
PROLOG & TXL: A CASE STUDY FOR

PROTOTYPING STRUCTURAL TESTING

SUPPORTING TOOLS

Adenilso da Silva Simão
Tatiana Sugeta

José Carlos Maldonado
Maria Carolina Monard

Universidade de São Paulo

Instituto de Ciências Matemáticas e de Computação

São Carlos — São Paulo — Brazil

P.O. Box 668 ZIP Code 13560-970

Fone: ++55 (16) 273-9669 Fax: ++55 (16) 273-9751

{adenilso, tatiana, jcmaldon, mcmonard}@icmc.sc.usp.br

ABSTRACT
Structured testing criteria are usually

used to assess the adequacy of test case
sets, defining coverage measures. Control
and data flow based criteria employ
information about the program graph as
well as definition and usage of variables
to establish the testing requirements. In
this paper, we present an approach to
prototype supporting tools for control and
data flow based criteria. In the proposed
approach, we use TXL — a language
based in the transformational paradigm —
to analyze and instrument the program
under test. The instrumentation aims at

making it possible to process the data by
a Prolog program which allows the tester
to assess the test case set adequacy. A
simple example is used to illustrate the
main ideas of our approach.

Keywords: Testing Criteria, Testing Tool
Prototyping, Prolog, Transformational
Paradigm, Pascal.

1. INTRODUCTION
The establishment of testing criteria

is fundamental to achieve a systematic
and high quality testing activity, causing
a positive impact in the quality of the

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

released software products. In the last
decades several testing criteria have been
proposed, particularly data flow based
criteria [6, 9, 15].

The use of any testing criterion in
real production environments depends on
its cost/benefit tradeoffs. In this context,
supporting tools are essential to aid the ac-
complishment of empirical studies, aiming
at analyzing these tradeoffs. However, the
development of supporting tools is a costly
and time consuming activity. Therefore,
providing rapid prototyping mechanisms
to ease the implementation of a prototype
tool is relevant in this scenario. Although
its performance may be compromised,
a prototype is easier to build, maintain
and evolve. Moreover, the prototype tool
can be useful as an oracle, in the sense
discussed by Weyuker [18], during the
actual implementation.

In this work, we present an approach to
assist the prototyping of supporting tools
for structural testing, and illustrate its ap-
plication by prototyping a data flow based
tool for Pascal. The approach, named
ProTesC — Prolog for Software Testing
based on Structural Criteria, is based on
code instrumentation using the transfor-
mational paradigm [10] and analysis of
the test case set adequacy using Prolog
procedures. The instrumentation permits
to obtain the required information about
the program execution. We employed the
instrumentation model presented in [9]
and implemented it using TXL [3]. We
aim at obtaining a generic description for
instrumentation that could be adapted to
other languages, as discussed in [14].

Prolog is a logic programming lan-
guage which has features that make it
adequate to describe the testing criteria
requirements in a flexible and abridged
way. We can verify the adequacy of a test
case set in relation to a given criterion
by defining Prolog procedures, i.e., a set
of clauses about the same relation (or
predicate), that calculate and check the
satisfaction of the criterion requirements.
This mechanism is usually simpler than
developing a full tool. Additionally, if we
consider a proposal of new criteria, the
use of a prototyping language like Prolog
facilitates the tuning of the definition
and the implementation of the underlying
criteria.

To illustrate, the ProTesC approach
has been instantiated to support structural
testing of Pascal programs, building a
prototype named ProTesC/Pascal. We also
have developed Prolog procedures to
assess the adequacy of test case sets
according to data flow based criteria
defined by Rapps and Weyuker [11].

In this paper we are not concerned on
the usage and applicability of these criteria
but rather on supporting experiments with
them, easing their empirical evaluation.
The main ideas of our approach are
illustrated using the All-Uses data flow
based criterion [11].

