CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

An Implementation Model for Collaborative Applications

Mauricio Cortést PrateekMishra
Bell Labs, Lucent Techndogies State University of New York at Stony
Department of Multimedia Applications Brook
101 Crawfords Corner Rd. Room 4F-625 Department of Computer Science
Holmdel, NJ07733 Stony Brook, NY 117944400
email: mcortes@bell-labs.com email: mishra@cs.sunysb.edu
ABSTRACT

A major challenge in building goupware systemsis to provide support for control and coordina-
tion of users actions on shared resources. This suppart includes the maintenance of the current
state of the allaborative multi-user environment such as control of groupinteraction rules and

coordination d users actions or tasks.

We propase an extension of the visual presentation/underlying data model currently followed
when developing interadive single user applications. We claim that groupware systems require
two additional components. user-related data and goup interaction rules. The former component
maintains information about active users, their roles, and privileges. Whil e the latter keeps the
state of the current collaborative environment to control and coordinate user actions. Furthermore,
our approach all ows developers build ead system component separately, promoting the decom-
pasition d the application’s computational objeds and its collaborative environment spedfica-

tion.

1. This work was developed whil e the first author was affili ated with State University of New
York a Stony Brook.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

INTRODUCTION

A computer program is an abstract model of a
given problem. In particular, a cllaborative
program needs to model the interaction
between two or more persons sharing infor-
mation and working ona common task. A
group of software engineas debugging an
application or physicians examining X-ray
images are examples of groups of people
working together under some interaction envi-
ronment. Although, these two collaborative
environments ssan completely unrelated, the
interaction among a group d engineers might
follow similar rules (etiquette) to those found
in some medical settings.

In practice, groups of collaborators create
their own working environment. For example,
Watson et.al. [18] report that the ailtural
badkground of ead team member can influ-
ence the way the entire workgroup interads.
Other fadors, such as the number of partici-
pants and the individual or group goals can
affect the working environment. Further-
more, it has been found that these group set-
tings can vary from meding to meeting, and
even within an orgoing collaborative session
[14]. Therefore, customizable gplications
need to be developed in order to cope with
individual [11] and goup reeds.

The development of groupware systems must
addressadditional issues not present in single
user applicaions. For instance, the maximum
number of active users at a given time, num-
ber of telepointers or remote sprites, level of
suppat for user awareness registration proto-
cols, and maintenance of user roles are new
aspeds that nead to be considered in collabo-
rative systems. We will argue in this paper
that these issues must be aldressed as a sepa-
rate system component, namely control and
coordination comporent, in arder to alow the
construction d flexible groupwvare system.

The following example ill ustrates the need of
building flexible and adaptable groupware
applications. Screen dumps of an X-Ray
image browser are depicted in Figure 1. The
participant’s name is sown in the lower right

corner of the screen. Notice that each user is
identified by a gray shade, shown as the back-
ground d the user’s name. Users can navigate
through a set of images using the next/previ-
ous buttons shown in the upper right corner.
Users B and C can request a single shared
telepointer by pressing the arrow button. A
and B can annotate an image by using a
shared pencil.

Figure 1 shows the following user activities:
user A is examining the sixth image, as snown
in the upper left corner of Figure 1.a., while
users B and C are both looking at the fifth
image (seeFigure 1.b). User B ownsthe tele-
pointer that is also displayed at C's sreen.
Meanwhil e, user A is waiting for the next
image to be displayed. Notice that User A
drew an anndation onthe fifth image number,

userA
userB

userC

(a) User A view

(b) UsersB and C view

Figure 1. CT/MRI Collaborative browser

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

while User B added an annaation onthe sixth
image. User A has customized her/his screen
by changing fonts and numeric data presenta-
tion,while users B and C are sharing the same
view at this point in the sesson.

Such coll aborative image browsing tools can
be used in several scenarios auch as virtual
lecure halls, patient consultation (e.g. radiol-
ogist/patient), group consultation ketween two
or more physicians (e.g. surgical procedure),
or aradiology conference. Formally, a coll ab-
orative scenario is an instance of the ollabo-
rative ewvironments mentioned ealier. These
scenarios differ from each other on issues
such asusers data acessbility, groupinterac-
tion rules, and users visual presentation. For
instance, in a patient consultation environ-
ment, a privileged user (i.e. physician) only
allows the other user (i.e. patient) to olserve
his/her own medica images. In contrast, a
group consultation scenario would require the
same access rights for each user (i.e. physi-
cians).

In addition to aacesscontrol issues, the group
of users $houd be able to define the way they
want or need to interact with each other
throughthe set of shared resources. Notice
that in groupware goplications, user adions
(e.g. navigating through the set images) are
applied to a shared resource. These user
adions can potentially update the gplica
tion's visual presentation shown in ore or
more user screens. For example, navigating
through a set of images and creaing image
annotations are plausible user acions. As
such, a user adion can interfere with another
user action if they are applied simultaneously
to the same shared resource. In order to coor-
dinate these user adions, some aordination
mechanisms must be defined, reflecting the
way the group of participants wants to run
their meding.

