
An Implementation Model for Collaborative Applications

ABSTRACT

A major challenge in building groupware systems is to provide support for control and coordina-

tion of users actions on shared resources. This support includes the maintenance of the current

state of the collaborative multi -user environment such as control of group interaction rules and

coordination of users actions or tasks.

We propose an extension of the visual presentation/underlying data model currently followed

when developing interactive single user applications. We claim that groupware systems require

two additional components: user-related data and group interaction rules. The former component

maintains information about active users, their roles, and privileges. While the latter keeps the

state of the current collaborative environment to control and coordinate user actions. Furthermore,

our approach allows developers build each system component separately, promoting the decom-

position of the application’s computational objects and its collaborative environment specifica-

tion.

Mauricio Cortés1

Bell Labs, Lucent Technologies
Department of Multimedia Applications
101 Crawfords Corner Rd. Room 4F-625

Holmdel, NJ 07733
email: mcortes@bell-labs.com

Prateek Mishra

State University of New York at Stony
Brook

Department of Computer Science

Stony Brook, NY 11794-4400

email: mishra@cs.sunysb.edu

1. This work was developed while the first author was affili ated with State University of New
York at Stony Brook.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

INTRODUCTION
A computer program is an abstract model of a
given problem. In particular, a collaborative
program needs to model the interaction
between two or more persons sharing infor-
mation and working on a common task. A
group of software engineers debugging an
appli cation or physicians examining X-ray
images are examples of groups of people
working together under some interaction envi-
ronment. Although, these two collaborative
environments seem completely unrelated, the
interaction among a group of engineers might
follow similar rules (etiquette) to those found
in some medical settings.
In practice, groups of coll aborators create
their own working environment. For example,
Watson et.al . [18] report that the cul tural
background of each team member can influ-
ence the way the entire workgroup interacts.
Other factors, such as the number of partici-
pants and the individual or group goals can
af fect the working envi ronment. Further-
more, it has been found that these group set-
tings can vary from meeting to meeting, and
even within an ongoing collaborative session
[14]. Therefore, customizable appli cations
need to be developed in order to cope with
individual [11] and group needs.
The development of groupware systems must
address additional issues not present in single
user applications. For instance, the maximum
number of active users at a given time, num-
ber of telepointers or remote sprites, level of
support for user awareness, registration proto-
cols, and maintenance of user roles are new
aspects that need to be considered in collabo-
rative systems. We wil l argue in this paper
that these issues must be addressed as a sepa-
rate system component, namely control and
coordination component, in order to allow the
construction of f lexible groupware system.
The following example illustrates the need of
building f lexible and adaptable groupware
appl ications. Screen dumps of an X-Ray
image browser are depicted in Figure 1. The
participant’s name is shown in the lower right

corner of the screen. Notice that each user is
identified by a gray shade, shown as the back-
ground of the user’s name. Users can navigate
through a set of images using the next/previ-
ous buttons shown in the upper right corner.
Users B and C can request a single shared
telepointer by pressing the arrow button. A
and B can annotate an image by using a
shared pencil.

Figure 1 shows the following user activiti es:
user A is examining the sixth image, as shown
in the upper left corner of Figure 1.a., whil e
users B and C are both looking at the fi f th
image (see Figure 1.b.). User B owns the tele-
pointer that is also displayed at C’ s screen.
Meanwhil e, user A is waiti ng for the next
image to be displayed. Notice that User A
drew an annotation on the fifth image number,

Figure 1. CT/MRI Collaborative browser

(a) User A view

(b) Users B and C view

5

VI

userA
userB
userC

userA
userB
userC

VI

5

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

while User B added an annotation on the sixth
image. User A has customized her/his screen
by changing fonts and numeric data presenta-
tion, while users B and C are sharing the same
view at this point in the session.

Such collaborative image browsing tools can
be used in several scenarios such as virtual
lecture halls, patient consultation (e.g. radiol-
ogist/patient), group consultation between two
or more physicians (e.g. surgical procedure),
or a radiology conference. Formally, a collab-
orative scenario is an instance of the collabo-
rative environments mentioned earlier. These
scenarios di f fer from each other on issues
such as users' data accessibility, group interac-
tion rules, and users visual presentation. For
instance, in a patient consultation environ-
ment, a privileged user (i.e. physician) only
allows the other user (i.e. patient) to observe
his/her own medical images. In contrast, a
group consultation scenario would require the
same access rights for each user (i .e. physi-
cians).