Although Pascal is a bit old-fashioned
language, it is a well known language and
is widely used in academy for teaching
purposes, making it suitable to illustrate
our approach. Notwithstanding any other
procedural language, such as C, Fortran or

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

Cobol, could be used as well to instantiate
the ProTesC approach.

The structure of this paper is as
follows: in Section 2 we present basic
concepts, terminology and definitions re-
lated to the All-Uses criterion; in Section 3
we present the ProTesC approach, discuss
its general architecture and illustrate its
instantiation with Pascal. Also, the oper-
ational aspects of ProTesC/Pascal proto-
typing is briefly described. In Section 4
related work is presented. Finally in Sec-
tion 5 we draw some concluding remarks
about this work.

2. BASIC CONCEPTS
In this section we present the main con-

cepts of, as well as a brief introduction to,
program graph and testing requirements
used in this work. More details can be
found in [11].

A statement block is a sequence of
statements that are always executed in
sequence in a program. When the first
statement of a block is executed, so are
the remaining statements; branching only
occurs either to the beginning or from the
end of the block.

G = (N, E) is a program graph of
a program P if for each statement block
of P there exists a node n ∈ N and
for each possible control transfer between
a block represented by n1 and a block
represented by n2 there exists an edge
(n1, n2) ∈ E. In a program graph, the
node corresponding to the statement block
whose first statement is the first statement
of the program is denominated start node.

Conversely, the node corresponding to the
block whose last statement is the last
statement of the program is denominated
exit node.

The program graph can be enhanced
with information obtained by analyzing
the data flow of the program. We associate
to the nodes of the graph information
about the assignments (definitions) of
variables and their usages in computation
(computational-usages, or c-usages). We
associate to the edges of the graph infor-
mation about the usage of variables in the
expression that rule the control flow of the
program to that edge (predicative usages,
or p-usages). This enriched graph is
denominated def-use graph [11]. Figure 1
presents a Pascal program1 to calculate
z = xy and the corresponding def-use
graph.

Each execution of a program induces
a path in the graph that corresponds to
the blocks traversed during the execution.
Considering a def-use graph G, a path or
subpath π = (ni, . . . , nk) is definition
clear w.r.t. a variable x if x is not
(re-)defined in π (except eventually in the
last node of π). A path is simple if all
nodes, except possibly the first and last,
are distinct. A path is complete if its initial
node is the start node and its final node is
the exit node.

A triple (n, n1,x) is a definition-c-usa-
ge association in G if there exists a
definition of x in n, a computational
usage of x in n1 and a path π from
n to n1 that is definition clear w.r.t. x.

1. This program is a Pascal version of the
pseudo-code used by Rapps and Weyuker [11].

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

POWER.PAS

{1} begin
{1} read ln (x) ;
{1} read ln (y) ;
{1} i f y > 0
{2} then p := y
{3} e l s e p:=−y ;
{4} z : = 1 ;
{5} whi le p <> 0 do
{6} begin
{6} p : = p − 1 ;
{6} z : = z ∗ x ;
{6} end ;
{7} i f y < 0
{8} then z : = 1 / z ;
{9} w r i t e l n (z) ;
{10} end .

(a)

8

10

9

7

5

6

4

32

1

c−uso={p,z,x}
def={p,z}

def={x,y}

def={p}

def={z}

def={z}

c−uso={y}

c−uso={z}

c−uso={z}

p−uso={y}

p−uso={y}

p−uso={p}

def={p}
c−uso={y}

p−uso={p}

p−uso={y}

p−uso={y}

(b)

Figure 1: (a) A Pascal program to calculate z = xy and (b) the corresponding def-use graph [11]

Conversely, a triple (n, (n1, n2),x) is a
definition-p-usage association for G if
there exists a definition of x in n, a
predicative usage of x in (n1, n2) and a
path π from n to (n1, n2) that is definition
clear w.r.t. x. A path π executes an
association (n, n2,x) or an association
(n, (n1, n2),x) if there exists a subpath
π′ = (n, . . . , n2) in π such that π′ is
definition clear w.r.t. x.