We believe that it is virtually impossible for
programmers to foresee dl possble mecdha-
nisms that users might need at any gven time.
Instead, programmers should provide aset of
tools s that users can define their own

agenda. This implies that groupware gplica
tions foud include a eistomizable coordina-
tion component, such that users working
together can tail or the application to their
needs. In the same way that single user appli-
cations allow users to personalize the sys-
tems’s visual presentation (e.g. background
colors), groupware systems shoud allow the
specification of human-human interaction
rules describing how the group of users want
to work.

Notice that the medica scenarios mentioned
ealier allow users to collaborate both in syn-
chronous (same time) and asynchronous (dif-
ferent time) mode. For instance, group
consultation can take placein red time when
physicians interact with each ather at the same
time or they can interad through eledronic
mail messages at diff erent times. These modes
reflect the way participants collaborate with
each ather and should aso be @ptured by the
propased coordination comporent.

Althoughmany researchers have suggested a
clear separation between synchronous and
asynchronous collaboration modes, the cre
functionality of these modes remains the same
from a programmer's perspedive. For exam-
ple, the actual functions that display medical
images and allow users to navigate through
the patient's medical records can be used for
both modes. Thus, programmers should not
have to develop the same functionality for
each mode. If there is a clear separation
between these computational functions (e.g.
show_image()) and group interaction issues
(i.e. coordination medhanisms), developers
shoud be aleto reuse their programs

In this paper, we propose an extension of the
visual presentation/underlying data achitec
ture currently foll owed in the development of
interadive single user applicaions. We claim
that groupware systems require two additi onal
components: user-related data and group
interaction rules or controller comporent.

We will assume that the goplication’s visual
presentation and underlying data manipula-
tionfunctions can be developed in some tradi-

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

tional programming language (Pascd, C++).
These functions will not include antrol or
coordination information. On the other hand,
the new components will include user infor-
mation to control their collaborative adions
and the interadion rules that should be fol-
lowed bythe working goup.

We claim that each of these components can
be implemented separately. This approach has
several advantages from the programmer's
and user's gandpoints. Maintaining the dear
separation between visual and underlying
objects all ow multiple views to be defined for
a given set of underlying computational
objects. Furthermore, multi ple interaction
rules can be defined for a given pair of com-
putational and visual objects. In this way,
working groups could use the gpropriate
interadtion rules to med the ooordination
functionality required by their coll aborative
environment.

The rest of this paper is organized as foll ows.
In section 2, we give an overview of our
groupware implementation model. Sections 3
and 4 gives a brief description of user and
coordination comporents, respectively. The
next section briefly describes a aordination
programming language that allow devel opers
to specify the coordination component.
Finally, in section 6we present future work
and some @ncluding remarks.

IMPLEMENTATION MODEL

A system isreaursively defined as a group of
entities and the interaction between them,
where eat entity can be asystem in itself.
The interaction among these entiti es must
specify, among dhers, control and coordina-
tion rules between its maco entities and
within each complex entity or subsystem. The
external behavior or user functionality of a
system is given bythe visible state of its com-
ponents and interadion capabilities between
them.

In particular, our groupware system model
contains the following major components:
visual and underlying computational objects,
group of active users, and group interaction

rules. Visua (e.g. ptshbuton) and underlying
computational objects (e.g. raw medical
images) model physicd or virtual resources,
which can be manipulated by some set of pro-
gram functions. Information such as the user
address(e.g. email address, and accessprivi-
leges shoud be kept separated from the visual
and data components. Finaly, the interadion
rules must deal with passible cnflicts that
can arise between any combination o these
major components, and within each compo-
nent. Table 1 shows an example of areal-time
shared text editor modeling a synchronous
peer environment with few interacion con-
straints.

Component | Data Functionality
Computa- document insert, delete
tional
Objects
. cursor posi- | cursor func-
\C/)Ibs"ueilts tion, fonts tions (up,
) down)
name, userid | add user,
Users delete_user
number of Asymmetric
Control and | Y53 view, any user
Coordina- number of | canjoin,
; telepointers | updates must
tion Rules be notified
immediately

Table 1. Groupware Components

Formally, the state of a collaborative applica
tions can be represented by a 4-tuple S =
(D,V,U,C), where D, V, U, and C are sets of
data objects, visual objects, users, and interac-
tion rules, respectively. From a multi-user
perspective, D and V should only include
shareable objects, i.e. resource instances that
can be manipulated directly or indirectly by
some group d users. For example, push-but-
ton shoud be added to the set of visual objects
only if its attached function (e.g. call back
function) has some effect on aher users' state.
It is important to pant out that the widely
accepted implementation model that decou-
ples computational objeds and visual objects