In addition to access control issues, the group
of users should be able to define the way they
want or need to interact with each other
through the set of shared resources. Notice
that in groupware appli cations, user actions
(e.g. navigating through the set images) are
appli ed to a shared resource. These user
actions can potential ly update the applica-
tion’ s visual presentation shown in one or
more user screens. For example, navigating
through a set of images and creating image
annotations are plausible user actions. As
such, a user action can interfere with another
user action if they are applied simultaneously
to the same shared resource. In order to coor-
dinate these user actions, some coordination
mechanisms must be defined, reflecting the
way the group of participants wants to run
their meeting.

We believe that it is virtually impossible for
programmers to foresee all possible mecha-
nisms that users might need at any given time.
Instead, programmers should provide a set of
tools so that users can def ine thei r own

agenda. This implies that groupware applica-
tions should include a customizable coordina-
tion component, such that users working
together can tail or the appli cation to their
needs. In the same way that single user appli -
cations al low users to personal ize the sys-
tems’s visual presentation (e.g. background
colors), groupware systems should allow the
speci f ication of human-human interaction
rules describing how the group of users want
to work.
Notice that the medical scenarios mentioned
earlier allow users to collaborate both in syn-
chronous (same time) and asynchronous (dif-
f erent time) mode. For i nstance, group
consultation can take place in real time when
physicians interact with each other at the same
time or they can interact through electronic
mail messages at different times. These modes
reflect the way participants collaborate with
each other and should also be captured by the
proposed coordination component.
Although many researchers have suggested a
clear separation between synchronous and
asynchronous collaboration modes, the core
functionality of these modes remains the same
from a programmer's perspective. For exam-
ple, the actual functions that display medical
images and allow users to navigate through
the patient's medical records can be used for
both modes. Thus, programmers should not
have to develop the same functional i ty for
each mode. If there is a clear separation
between these computational functions (e.g.
show_image()) and group interaction issues
(i.e. coordination mechanisms), developers
should be able to reuse their programs
In this paper, we propose an extension of the
visual presentation/underlying data architec-
ture currently followed in the development of
interactive single user applications. We claim
that groupware systems require two additional
components: user-related data and group
interaction rules or controller component.
We will assume that the appli cation's visual
presentation and underlying data manipula-
tion functions can be developed in some tradi-

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

tional programming language (Pascal, C++).
These functions will not include control or
coordination information. On the other hand,
the new components will include user infor-
mation to control their coll aborative actions
and the interaction rules that should be fol-
lowed by the working group.
We claim that each of these components can
be implemented separately. This approach has
several advantages from the programmer's
and user's standpoints. Maintaining the clear
separation between visual and underlying
objects allow multiple views to be defined for
a given set of underlying computational
objects. Furthermore, multi ple interaction
rules can be defined for a given pair of com-
putational and visual objects. In this way,
working groups could use the appropriate
interaction rules to meet the coordination
functionality required by their coll aborative
environment.
The rest of this paper is organized as follows.
In section 2, we give an overview of our
groupware implementation model. Sections 3
and 4 gives a brief description of user and
coordination components, respectively. The
next section briefly describes a coordination
programming language that allow developers
to speci f y the coordination component.
Finally, in section 6 we present future work
and some concluding remarks.

IMPLEMENTATION MODEL
A system is recursively defined as a group of
entiti es and the interaction between them,
where each entity can be a system in i tself.
The interaction among these entiti es must
specify, among others, control and coordina-
tion rules between its macro enti ties and
within each complex entity or subsystem. The
external behavior or user functionali ty of a
system is given by the visible state of its com-
ponents and interaction capabili ties between
them.
In particular, our groupware system model
contains the fol lowing major components:
visual and underlying computational objects,
group of active users, and group interaction

rules. Visual (e.g. pushbutton) and underlying
computational objects (e.g. raw medical
images) model physical or virtual resources,
which can be manipulated by some set of pro-
gram functions. Information such as the user
address (e.g. email address), and access privi-
leges should be kept separated from the visual
and data components. Finall y, the interaction
rules must deal with possible conflicts that
can arise between any combination of these
major components, and within each compo-
nent. Table 1 shows an example of a real-time
shared text editor modeli ng a synchronous
peer environment with few interaction con-
straints.