Based on these concepts, Rapps and
Weyuker [11] defined a family of data flow
testing criteria. Next, we present the defi-
nition of a subset of these criteria which

are implemented in ProTesC/Pascal. Con-
sidering a def-use graph G and a set Π of
complete paths in G, then:
All-Nodes: Π satisfies the criterion if

every node of G is included in at least
one π ∈ Π;

All-Edges: Π satisfies the criterion if
every edge of G is included in at least
one π ∈ Π;

All-Uses: Π satisfies the criterion if for
every node n and every variable x
defined in n, at least one π ∈ Π
includes at least one definition clear

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

path w.r.t. x from n to every node and
every edge that contains a usage of x;

In this paper, we will use the All-Uses
criterion to illustrate both the Prolog pro-
cedures (Section 3.2) and the operational
aspects of the ProTesC/Pascal prototype
(Section 3.3).

3. ProTesC APPROACH
ProTesC is a prototyping approach

that supports the development of tools
for adequacy analysis based on structural
testing criteria. The approach is illustrated
in Figure 2 and can be characterized by
two parts. In the first part, the program
(prog) is instrumented using the system
TXL. The instrumentation schema has
been adapted from the one proposed for
POKE-TOOL [1, 9]. The instrumentation
creates another file, called instrum, that
in addition to the functionalities presented
in prog writes in the file paths.pl
Prolog facts corresponding to the paths ex-
ecuted for the test cases. Moreover, during
the instrumentation phase, a set of facts
related to the def-use graph is collected
and stored in the file facts.pl.

In the second part of the approach,
we use the Prolog program test.pl,
as well as the bases facts.pl and
paths.pl, generated in the first part,
to allow the tester to assess the adequacy
of the test cases w.r.t. the testing criteria.
Section 3.1 presents more details about
the instrumentation phase and Section 3.2
discusses the Prolog program test.pl.
The operational aspects of ProTesC/Pascal
are presented in Section 3.3.

3.1. Transformational
Paradigm:
Instrumenting

TXL is a transformational program-
ming paradigm language, in which a
program is composed by two main com-
ponents: a grammar and a set of trans-
formation rules. The grammar describes
how the input program (considered as a
stream of tokens) is to be analyzed and
converted into a syntax tree, by means
of a process called parsing. Then, the set
of transformation rules is applied to this
tree in order to perform transformations
in its structure. Usually, a transformation
rule consists of a pattern and a substitution
model. When, and if, the pattern is found
in the tree or in a subtree, the rule is ap-
plied by exchanging the (sub-)tree by the
substitution model. Moreover, actions can
be triggered whenever a substitution takes
place. After the transformation phase, the
resulting tree is converted into a stream of
tokens by traversing the tree and collecting
the leaf tokens. Figure 3 illustrates this
process. The context free grammar of the
language [12] is furnished in the file grm
in a notation equivalent to BNF [16].
The transformation rules are in the file
rules.txl and instrument the code by
introducing, in the syntax tree, subtrees
corresponding to the statements in the
given language that will log the program
execution.

Moreover, the rules in this file collect
information about the structure of the
def-use graph and store this information

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

TXL Prolog

test.pl

facts.pl

paths.pl

rules.txlgrm

prog

Instrum

data
coverage

t Oii

Figure 2: ProTesC Overall Structure

Transf.Parser
Unparser

���
�

���
�

���
�

���
�

TXL

facts.pl
prog

grm rules.txl

Instrum

Figure 3: Code Instrumentation Using TXL

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

1 r u l e p r o c e s s i f t h e n e l s e c u r r n o d e [i d] a f t e r n o d e [i d]
2 r e p l a c e [s t a t e m e n t l i s t]
3 ’ i f e [express ion] ’ t h e n t h e n s t m [statement]
4 ’ e l s e e l s e s t m [statement]
5 c o n s t r u c t t h e n n o d e [newnode]
6 c o n s t r u c t e l s e n o d e [newnode]
7 where
8 e [process express ion curr node a f te r node]
9 where

