paletes Tool Bar

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

5

It begins with the common requirements of the Cardiology domain, to build
components to be reused by the applications of this domain. The horizontal lines (blue)
separate the steps of the development process, according to the levels Abstraction of the
Catalysis Method: Problem Domain, Components Specification, Components Internal
Design and Components Implementation using Transformations, shown to the right of
Figure 4.

3.1 Define Problem Domain
In the Defining Problem Domain step the Problem Domain terminology, the

business process understanding, the actors' roles and the collaborations to specify the behavior
of objects group of the cardiology domain have been defined. The main interactions models
used in this step were the Use Cases, Actions and Collaborations. The identified requirements
are specified initially by the Businesses Rules that state the Problem Domain understanding,
represented in a Collaboration Model, including associations and use cases, reflecting the
existent processes. Figure 5 illustrates a framework Collaborations Model with the actors:
Doctor, Patient and Employee and the actions: Accomplish Appointment, Accomplish Exam,
Emit Decision and Accomplish Surgery.

Accomplish
Surgery

Accomplish
Appointment

Accomplish
Exam

Emit
Decision

Doctor

Patient

Employee

Patient

Figure 5 – Collaboration Model

Professionals and doctors of the cardiology area and a software system of the

Heart Institute of Marília (ICM – Instituto do Coração de Marília-SP) were the main sources
for requirements identification. The ICM software was developed and implanted by one of the
authors that has been accomplishing its maintenance since 1997.

Meetings, interviews, legacy systems studies and observations of the system use
sceneries have been used in the requirements identification. With the system in use, new
requirements came along and, as time passed by, updatings have been made necessary to
follow the technology changes. All these experiences were important to know the Cardiology
domain, facilitating the Framework development.

Through the Collaboration Model refinement, in search of a better understanding
of the framework functionalities, the main actions of the system are defined specifying the use
cases. The use cases represent the actors' use sceneries.

Figure 6 illustrates the Use Cases Model, obtained from the Collaborations Model
refinement of Figure 5. Actions can be modified or added, as for instance, the use cases
registerPatient, registerDoctor, registerAppointment and sendAppointment, identified starting
from the Accomplish Appointment action.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

6

Figura 6 – Use Case Model

3.2 Specify Components
In the second step, Specifying Components, the components external behaviors

were defined, with their responsibilities, operations and interfaces.

Figure 7 – Types Model

The main model is the Types Model, that describes the external behavior of an
object, regardless of the implementation decisions. Figure 7 illustrares the Model Types
obtained from the Use Cases Model refinement. The notation < > indicates the types that can
be reused by FrameCardio applications.

The types are related through associations, aggregations or inheritance, with the
respective cardinality, that states the minimum and maximum occurrences of participant
objects of a relationship. Another model specified in this step is the Interaction Model,
represented in Sequence Diagrams witch detail the Use Cases behavior.

3.3 Design Components
Then, in the Design Components step, the Components Specified, in the Types

Models and Sequence Diagram, are refined, considering the implementation technologies.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

7

The Components Model represents the components physical architecture, with
their interfaces for connection and their dependences, specified from the Classes Model
refined of the Types Model. In this model we have the components interfaces, represented by
little circles. An interface specifies the services accomplished by the component. A
component can accomplish several interfaces, supplying a group of methods able to
implement the services specified in the interface.

The connection among the components, or between a component that has access
to the services of another component, occurs through the interface and is represented by a
dependence relationship. Figure 8 illustrastes a Components Diagram, eliciting their
interfaces and associations. In this case the TAppointment component is connected with the
TPatient component through the IPatient interface.

Figura 8: Components Model –Appointment Package.

To facilitate the reuse of the 320 components of FrameCardio, they were

organized in a Packages Model according to Figure 9. The packages were distributed in the
following layers: User Services, Business Services and Data Services.

The first layer, User Services, provides component for development of graphic
and visual interfaces. The second layer, Business Services, provides components of the
cardiology area, in three packages: Appointment, Surgery and Decision. These packages are
reused by different Cardiology domain applications. The third layer, Data Services, provides
access components to relational databases, that are used by the business rules.

Other available packages, as the one of Delphi components, can be reused, as the
Model of Figure 9 shows.