Formally, the state of a collaborative applica-
tions can be represented by a 4-tuple S =
(D,V,U,C), where D, V, U, and C are sets of
data objects, visual objects, users, and interac-
tion rules, respectively. From a mult i-user
perspective, D and V should only include
shareable objects, i.e. resource instances that
can be manipulated directly or indirectly by
some group of users. For example, push-but-
ton should be added to the set of visual objects
only i f its attached function (e.g. call back
function) has some effect on other users' state.
I t is important to point out that the widely
accepted implementation model that decou-
ples computational objects and visual objects

Component Data Functionality

Computa-
tional
Objects

document insert, delete

Visual
Objects

cursor posi-
tion, fonts

cursor func-
tions (up,
down)

Users name, userid add_user,
delete_user

Control and
Coordina-
tion Rules

number of
users
number of
telepointers

Asymmetric
view, any user
can join,
updates must
be notified
immediately

Table 1. Groupware Components

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

for single user applications is a special case of
our approach. Let U be a singleton that only
includes the single user running the applica-
tion. Since no conflicts can exist with a single
user, we assign an empty set to C, the set of
interaction rules. Thus, single user applica-
tions can be implemented using our imple-
mentation model.
Collaborative environments evolve during its
lifetime. This implies that S-tuple is a snap-
shot of the collaborative state at any one time.
In order to ref l ect these envi ronmental
changes, we introduce a time variable t into
our model where St represents the collabora-
tive state at time t. Thus, the notion of session
history H can be defined as a sequence of S-
tuples H=[St0,St1, ... ,Stn] , capturing the
dynamic nature of real world meetings rang-
ing from its creation time (t0) to session's ter-
mination time (tN). Any time t between
session creation and termination is referred
here as session time. Additionall y, we define
session size as the cardinal ity of the set of
users.
Recall that Elli s et.al.[7] defined a groupware
session as the time interval where participants
can interact wi th each other manipulating
some shared objects. Notice that we have
extended El l is' def ini tion since under our
approach a session is formed by an actual
group of interacting users that can apply some
common program functions to actual shared
data following a set of coordination rules over
a period of time.
On the other hand, sessions have been classi-
fied by Szyperski[19] in terms of its partici-
pant’s work (role) as follows:
• Democratic: Participants have the same

rights. In general , group interaction is
determined by the team members.

• Conference/Panel: This type of sessions
include one or more moderators (e.g. pro-
fessor) and a group of session attendees.
Normall y, the moderator specifies the ses-
sion’s group interaction rules.

• Hierarchical: In stratified environments,
session interaction rules can vary widely,

from boss-subordinates relation to many
hierarchical structures working in group,
collaborating in some related tasks.

The main dif ference between these session
types is the interaction rules that govern how
users can interact with each other. That is, we
need to define a dif ferent C component for
each session type.

USER COMPONENT

In this section, we will i ntroduce the notion of
user roles drawing an analogy from data types
present in programming languages. We con-
clude this section relating the actual control
information needed for any given user with its
corresponding role.

Roles

Elli s et.al. [7] define a user role as a set of
privileges assigned to a group of users. Simi-
lar to data types in programming language
theory, a role can be viewed as a user type
abstraction that shares the same set of opera-
tions or privi leges. Thus, a role definiti on
includes role attributes, such as type identifier
(e.g. moderator), and role privileges that spec-
ify the set of authorized operations.

Role Attributes

The attributes of a data type can be summa-
rized as a type identifier and its internal repre-
sentation. For example, an integer type can be
identified by its name and space that a vari-
able of this type will occupy. Similarly, we
need to give each role a unique identifier, and
include control attributes such as maximum
number of users that can be registered at any
one time with this role. In contrast to the fixed
space allocation scheme present in many pro-
gramming languages, the maximum number
of users can eventually vary during any given
session, since more users than i nit i al l y
expected can join an ongoing session. Note
that in special cases, this number can be left
undetermined.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

Role Privileges
Simi lar to the operations attached to data
types, we will associate a set of functions to
each user role. These privileged or authorized
operations wil l characterize the behavior of
the group of users, defining the objects that
they can access. Clearly, the authorized opera-
tions must be drawn from the set of shared
functions defined for any public object. Thus,
any arbitrary set of artifact operations can be
specified for a given role. The set of functions
defined for each role constraints the opera-
tions that any given role instance (i.e. actual
user) can invoke while these restrictions are in
effect.
Since role privi leges are defined as a set of
authorized functions, it seems natural to allow
the construction of new roles from previously
defined one. By applying basic set operations,
such as union and intersection to the set of
functions, we can create new roles from exist-
ing role definitions.
Furthermore, we define a negation operation
(complement) which creates a new role pro-
hibitin the execution of any function included
in the original set of functions. Note that user
roles, as defined in this section, have a f lat
structure, as opposed to the hierarchical topol-
ogies described in DCPL [5]. In our view,
user hierarchies are a special case of coordina-
tion dependencies that relate two or more
groups of users.