10 t h e n s t m [process statement then node a f te r node]
11 where
12 e l s e s t m [process statement else node a f te r node]
13 by
14 c h e c k p o i n t ’ (c u r r n o d e ’) ’ ;
15 ’ i f e ’ t h e n
16 ’ b e g i n
17 c h e c k p o i n t ’ (t h e n n o d e ’) ’ ;
18 t h e n s t m
19 ’end
20 ’ e l s e
21 ’ b e g i n
22 c h e c k p o i n t ’ (e l s e n o d e ’) ’ ;
23 e l s e s t m
24 ’end
25 c h e c k p o i n t ’ (a f t e r n o d e ’) ’ ;
26 end r u l e

Figure 4: TXL code sample (for Pascal)

in the file facts.pl. Figure 4 presents a
sample of a TXL rule used to instrument
a Pascal if-then-else statement. Lines 2
to 5 declare the pattern to be looked
for in a Pascal program. Lines 13 to 25
define the substitution model. Note that
Lines 14, 17, 22, and 25 in the substitution
model include the checkpoint statements
that are required to register the execution

of the if-then-else statement. In Lines 5
and 6 new graph nodes are declared for
representing the then and else statements,
respectively. Lines 8, 10 and 12 invoke
rules to process the control expression and
the then and else statements, respectively.
It can be observed in this example that the
TXL code is grammar-oriented and eases

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

the accomplishment of analyses based on
the language grammar structure.

Figure 5 illustrates the instrumented
file of the program in Figure 1(a). It
can be observed that statements were
included in order to indicate the execution
of each block, as discussed in [9]. The
statement checkpoint(n) writes n in
the file paths.pl, whereas the state-
ments output path init and out-
put path finish, respectively, opens
and closes this file. For example, check-
point(6) represents the beginning of
block 6.

Figure 6 shows some facts generated
during the instrumentation of the program
in Figure 1(a) which are stored in the fact
base facts.pl. The predicates that can
be included in the fact base are:
• node/1 to represent a node in

the program graph. For example,
node(1) indicates that node 1 be-
longs to the program graph.

• edge/2 to represent the edges in
the graph. For example, edge(1,2)
indicates that edge (1, 2) belongs to
the graph.

• definition/2 to represent vari-
able definitions. Thus, defini-
tion(1,x) indicates that variable x
is defined in node 1.

• c usage/2 to indicate computa-
tional usages. For example, c usa-
ge(2,y) indicates that there is a
computational usage of y in node 2.

• p usage/3 to indicate a predica-
tive usage. For example, p usa-
ge(1,2,y) indicates that there is a
predicative usage of y in edge (1, 2).

INSTRUM.PAS

begin
o u t p u t p a t h i n i t ;
checkpo int (1) ;
read ln (x) ;
read ln (y) ;
i f y > 0 then

begin
checkpo int (2) ;
p : = y

end
e l s e

begin
checkpo int (3) ;
p : = − y

end ;
checkpo int (4) ;
z : = 1 ;
checkpo int (5) ;
whi le p <> 0 do

begin
checkpo int (6) ;
p : = p − 1 ;
z : = z ∗ x ;
checkpo int (5)

end ;
. . .

checkpo int (1 0) ;
o u t p u t p a t h f i n i s h

end .

Figure 5: Partial Instrumented Program

3.2. Prolog Procedures
Having the base of facts related to the

def-use graph of the program and to the

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

FACTS.PL

node (1) .
node (2) .
node (3) .
node (4) .
. . .
edge (1 , 2) .
edge (2 , 4) .
edge (1 , 3) .
edge (3 , 4) .
. . .
d e f i n i t i o n (1 , x) .
d e f i n i t i o n (1 , y) .
d e f i n i t i o n (2 , p) .
d e f i n i t i o n (3 , p) .
d e f i n i t i o n (4 , z) .
. . .
c usag e (2 , y) .
c usag e (3 , y) .
c usag e (6 , p) .
c usag e (6 , z) .
c usag e (6 , x) .
. . .
p usag e (1 , 2 , y) .
p usag e (1 , 3 , y) .
p usag e (5 , 7 , p) .
p usag e (5 , 6 , p) .
. . .