The three-tier architecture makes the components reuse possible, increases the
independence and facilitates the applications portability, that can be written in different
languages, to access different databases managers and to use the same business rules.

This organization in tiers turns the system more flexible to support the
technological changes without damaging its structure, increasing its life cycle.

FrameCardio

Delphi

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

8

Figure 9: Framework FrameCardio - Three-tier Architecture.

3.4 Implement Components
The components are implemented based on their Internal Designs. The Draco-

PUC Transformation Systems was used to generate ObjectPascal Code, from the components
design MDL descriptions.

Figure 10 shows the Transform ‘Classes_ModeloLogic’, that recognizes the
specification of a class in MDL, in the control point LHS and generates the correspondent
ObjectPascal code, according to the substitution pattern specified in the control point RHS.
TRANSFORM Classes_ModeloLogic
LHS:{{dast MDL

 (object Class [[STRI class]] quid [[STRI
nrquid]]

 operations ([[operations* methods]])

 class_attributes ([[classAttribute*
attributesClass]]))

}}

RHS: {{dast ObjectPascal
 uses Windows, Messages, SysUtils, Classes, DB,
Dialogs, DBTables;
 type
 [[IDENTIFIER classType]] = class(TQuery)
 [[not_field_definition* ListAttributes]]
 private
 public
 [[not_method_definition* ListMethods]]
 end;}}

RHS: {{dast delphi.unit_file
 unit [[IDENTIFIER nameClass]];
 [[interface_part DeclaracaoUnit]]
 implementation
 [[impl_decl_sect* ListBodyMethods]]
 end.}}

Method Body

Method Declaration

Unit Declaration

Unit name

Class Attributes

Figura 10: MdlToDelphi Transform

Figure 11 illustrates, to the left, the TAppointment Class MDL specification, and
to the right, the correspondent ObjectPascal code generated. In this case, the specification
object Class “TAppointment” created Type TAppointment, that implements a derived class of
the TQuery class of Delphi. The specification object Operation InsertAppointment created the
procedure FCInsertAppointment. The specifications object ClassAttribute IdAppointment and

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

9

DtAppointment created the attributes FIdAppointment, of the Integer type and
FDtAppointment of the TDateTime type. The libraries of classes Windows, Messages and
others are added according to the implementation needs.

MDL Specification ObjectPascal Code Generated
 (object Class "<TAppointment>"
 quid "3C52D05602F7"
operations (list Operations
 (object Operation "Insert Appointment"

.
class_attributes (list class_attribute_list
 (object ClassAttribute "IdAppointment"
 type "Integer")
 (object ClassAttribute "DtAppointment"
 type "Date")

.

unit UnitAppointment;
interface
uses Windows, Messages, SysUtils,
Classes, Dialogs, DB, DBTables,
UnitDoctor, UnitPatient;
Type
 TAppointment = class(TQuery)
 FIdAppointment : Integer;
 FDtAppointment : TDateTime;
 procedure FCInsertAppointment;

.
Figure 11: ObjectPascal Code Generated, from MDL specifications

A Figure 12 illustrates a generated code of a component with their interfaces.

Figure 12 –TAppointment Component implemented in ObjectPascal

3.5 Framework Life Cicle

The Software Development Processes presented follows the characteristics of the
Spiral model of software development, in which the Software Engineer can return to the
previous steps to refine the specified models and to obtain new Components Implementation.
Next, a Case Study of the cardiology domain will be presented, reusing the FrameCardio
components.

Generated
Code

Appointment
Component

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

10

4 CASE STUDY
It is about a Medical Service System to the Patients in the Cardiology Clinic. The

patient is assisted in the reception of the Clinic by an employee and led to the cardiologist's
room. The appointment is accomplished and the results are registered in the database. The
Doctor can verify if the Patient had already been registered in the system and update his
information.

A presentation of each step of the development of this application is proceeded:
Model Application, Implement Application and Execute Application.