User Representation
The U component in the collaborative state
was defined as a set of users, where each ele-
ment contains user control information. The
foll owing li st is an outli ne of the relevant
information needed to represent the user state:

• User Identification: e.g. user name, social
security number, color, or any combination
of user identifiers, depending on the con-
text that is being used

• Location: For example, the IP, e-mail, or
geographic addresses

• Role, e.g. moderator, peer, observer

Researchers have argued that session partici-
pants can assume several roles simulta-
neously, however we defined user role as a
single-value attribute for any given user in a
session. A single-value role can always be
constructed, using roles operators and previ-
ously defined roles. For instance, in a demo-
cratic session every participant (peer role)
should be able to contribute to the problem
domain. However, i f two or more peers get
involved in a conflicting situation, an arbitra-
tor (distinguished peer) can help solve their
problem. Note that in this scenario, an arbitra-
tor has at least the same privileges as the rest
of his/her peers.
Now suppose that the session participants
decide to keep a record of their meeting, forc-
ing them to define a new role (i .e. record-
keeper). If the arbitrator is selected for this
new role, researchers would claim that this
participant has been assigned two roles. In our
framework, we say that the former arbitrator
has been authorized to perform both record-
keeping and arbitration functions, forming a
new role by applying the union operator to the
sets of operations assigned to each of these
previously defined roles.

CONTROL COMPONENT
We have subdivided the control component in
two main areas, namely artifacts and coordi-
nation rules. The former captures the required
control information of any shareable object,
while the latter allow programmers establish
plausible user interaction rules.

Data and Visual Artifacts
We defined an artifact as the unit of control
information to model physical entities (e.g.
pencil) and visual entities (e.g. sprite) charac-
teristics. Clearly, artifacts are related to one or
more data (D) and vi sual (V) obj ects
described in the previous section. It is impor-
tant to point out that an arti fact should not
hold actual data drawn from the object prob-
lem domain. Instead it includes the informa-
t i on needed to cont rol any obj ect
manipulation in a shared environment. For

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

instance, an artifact representing a rectangular
figure might contain the maximum number of
users that can access this object at any one
time and a protocol to handle conflicts if one
arises.
We classify artifacts either as basic (e.g. inte-
ger, push-button) that cannot be decomposed
into simpler objects or as complex (e.g.
spreadsheet, li ne) artifacts that combine two
or more (basic/complex) objects. Whi le a
complex artifact might allow multiple users to
manipulate it, simple artifacts can only allow
at most one user to update its content at any
one time.
For example, a line can be modeled as a com-
plex artifact, where the underlying basic arti-
facts are its two endpoints. In this case, the
maximum number of users that can grab the
line simultaneously is two, each manipulating
one of its endpoints.
The information that needs to be kept for an
artifact should at least include the following
attributes to control the way users can share a
given set of objects:
• Operations: A set of operations that can be

applied to the set of objects being shared.
• Space Granularity: Basic or complex arti-

fact.
• Degree of Ownership (DOO): Maximum

number of concurrent users.
Artifacts could be assembled and decomposed
in arbitrary ways, much like the grouping and
ungrouping functions avail able in drawing
tools that encapsulate two or more objects in a
complex object. Any artifact control system
should allow the specification of these coordi-
nation attributes at any given time. Recal l
from section 1, that groupware sessions can
vary dynamically, depending on users actions
and the current interaction rule that con-
straints user actions.

1. Operations
We beli eve that an important goal when
developing successful groupware appli ca-
tions is to allow programmers and users have
the means to specify the necessary group con-

dition for the execution of a shareable opera-
tion (or task). The control information that can
be collected for a given operation or task must
include execution state, artifacts accessibilit y,
and operation type, among others. This infor-
mation can be collected either at function- or
artifact-level. The latter case can be viewed as
a coll ection of control attributes shared by
every element of the set of artifact operations.
Tentatively, we divide these arti fact opera-
tions under the following classification: real-
time, multi-user interface, underlying data,
and control/coordination functions. Table 2
shows examples for each of these types of
operations. Real-time operations need to meet
timing constrai nts, eit her because data
becomes outdated or the task must meet a
strict deadline.

Multi -user interface operations capture the
session state, for example the feedback given
to users participating in the same session (i.e.
user awareness). Note that user interface oper-
ations can change the look-and-feel of a
shared object but not necessaril y the object
itself. On the other hand, data artifact func-
tions can transform or retrieve the state of the
object, such as attaching a li ne annotation to
an image or incrementing the image counter
whenever a next-image function is executed.
Finall y, coordination operations can change
the way users interact with each other.