Figure 6: File facts.pl: Examples

paths executed by a given set of test cases,
the tester can evaluate, through defined
Prolog2 procedures, the coverage of the
test cases w.r.t. a given criterion, in this
case, the Rapps and Weyuker’s criteria.
Several procedures were defined for each

criterion. All of them use information held
in file paths.pl.

In Figure 7 we illustrate the procedures
defined for the All-Uses criterion, most of
them consisting of only one clause. In par-
ticular, we discuss the predicates related
to computational usages (Figure 7(a)).
Similar predicates were created for pred-
icative usages (Figure 7(b)). Observe
that the combination of both predicative
and computational usages characterizes
the All-Uses criterion. The associations
are calculated by procedure calcDef-
CUsage and are stored as a predicate
defCUsage/3. Procedure dcu(Var,
N, N1) checks whether there exists an
association involving the definition of Var
in node N and its computational usage in
node N1. This is accomplished by verify-
ing the existence of at least one definition
clear path from N to N1 w.r.t. Var. Pro-
cedure executedCUsage(Node, N,
Var) determines whether an association
involving the definition of Var in node
Node and its computational usage in node
N has been executed. This procedure also
verifies whether there exists an executed
path π in paths.pl such that
1) Node is in π,
2) N appears after Node and
3) there is no redefinition of Var in the

subpath from Node to N.

2. We have used the LPA-Prolog system version
3.5 [13, 17]; only standard predicates were
employed.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

TEST.PL

ca lcDefCUsage :−
d e f i n i t i o n (N, Var) ,
dcu (Var ,N, N1) ,
a s s e r t z (

defCUsage (N, N1 , Var)
) ,
f a i l .

dcu (Var , Node ,N):−
c usag e (N, Var) ,
once (

c l e a r D e f P a t h (Node ,N, Var)
) .

exec uted CUsage (Node ,N, Var) :−
p a t h (P) ,
append (, [Node |Y] , P) ,
append (Z , [N |] , Y) ,
not (member (Nd , Z) ,

d e f i n i t i o n (Nd , Var)
) , ! .

c a l cDefPUsage :−
d e f i n i t i o n (N, Var) ,
dpu (Var ,N , (N1 , N2)) ,
a s s e r t z (

defPUsage (N , (N1 , N2) , Var)
) ,
f a i l .

dpu (Var , Node , (N1 , N2)) :−
p usage (N1 , N2 , Var) ,
once (

c l e a r D e f P a t h (Node , N1 , Var)
) .

execu te dPUsage (Node , (N1 , N2) , Var) :−
p a t h (P) ,
append (, [Node |Y] , P) ,
append (Z , [N1 , N2 |] , Y) ,
not (member (Nd , Z) ,

d e f i n i t i o n (Nd , Var)
) , ! .

(a) (b)

c l e a r D e f P a t h (Node , J , Var) :−
c l e a r D e f P a t h 1 (Node , J , Var , [Node]) .

c l e a r D e f P a t h 1 (B , J , ,) :−
edge (B , J) .

c l e a r D e f P a t h 1 (Node , J , Var , L) :−
edge (Node , N1) ,
not d e f i n i t i o n (N1 , Var) ,
not member (N1 , L) ,
c l e a r D e f P a t h 1 (N1 , J , Var , [Node |L]) .