4.1 Model Application
Initially, the Software Engineer, in the CASE tool, models the application

according to the first level of Catalysis. The application requirements are specified,
concerning about their business rules. Figure 13 illustrates the main application use cases,
with an abbreviation description, their entrances and exits.
Nr Desciption Use Case Entrance Exits
01 Doctor accomplishes Appointment accomplishAppoint InfoApp Msg01
02 Doctor verifies Appointments generateAppoint InfoGenerateApp Msg02
03 Employee registers Doctor registerDoctor InfoDoctor Msg03
04 Employee registers Patient registerPatient InfoPatient Msg04

Figure 13: Use Cases - Application
The use cases are modeled, in Use Cases Diagrams that show the actors

interacting with the system. Figure 14 illustrates, for instance, the doctor actor interacting to
accomplish an appointment. In this level of the problem, the actors' relationships with the use
cases are suitable sparing details that are not relevant for the system context.

Figure 14: Use Case Model accomplishAppoint

In this first level, the Types Model of the application is still specified, concerning
about "what " the application should do to assist their requirements. It is a model of high level
of abstraction of the Problem Domain, where the essential types of the application are
searched. Figure 15 illustrates a Types Model in this level of the development.

Figure 15: Model Types

Then, according to the second level of Catalysis, the models of the first level are
refined, specifying the application components. In this level the Software Engineer concerns
about the identification, behavior, and responsibilities of the components. Figure 16 illustrates
the Application Model, obtained from use cases refinement, with the main types imported

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

11

from FrameCardio. In this case, Patient, Doctor and Appointment, import the types
<TPatient>, <TDoctor>, <TAppointment>, respectively from FrameCardio.
 <TPatient>

 <TAppointment>

 <TDoctor>

Figure 16: Application Types Model
The Types Model of the first level is refined in the Class Diagram Model that

represents the application components, without concerning about their physical
implementations. Figure 17 illustrates the new Class Model, where we can observe the new
types Doctor, Appointment and Patient, derived from the FrameCardio types.

Figura 17: Application Class Diagram

Finally, in the third level of Catalysis, the Software Engineer specifies the Internal
Designs of the Components, giving emphasis to their implementations and physical
distributions. Figure 18 illustrates the Class Diagram of the Appointment component, obtained
from the Types Model refinement, with its interface. In the IAppointment interface are the
methods prototypes, implemented in the TAppointment component. In this case the
validateAppointment, deleteAppointment, insertAppointment and selectAppointment methods.

Figure 18 – Component Appointment Class Diagram

Figure 19 illustrates the application Components Model, where the components
reused from FrameCardio, are indicated by the placeholders "<” and ">". We can observe that
just the FormAppointment, Appointment and DSAppointment components, are specific of the
application <<Application>>. The others are from FrameCardio or from Delphi itself. The
stereotypes <<FrameCardio>> and <<Delphi>> illustrate the Framework components.

FrameCardio

Patient

Appointment
Doctor

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

12

Figure 19: Application Component Model.

4.2 Implement Application
In this step, the application is implemented in a component-oriented language. In

this case, the application specifications, stored in a MDL file, are transformed, by Draco-
PUC, into the ObjectPascal language. The code is generated based on the Classes Models of
the application components. Interface components, generate another file, with .DFM
extension, containing the definitions of the graphic part of the interface.

Figure 20 illustrates, to the left, part of an unitDM.pas, with the ObjectPascal
code, of the Appointment component of the application and, to the right, the correspondent
Diagram that shows the reuse of the FrameCardio implemented components. The Patient and
Doctor components were connected with the Appointment component, demonstrating the
Components “Plug-Ins” principle of the Catalysis Method.

unit UnitDM;
interface
uses SysUtils, Classes, DB,
DBTables, FCDatabase,
UnitDoctor, UnitPatient,
UnitAppointment;
type
 TDM = class(TDataModule)
 Patient: TPatient;
 Doctor: TDoctor;
 Appointment:
TAppointment;
 FCDatabase1:
TFCDatabase;
 DSPaciente: TDataSource;
 DSConsulta: TDataSource;
 DSMedico: TDataSource;

Figure 20: ObjectPascal Code Generated

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

13

4.3 Execute Application
In this step, the Software Engineer imports the generated code, in the Delphi

enviroment, to execute it. In Delphi, the code is gathered in an application project to facilitate
its management. The implementation in ObjectPascal, generated in the Implement System
step, cannot be enough to assist all the requirements, mainly the non-funcional ones, related
with the interface, safety, validation of data and access to database. Thus, the Software
Engineer, using the visual resources of Delphi, can complement the project with other
components that implement these requirements. The code generated by Draco-PUC,
integrated to the code developed in Delphi, results in the implementation of the whole system.
With the whole system implemented, it can finally be executed to verify if it suits to the
specified requirements. In case of problems, or new requirements, the previous steps can be
refferred to for corrections or additions of new requirements and, again, re-implement the
system.