2. Granularity
Granulari ty is intrinsical ly determined by
each shared artifacts and the application func-
tionality. It has been found that adopting only

Operation Type Examples
Real-time telepointer move-

ment,
point-and-drag

Multi-user interface changing fonts,
next-page push-
button.

Underlying data textual insertion
Control and Coordination set_policy

Table 2. Operation on Shared Data

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

one granularity unit (e.g. characters, para-
graph, page) in groupware applications can be
too restrictive or inefficient. In general, col-
laborative applications require flexible granu-
larit y speci f i cation that can be changed
dynamically as shown in the following exam-
ple.
Suppose two or more users are working
together with a shared drawing tool . Lines
drawn with this tool can be decomposed in
simpler arti facts such as pairs of points in
space (e.g. magnitude and slope). If two users
manipulate the same line, the application can
allow simultaneous updates of the line’s mag-
nitude and slope done by two different users.
At a later time, another user might need to
apply some operation that requires the owner-
ship of both components. In this case, the
object should be treated as a basic artifact (i.e.
no other user should be able to access it).
Time granularity is also present in groupware
environments. For example, update operations
appli ed to shared artifacts can be sent: after
some predetermined time interval or at com-
mit point. In a shared editor, text can be prop-
agated ei ther af ter the user f i ni shes a
document unit (e.g. paragraph) or character by
character. While the former characterizes a
coarse update granularity, the latter takes the
finest possible granularity for this artifact.

3. Degree of Ownership
A key aspect for controlli ng and coordinating
objects is its degree of ownership (DOO). We
define the term owner as any user that can
control an object, at any one time, thus DOO
is the number of concurrent owners for a
given object. DOO values can range from zero
to the session size. DOO is also constrained
by the nature of the artifact and the environ-
ment in which it is being used.
A goal for groupware applications is to pro-
mote group ownership. After all, groupware
should support the interaction of two or more
users manipulating shared objects. Users will
have a closer perception of actual object shar-
ing if they can manipulate these objects con-
currently.

Other research areas have studied concurrent
data access, where each artifact is owned by at
most one user (DOO = 1) at any one time.
This assumption is sound for basic artifacts,
such as telepointers that cannot be decom-
posed into simpler artifacts. However in col-
laborative environments, concurrent access
need to be full y supported for complex arti-
facts taking into account that data and user
interaction constraints are preserved.

4. General remarks
In coll aborative envi ronments, DOO and
space granularity are closely related. Coarse-
grained resources (e.g. complex arti facts)
should be able to handle multiple resource
owners simultaneously, whil e f ine-grain or
basic resources can handle only a l imited
number of users. I f several users want to
update a basic arti fact (e.g. one bit), it i s
required that either mutual exclusion or con-
sistency guarantees must be provided [6].
El li s et.al. [7], Greenberg [12], Dourish [6]
and Cortes et.al. [2] have argued that tradi-
tional concurrency control mechanisms found
in database and operating system areas that do
not need to satisfy cooperative requirements.

Coordination
The Webster dictionary defines coordination
as the act of working together in a smooth
concerted way. Control, on the other hand is
defined as the act of checking, testing, regu-
lating or verifying [19]. From our system per-
spective, coordination is the set of rules that
define the interaction (or working together)
between system components and within each
component. And control is the action of veri-
fying that these coordination rules are not vio-
lated.
In the past, the terms protocol and policy have
been used indiscriminately as equivalent to
generic coordination tasks. In this section, we
define these terms, in order to distinguish
among several types of coordination tasks that
are commonly found in workgroups.
Early groupware applications had fixed coor-
dination rules, restricting user-user interac-

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

tion. For instance, the shared editor GROVE
[7] was built to support democratic sessioning
scenarios, but it does not offer any means to
change this setting. Simil arly, early group-
ware programming tools offered very limited,
i f any, coordination task support [1] . The
NYNEX toolkit [1] and Groupkit [15] provide
some communication primiti ves and wel l
def ined archi tectures to buil d groupware
appli cations. However, programmers using
these programming tools have to carry the
burden of programming every detail of the
coordination tasks for each shared resource.
I t was quickly recognized by the CSCW
research community [4][8][16] that group-
ware appli cations must include support for
several protocols and policies in order to cope
with different session environments. Current
appl ications support several coordination
tasks, but these tasks cannot be redefined
dynamically or coexist by attaching them to
different shared resources.
Coordination tasks can be designed to access
and update component dependencies. It can
also make use of control information stored in
the model component C to access the corre-
sponding underlying or visual component. For
instance, suppose a team has agreed that any
participant should wait in line to use a shared
pen. An application supporting this rule must
verify the artifact’ s DOO and its granularity
attributes to correctly enforce the artifact pol-
icy.