(c)

Figure 7: Prolog Procedures for Checking (a) Computational Usages; (b) Predicative Usages;
and (c) Definition Clear Path

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

3.3. ProTesC/Pascal:
Operational Aspects

After instantiating ProTesC with
the Pascal language, we obtained the
ProTesC/Pascal prototype. From the
tester’s viewpoint, ProTesC/Pascal is
composed by two different levels. In the
first level, the tester uses TXL to generate
the instrumented program and the base
of Prolog facts related to the def-use
graph. This is done by executing TXL
with the source program, the file with
the transformation rules and the file with
the grammar. In the example, TXL is run
with the source file power.pas. The
transformation rules and the grammar
are furnished in the files pas.txl
and pascal.grm, respectively. TXL
will generate the instrumented program
instrum.pas and the base of facts
facts.pl.

The instrumented program is then
compiled and run with the test cases. Since
the instrumented program has essentially
the same functionality of the source
program, the tester can verify whether
the resulting output is in accordance
with the program specification. Besides
generating the outputs, the instrumented
program writes in the file paths.pl a
fact with the path traversed in the graph
during the execution. Table 1 presents the
actual output, the expected output and the
traversed path for two test cases applied to
the program in Figure 1(a).

To evaluate the adequacy of the test
cases, the tester loads the files test.pl,

facts.pl and paths.pl in a Pro-
log session. Then, the tester checks the
adequacy by means of consults made
through the procedures in test.pl. For
example, using the procedures in Figure 7,
the tester can execute the following
consult to verify which associations have
not been executed. Note that procedure
calcDefCUsage/3 should have been
previously executed in order to determine
the associations.
?- defCUsage(N, N1, Var),
not executedCUsage(N,N1,Var).
N = 3, N1 = 6, Var = p;
N = 4, N1 = 8, Var = z;
N = 6, N1 = 8, Var = z;
N = 8, N1 = 9, Var = z;

no
To continue the test activity, test

cases should be included to execute
the associations that have not been
executed yet. For example, to execute
the association (3, 6,p), we run the
instrumented program with the test
case x := 2, y := −1, whose result
is z := 0.5 and traversed path is
path([1,3,4,5,6,5,7,8,9,10]).
After reloading paths.pl and redoing
the consult, we obtain the following result:
?- defCUsage(N, N1, Var),
not executedCUsage(N,N1,Var).
N = 4, N1 = 8, Var = z;

no

In particular, the association (4, 8,z)
is non-executable, i.e., there is no value
for the input variables of the program that
leads to the execution of this association
which can then be removed [11].
?- retract(defCUsage(4, 8, z)).
yes

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

Table 1: Test Cases

Test Case Expected Obtained file
ti Result Result paths.pl

x := 2; y := 2 z := 4 z := 4 path([1,2,4,5,6,5,6,5,7,9,10]).

x := 2; y := 0 z := 1 z := 1 path([1,3,4,5,7,9,10]).

To ease the usage by the tester, we also
have defined several auxiliary procedures,
e.g. to calculate the list of not executed
associations (procedure notExecuted-
CUsages(L)) and to calculate the per-
centage of executed associations (proce-
dure cUsageCoverage(N)). For the
remaining criteria of Rapps and Weyuker,
similar procedures were defined.

4. RELATED WORK
Chaim [1] presents a tool, named

POKE-TOOL, that supports the coverage
analysis of data flow based criteria. Ini-
tially, POKE-TOOL supported C program
testing based on the Potential-Uses family
criteria [9]. Later, the tool was extended
to support the testing of programs written
in other programming languages, such as
Cobol [8] and Fortran [4] and to support
Rapps and Weyuker’s data flow criteria [2,
11]. The instrumentation in POKE-TOOL

is based on the instrumentation model de-
fined in [9] and is done by converting the
program to an intermediate language and
the coverage is evaluated using specialized
algorithms implemented in C.

From an abstract viewpoint, ProTesC
can be considered a rapid prototyp-
ing mechanism when comparing to PO-
KE-TOOL. Moreover, as argued in the

final section, the cycle to introduce a
new functionality is relatively shorter in
ProTesC.