Figure 21 illustrates, to the left, an interface component generated and, to the
right, FrameCardio FCValidateAppointment's method, being accessed by the IAppointment
Interface of the Appointment Component.

procedure
TFormAppointment.ValidateAppointment(
Sender: TObject);
begin
DM. Appointment.FCIdAppointment
:= StrToInt(Edit1.Text);
DM.Appointment.FCValidateAppoint
ment;
end;

Figure 21: Application Execution

5 CONCLUSION

This paper presented Component-Based Software Development Processes that

integrates different technologies, eliciting the Catalysis Method and a Transformation System,
to develop a component framework of the Cardiology domain (FrameCardio). The main
contribution of this work is to propose an Component-Based Software Development
Processes, that integrates several mechanisms, guiding the software engineer as much in the
development as in the reuse of components of a problem domain.

In the CASE tool, reusing the FrameCardio components, the Component-Based
Application Design is obtained. The descriptions of the MDL specifications, that represent the
design, are used to generate the code of the system in a Component-Based language. Draco-
PUC Transformation System automated great part of the ObjectPascal code generation, of the
framework and their applications.

Integrating an environment of visual programming, as Delphi, with the propose
Software Development Processes, was possible execute the application to validate the
specified requirements. In the final version it can be added, in the Delphi environment,
components that treat the non-functional requirements, that had not been treated in the
modeling of the system. A cycle of life of the software, that generates archetypes, facilitates
the purification of the components, through successive refinements. The use of software

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

14

components reveals each time more important to speed and to facilitate the Software
Development Processes.

Due to the capacity of Draco-PUC Transformation System, of supporting different
modeling domains and application, other languages, different from Catalysis and
ObjectPascal, can be used in the proposed Software Development Processes. Although the
process has been instanced for the Cardiology Domain and its applications, the authors
believe that the steps of the presented processes and the integrated technologies to support it,
can be used for the development of frameworks and applications of other domains of
applications, particularly the similars.

Software Development Processes proposed give one more step in the automation of
great part of the Software Engineer tasks, which can contribute in the reduction of time and of
development costs of an application of the Cardiology Domain.

6 REFERENCES
[1] D’SOUZA, D.; WILLS, A. Objects, Components and Frameworks with UML – The

Catalysis Approach. USA:Addison Wesley, 1998.
[2] BORLAND/INPRISE. Object Pascal Reference.
[3] LEITE, J.C.S., FREITAS, F.G., SANT'ANNA M. Draco-PUC Machine: A Technology Assembly

for Domain Oriented Software Development. 3rd International Conference of Software Reuse.
IEEE Computer Society Press. In proceedings, pp. 94-100. Rio de Janeiro. 1994.

[4] NEIGHBORS, J.M. The Draco approach to Constructing Software from Reusable Components.
IEEE Transactions on Software Engineering. v.se-10, n.5, pp.564-574, September, 1984.

[5] RATIONAL SOFTWARE CORPORATION.,
 http://www.rational.com/products/rose/prodinfo/index.jtmpl.
[6] COLEMAN, D. et al. Object-Oriented Development – The Fusion Method. Prentice

Hall, 1994.
[7] FOWLER, M. UML Destilled. Applying the Standard Object Modeling Language.

England:Addison Wesley, 1997.
[8] BOOCH, G. et al. The Unified Modeling Language – User Guide . USA: Addison

Wesley, 1999.
[9] FUKUDA, Ana Paula. Refinamento Automático de Sistemas Orientados a Objetos

Distribuídos. Dissertação de Mestrado. UFSCar, 2000
[10] PRESSMAN, R. S. Engenharia de Software . Makron Books: São Paulo, 1995.
[11] BORLAND/INPRISE. Programming with Delphi 2001.
[12] BORLAND/INPRISE. Visual Component Library Reference.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 2, PAPER 5, JANUARY 2003