Protocols
Protocols can be viewed as a col lection of
steps that must be followed in order to accom-
pli sh a specific goal. These steps can be exe-
cuted either sequentiall y or in parall el. We
further divide these coordination tasks in
terms of its functionality as follows: registra-
tion, working, and leaving protocols. Regis-
tration protocols are employed by working
groups to specify the way new users can join
ongoing sessions. Working protocols define
plausible conditions to execute artifact opera-
tions requested by any member(s) of the team.
Final ly, leaving protocols specify the way

users must exit from the coll aborative envi-
ronment. A detai l description and several
examples for each type of protocol follows.

1. Registration Protocols

Although registration protocols have been
used exclusively for session registration, it is
conceivable to attach registration protocols to
underlying data and visual arti facts. In this
case, participants should follow some registra-
tion protocols to access or update object
attributes. Under this perspective, access con-
trol issues can be viewed as a special case of
this protocol type.

The following list of registration protocols is
by no means exhaustive, however it presents
several examples currently being used in face-
face meetings.

• Invitation: Users can join the session only
after receiving an invitation, i.e. access is
restricted to the list of guests.

• Open house: No restrictions are imposed
on the users to register in advance.

• Democratic: Group members can use a
voting tool to determine whether a new-
comer can join the session. Ongoing users
should specify the appropriate parameter to
accept a new member.(e.g. 50+%).

• Appointment: Managers can appoint
employees to participate in a given session
in a hierarchical environment.

Notice that registration protocols and session
types, described in section 2, are orthogonal
concepts. Any session type can have any reg-
istration protocol attached to it. For instance,
an invitation protocol can be associated with a
democratic session, where users can only join
after being invited, however once the user has
joined he/she can interact freely with other
participants.

In summary, a registration protocol specifies
how users can gain access to a session or
object, while session type states the way users
can interact once they have gain this right.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

2. Working Protocols
Working protocols specify the order in which
arti fact functions can be executed when
groups of users interact. A l though many
working protocols constrain task execution to
a serial order, these protocols can specify con-
current execution of coll aborative tasks.
Again, the following list of working protocols
is by no means exhaustive, however it il lus-
trates various working protocols:

• Deadline: User(s) performing a task must
finish before certain time.

• Consensus: Users must f ind a common
ground to agree on, such as the task to be
performed or the final outcome of a shared
object.

• Strict Order: User(s) must follow some
predefined steps to accomplish a task.

Clearly, these coordinating tasks are not
orthogonal. For example. suppose a work-
group agrees to comply with the fol lowing
rule: a consensus must be reach within some
time interval.

3. Leaving Protocols
Simil ar to registration issues, leaving proto-
cols can be applied globally to a session, or it
might be needed for some given resource. For
instance, a privil eged user can revoke access
privilege to other user. The following exam-
ples of leaving protocols

• Any time: users can leave a session at any
time, i.e. no authorization is needed.

• Authorized: A user intending to leave
must make a formal request, and a decision
is taken by one or more ongoing users (e.g.
voting or boss), accepting/rejecting his/her
request.

• Ejection: One or more users can have the
authori ty to eject a participant f rom an
ongoing session.

Several leaving protocols can coexist in the
same session. For instance, eject and “Any
time” protocols can coexist in a hierarchical
session, such as a virtual lecture hall. In this
case, a professor will be able to dismiss a stu-

dent, and students can leave the virtual class-
room at any time.

Policies
The term policy has been defined by the Web-
ster Dictionary as: a definite course of action
selected from among alternatives and in light
of given conditi ons to guide and determine
present and future decisions [19]. Following
this definition, we will use the term policy to
indicate a decision-making algori thm that
establi shes some selection criteria in case a
conflicting situation arises.
Programmers should be able to define group-
ware poli cies that can be associated to multi-
ple sets of shareable objects. This software
flexibili ty allows users to have several objects
under the one policy, and several policies for a
given object. In the latter case, only one pol-
icy should be present at any one time, how-
ever depending on the collaborative scenario,
users will be able to choose the poli cy that
best fits their needs.
In the scope of this study, we considered the
following types of policies:

• Queueing systems: user requests are
added to a queue only if another user is in
control of the arti fact. Depending on the
artifact, designer, or group of users, many
policies can be implemented such as prior-
i ty queues and multi -level queues. The
former is suitable, for example in a hierar-
chical environment where boss-employee
should be taken into account. The latter is
sui table for mul ti -hierarchical environ-

Usher

Execute

Priorities

Figure 2. A waiting policy

(1)

(3)(2)

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

ments, for example a very large program-
ming projects involving technical and
commercial groups. Figure 2. is a snapshot
of the state of a queueing policy that can be
associ ated to some basi c shared
resource.This policy specif ies a bounded
priority queue, where a user with the usher
role can place new requests into the queue
according to a priority table. This protocol
also includes time constraints such as1: (1)
users cannot keep control of the artifact for
extended periods of time; (2) users must
leave the queue after some time interval
even if the request was not executed. And
finally, users can drop a request (3) at any
time.