Herbert and Price present a strategy
for coverage analysis and automatic test
case generation based on structural criteria
[7]. This strategy was implemented using
Prolog in the environment LOGTEST,
which supports validation of Pascal pro-
grams. Prolog procedures (written in DCG
- Definite Clause Grammar) describe
the Pascal grammar, constituting lexical
and syntactic analyzers. Thereby, program
information about data and control flow is
obtained and stored to derive test cases.
LOGTEST uses successive program exe-
cutions, symbolic and/or real, to increase
the program knowledge base and to aid
the test data generation. On the other
hand, in ProTesC the Pascal grammar
is separately represented and handled by
TXL, which is responsible for the program
data analysis, instrumentation and data
collection. Moreover, ProTesC uses only
real executions.

In [5], Hamlet discusses the use of
Prolog to create rapid mechanisms for pro-
totyping testing tools, considering C pro-
grams and some of the criteria presented in
[11]. From the viewpoint of the employed
strategy, the proposal presented in this
paper is similar to Hamlet’s, in that the

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

code is also instrumented to make possible
the coverage analysis of testing criteria by
consulting Prolog procedures. However,
the instrumentation in ProTesC is done
by using the transformational paradigm,
while Hamlet uses programs written using
yacc and lex UNIX applications. The
transformational paradigm in ProTesC
permits a more abstract description of the
instrumentation, so it can be easily adapted
to different languages and criteria.

5. FINAL REMARKS
In this work we presented a prototyping

approach, named ProTesC, that makes
easier the generation of supporting testing
tools for structural testing criteria. The
approach was employed to instantiate a
prototype for the Pascal language and
data flow testing criteria. Studies involving
other languages are required to evaluate
the efficiency and applicability of this
strategy.

In general, the most important char-
acteristic of a prototyping mechanism is
not the performance of the resulting proto-
types, but rather the ease of implementing,
maintaining and evolving them. With this
respect, the case study conducted for
instantiating the mechanism considering
Pascal programs and data flow criteria
indicates that the cost is relatively low,
taking about three weeks of two gradu-
ate students’ work to be accomplished.
However, other experiments should be
accomplished in order to obtain a more
precise insight on the application cost of
the mechanism.

The approach proposed in this paper is
flexible and can be extended to support
both other programming languages and
other testing criteria. To support another
language it is necessary to provide the
language grammar description in TXL
and to adapt the respective instrumen-
tation transformation rules in order to
properly instrument the code, as well
as to generate the file facts.pl. In
general, obtaining the grammar is not a
hard task, since it is traditionally supplied
with the language definition. Although
there are not real data to be presented
regarding this affirmation yet, we believe
that adapting the transformation rules to
another language would not require a
significant effort. This point should also
be explored by conducting some future
empirical studies. Considering imperative
languages (e.g. Pascal, C, Fortran, etc.),
the control structures that determine the
program graph topology do not essentially
change, in spite of the sensible variations
in its concrete syntax. For example, all
languages have selection (if-then-else) and
iteration (while, for) structures. Although
each language possesses its own syntax,
all are structurally equivalent variations.
Note that by saying that “if statements in
Pascal and C are structurally equivalent”
we are neither considering the semantic
of such structures nor their dynamic
aspects. Rather, we consider the fact
that in both languages an if will lead
to a potential deviation of control flow
and, consequently, to a new node in the
program graph. Given a specific language,
to support another test criterion it is

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

necessary the creation/adaptation of the
corresponding Prolog procedures in file
test.pl.

The reader should not be misled
considering that by saying prototyping this
activity would be a simple one. It would
require from the prototyper (designer)
expertise on the language and on the
criteria, as well as on the prototyping
mechanisms, including Prolog and TXL
languages. Even so, the time and effort
required would be quite less the traditional
implementation way.

Forthcoming steps in this research are:
• to instantiate ProTesC to other pro-

gramming languages, specially to
languages commonly used in indus-
try, e.g. C, C++ and Java, allowing
to evaluate the efficiency of the
approach.