• Master/slave: a special user polls for or
receives requests from other users. For
example, a talk show host polls its audience
or a lecturer waits questions from the stu-
dents.

• Voting tool: session participants cast votes
to take a decision on a given issue (e.g.
allow new users join an ongoing session).
Several parameters can set the acceptance
criteria, such as limited/unlimited voting
time, public/private vote, and number of
votes needed to approve or reject a request.

The queueing systems gives a broad range of
possibil ities, such as round-robin, grabbing,
priority queues, timed requests, multiqueue
systems, etc. For example, a timed-queue pol-
icy can be ei ther implemented with round-
robin or discard policies. In the former, the
user is added again to the queue whenever the
timer expires. In the latter, the owner (whose
time has elapsed) needs to do an expli cit
request to be included again in the queue. In
ei ther case, a second timer can be used to
remove old user requests (e.g. the user needs
to leave at certain time).

These basic poli cies can be combined, form-
ing complex policies, modelling actual poli-
cies found in face-face meetings.

1. Numbers in parenthesis refer to arrows in Figure 2.

COORDINATION LANGUAGE

Describing Cooperative Work Programming
Language (DCWPL) is a textual program-
ming language designed to ease the develop-
ment of col laborative appli cations. This
programming language is aimed to assist pro-
grammers in the construction and mainte-
nance of collaborative applications to support
multiple cooperative scenarios given a com-
putational appli cation. Each cooperative sce-
nario can be specified by a DCWPL program,
which establishes a set of group interaction
rules to be followed by ongoing session par-
ticipants.

The group interaction rules that can be speci-
f ied in DCWPL include artifact access con-
trols, waiti ng poli cies, session management
protocols, and working protocols. In order to
establi sh these rules, programmers must
describe from a coordination viewpoint the
artifacts that can be shared by session partici-
pants. In our framework, an arti fact is the
coordination specif ication counterpart of a
computational class. An artifact describes the
way class instances (i .e. objects) can be
shared by a group of participants. Similar to a
class definition in an object oriented program-
ming language, an arti fact def inition com-
prises attributes and functions. However,
artifact attributes represent control informa-
tion about its computational class counterpart,
while artifact functions specify the runtime
conditions that must be met to execute a com-
putational function. Furthermore, program-
mers can include in the def ini ti on of an
artifact function, the execution of any action,
computational or otherwise. Using arti fact
attributes and functions, programmers can
write access control privil eges, poli cies, and
protocols.

It must be pointed out that programmers do
not need to define an arti fact for each class
supported in the computational program. That
is, no one-one mapping is needed between an
artifact and a class definition. Moreover, it is
not required that the computational program
be developed in an object-oriented program-

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

ming language or methodology. In our frame-
work, a computational class is an abstraction
of a group of entities, identical or otherwise,
that need to be controlled under the same con-
trol speci f ication. Later in this chapter, we
present an example where an arti f act is
defined as an abstraction of an application
which includes many different computational
classes.
Our goal was to design and implement a coor-
dination programming language that al low
programmers build flexible groupware appli-
cations. DCWPL [3] enables programmers to
specify how users can share information, as
opposed to a computational language that
all ows programmers define the information
that is being shared among a group of users.
Moreover, several coordination programs can
be developed for a given computational appli-
cation. For instance, we should be able to
develop two or more coordination programs
for a shared whi teboard appl ication. Each
coordination program represents the rules that
govern how the group of users will i nteract,
such as a virtual lecture hall or study room.

CONCLUSIONS
In this paper we have presented a groupware
model that decouples the development of
coordination mechanisms from traditi onal
computational objects. This programming
strategy may lead to the construction of flexi-
ble groupware systems. In particular, pro-
grammers can devel op several group
interaction environments for a given set of
visual and underlying objects.
In previous programming models, front-end
or display servers have been used to display
the visual artifacts whil e cli ent appli cations
have been in charge of maintaining the appli-
cation's underlying data. As noted by Lauwers
[13], this model fal ls short for the develop-
ment of groupware systems. In our view, the
lack of support for coordination mechanisms
forces programmers to include the interaction
rules in the artifacts themselves.
Several years ago, researchers argued that the
separation of underlying data and the applica-

tion’ s visual presentation in two di f ferent
components was unfeasible. These research-
ers raised the following issues against the sep-
aration: significant increase in user response
time and increase in the complexity of devel-
oping visual interfaces separated from i ts
underlying data. At the present time, this
model i s widely accepted by the research
community and every major computer envi-
ronment typicall y has a visual presentation
engine or GUI server.

Similarly, researchers have argued that our
implementation model is impractical. At first
sight, the new coordination component intro-
duces an additional burden to the programmer
who needs to build yet another program, i.e.
coordination program. However, the benefits
of separating coordination from computa-
tional issues outweigh this additi onal work,
because new collaborative scenarios can be
supported by developing new coordination
programs.

We developed a coordination language and its
runtime interpreter to all ow programmers
specify sets of coordination rules representing
some collaborative environment.

In this framework, a coordination program
models the group interaction rules found in
everyday collaborative scenarios. This allows
programmers to create multiple coordination
programs for a given computational program.
This enables end-users to pick the coordina-
tion program that best suits their needs.

REFERENCES

[1] Cortes, M., CSCW Survey: Concepts,
Applications, and Programming Tools,
Tech. Report 94-006, SUNY at Stony
Brook, 1994.

[2] Cortes, M., Mishra, P., Replicated
Servers for On-line Groupware, Sec-
ond International Concurrent Engi-
neering Conference, Washington,
Aug.1995.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

[3] Cortes, M., DCWPL: A Coordination
Language for Developing Collabora-
tive Applications, Ph.D. Thesis, State
University of New York at Stony
Brook, 1997.

[4] Crowley, T., Forsdick H., MMConf:
An infrastructure for building shared
applications, Proceedings of
CSCW'90, ACM, pp. 329-342.

[5] De Paoli, F., Tisato, F., CSDL: A lan-
guage for Cooperative System Design,
IEEE Transactions on Software Engi-
neering, Vol.20, No.8, pp. 606-616,
Aug. 1994.

[6] Dourish, P., The Parting of the Ways:
Divergence, Data Management and
Collaborative Work, ECSCW ‘95,
Stockholm, pp. 215-230, Sept. 95

[7] Ellis, C., and Gibbs S.J. Concurrency
Control in Groupware Systems, Pro-
ceedings of the 1989 ACM SIGMOD
International Conference on Manage-
ment of Data, Portland, Oregon, pp.
399-407, 1989.

[8] Ellis, C., Gibbs, S.J., Rein, G.L.,
Groupware Some issues and experi-
ences, Comm. of the ACM, Vol.34
N.1, pp.38-58, 1991.

[9] Ellis, C., Wainer J., Goal-based mod-
els of collaboration, Collaborative
Computing, Vol.1, N. 1, March, 1994.

[10] Ellis, C., Wainer J., A Conceptual
Model of Groupware, Proceedings
CSCW’94, ACM, pp.79-88, 1994

[11] Greenberg, S., Personalizable group-
ware: accommodating individual roles
and group differences, Proceedings of
2nd ECSCW pp.17-31, 1991.

[12] Greenberg, S., Marwood, D., Real
Time Groupware as a Distributed Sys-
tem: Concurrency Control and its
Effect on the Interface, Proceedings of
the CSCW’94, ACM, pp.207-217,
1994.

[13] Lauwers, J.C., Lantz, K.A., Collabora-
tion awareness in support of collabora-
tion transparency: Requirements for
the next generation of shared window
systems, Proceedings of the ACM
SIGCHI Conference in Human Factors
in Computing, ACM, 1990

[14] Olson, G., Olson, J,, Defining a meta-
phor for group work, IEEE Software,
pp.93-95, May 1992.

[15] Roseman, M., Greenberg, S., Group-
kit: A Groupware Toolkit for Building
Real-time Conferencing Applications,
Dept. Computer Science-University of
Calgary, Proceedings CSCW '92, pp.
43-50, 1992.

[16] Roseman, M. Greenberg, S., Building
Flexible Groupware Through Open
Protocols, Dept. Computer Science
University of Calgary, Tech.report 93-
518-20, 1993

[17] Szyperski, C., Ventre G., A Character-
ization of Multi-Party Interactive Mul-
timedia Applications, Computer
Communications, September 1994.

[18] Watson, R., Hua Ho, T., Raman, S.,
Culture: A fourth dimension of group
support systems, CACM, Vol.37 N.10,
pp.44-55, 1994.

[19] Webster Dictionary, http://
c.gp.cs.cmu.edu:5103/prog/webster.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