• to include support for another testing
criteria, (e.g. Potential-Uses family
criteria [9]);

• to include a test case generation strat-
egy based on information obtained
from the base of facts; and,

• to create a graphical interface that
integrates all procedures aiming to
simplify the use of this approach.

ACKNOWLEDGEMENTS
The authors would like to thank the

partial financial support from the brazilian
funding agencies FAPESP, CNPq and
CAPES and from Telcordia Technologies
(EUA), as well as the anonymous review-
ers for their comments and suggestions.

REFERENCES
[1] M. L. Chaim, Poke-Tool — A Tool

for Supporting Data Flow based
Structural Testing. Master’s the-
sis, DCA/FEEC/UNICAMP, Camp-
inas, SP, Brazil (1991). (in por-
tuguese).

[2] M. L. Chaim, M. Jino, J. C. Maldon-
ado and E. Y. Nakagawa, Poke-Tool:
Current state of a tool for struc-
tural software testing based on data
flow analysis. In Tool Session of
XII SBES - Brazilian Symposium on
Software Engineering. Maringá, PR,
Brazil (1998). 37–45. (in por-
tuguese).

[3] J. R. Cordy and M. Shukla, Practi-
cal metaprogramming. In IBM Cen-
tre for Advanced Studies Conference.
Toronto, Canada (1992). 215–224.

[4] R. P. Fonseca, Fortran Program
Test Supporting in Poke-Tool
Environment. Master’s thesis,
DCA/FEEC/UNICAMP, Campinas,
SP, Brazil (1993). (in portuguese).

[5] D. Hamlet, Implementing prototype
testing tools. Software — Practice
and Experience, 1(1), (1988), 1–4.

[6] M. J. Harrold and M. L. Soffa, Se-
lecting and using data for integra-
tion testing. IEEE Transactions on
Software Engineering, 8(2), (1991),
58–65.

[7] J. S. Herbert and A. M. A. Price,
Data test generation strategy based
on symbolic and dynamic program

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

analysis. In XI SBES - Brazilian
Symposium on Software Engineer-
ing. Fortaleza, CE, Brazil (1997).
397–411. (in portuguese).

[8] P. S. Leitão Jr., Cobol Program
Test Supporting in Poke-Tool
Environment. Master’s thesis,
DCA/FEEC/UNICAMP, Campinas,
SP, Brazil (1992). (in portuguese).

[9] J. C. Maldonado, Potential Uses
Criteria: A Contribution to Struc-
tural Software Testing. Ph.D. the-
sis, DCA/FEEC/UNICAMP, Camp-
inas, SP, Brazil (1991). (in por-
tuguese).

[10] J. Neighbors, The draco approach to
constructing software from reusable
components. IEEE Transactions on
Software Engineering, 10(5), (1984),
564–574.

[11] S. Rapps and E. J. Weyuker, Select-
ing software test data using data flow
information. IEEE Transactions on
Software Engineering, 11(4), (1985),
367–375.

[12] A. Salomaa, Formal Languages.
Academic Press, New York, 1973.

[13] R. Shalfield, Win-Prolog User Guide.
Logic Programming Associates Ltd,
London, England, 1997.

[14] A. S. Simão, A. M. R. Vincenzi,
J. C. Maldonado and A. C. L. San-
tana, Software Product Instrumenta-
tion Description. Tech. Rep. 157,
ICMC/USP, São Carlos, SP, Brazil
(2002).

[15] H. Ural and B. Yang, Modeling soft-
ware for accurate data flow rep-
resentation. In 15th International
Conference on Software Engineering
(1993). 277–286.

[16] D. Vladimir, Formal Languages and
Automata Theory. Computer Science
Press, 1989.

[17] D. Westwood, LPA-Prolog Techni-
cal Reference. Logic Programming
Associates Ltd, London, England,
1997.

[18] E. J. Weyuker, On testing
non-testable programs. Computer
Journal, 25(4), (1982), 465–470.

CLEI ELECTRONIC JOURNAL, VOLUME 5, NUMBER 1, PAPER 3, JUNE 2002