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

for single user applicaionsis a special case of
our approach. Let U be asingleton that only
includes the single user running the gplica
tion. Since no conflicts can exist with asingle
user, we assign an empty set to C, the set of
interadion rules. Thus, single user applica
tions can be implemented using aur imple-
mentation model.
Collaborative environments evolve during its
lifetime. Thisimplies that S-tuple is a snap-
shot of the mllaborative state at any ore time.
In order to reflect these environmental
changes, we introduce atime variable t into
our model where S; represents the llabora-
tive state & timet. Thus, the nation d sesson
history H can be defined as a sequence of S-
tuples H=[S;(,S;1, .. »Stpl, capturing the
dynamic nature of real world meetings rang-
ing from its creation time (tg) to session's ter-
mination time (ty). Any time t between
session creaion and termination is referred
here & ®ssiontime. Additionally, we define
session size as the cadinality of the set of
USers.
Recdl that Elli s et.al.[7] defined a groupware
sesson as the time interval where participants
can interact with ead other manipulating
some shared objeds. Notice that we have
extended Ellis' definition since under our
approach a sesson is formed by an actual
group d interacting wsersthat can apply some
common program functions to acual shared
data following a set of coordination rules over
aperiod d time.
On the other hand, sessons have been classi-
fied by Szyperski[19] in terms of its partici-
pant’swork (role) asfollows:
« Democratic: Participants have the same
rights. In general, group interaction is
determined by the team members.

« Conference/Panel: This type of sessons
include one or more moderators (e.g. pro-
fessor) and a group of sesson attendees.
Normally, the moderator specifies the ses-
sion'sgroupinteradionrules.

e Hierarchical: In stratified environments,
session interadion rules can vary widely,

from boss-subordinates relation to many
hierarchicd structures working in group,
collaborating in some related tasks.

The main difference between these sesson
types is the interadion rules that govern how
users can interad with each ather. That is, we
need to define adifferent C component for
each sessontype.

USER COMPONENT

In this saion, we will i ntroduce the nation o
user roles drawing an analogy from data types
present in programming languages. We oon-
clude this sction relating the actual control
information reeded for any gven user with its
correspondngrole.

Roles

Ellis et.al. [7] define auser role & a set of
privil eges assigned to a group of users. Simi-
lar to data types in programming language
theory, arole can be viewed as a user type
abstraction that shares the same set of opera-
tions or privileges. Thus, arole definition
includes role dtributes, such as type identifier
(e.g. moderator), androle privil eges that spec-
ify the set of authorized operations.

Role Attributes

The dtributes of a data type can be summa-
rized as atype identifier and itsinternal repre-
sentation. For example, an integer type can be
identified by its name and space that a vari-
able of this type will occupy. Similarly, we
need to gve eadh role aunique identifier, and
include control attributes such as maximum
number of users that can be registered at any
onetimewith thisrole. In contrast to the fixed
space all ocation scheme present in many pro-
gramming languages, the maximum number
of users can eventually vary during any given
session, since more users than initially
expeded can join an ongoing session. Note
that in spedal cases, this number can be left
undetermined.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

Role Privileges

Similar to the operations attached to data
types, we will associate aset of functions to
each user role. These privileged or authorized
operations will charaderize the behavior of
the group of users, defining the objeds that
they can access. Clearly, the authorized opera-
tions must be drawn from the set of shared
functions defined for any public object. Thus,
any arbitrary set of artifad operations can be
specified for agiven role. The set of functions
defined for each role constraints the opera-
tions that any given role instance (i.e. acual
user) can invoke whil e these restrictionsare in
effed.

Sincerole privileges are defined as a set of
authorized functions, it seems natural to allow
the construction d new roles from previously
defined ore. By applying basic set operations,
such as union and intersection to the set of
functions, we @n create new roles from exist-
ing role definitions.

Furthermore, we define anegation operation
(complement) which creaes a new role pro-
hibiti n the execution o any function included
in the original set of functions. Note that user
roles, as defined in this sction, have aflat
structure, as oppacsed to the hierarchical topd-
ogies described in DCPL [5]. In our view,
user hierarchies are a special case of coordina-
tion dependencies that relate two or more
groups of users.

User Representation

The U component in the oollaborative state
was defined as a set of users, where eab ele-
ment contains user control information. The
following list is an ouline of the relevant
information reeded to represent the user state:

« User ldentification: e.g. user name, social
security number, color, or any combination
of user identifiers, depending onthe @wn-
text that is being used

« Location: For example, the IP, e-mail, or
geographic addresses

* Rolg, e.g. moderator, peer, olserver

Researchers have argued that session partici-
pants can assume several roles Smulta-
neously, however we defined user role & a
single-value attribute for any given user in a
session. A single-value role can always be
constructed, using roles operators and previ-
ously defined roles. For instance, in a demo-
cratic session every participant (pea role)
should be ale to contribute to the problem
domain. However, if two or more peers get
involved in a @nflicting situation, an arbitra-
tor (distinguished peer) can help solve their
problem. Note that in this <enario, an arbitra-
tor has at least the same privileges as the rest
of his/her peers.

Now suppose that the sesson participants
decide to keep areoord of their meding, forc-
ing them to define anew role (i.e. record-
keegoer). If the abitrator is seleded for this
new role, researchers would claim that this
participant has been assgned two roles. In ou
framework, we say that the former arbitrator
has been authorized to perform both record-
keegping and arbitration functions, forming a
new role by applying the union ogerator to the
sets of operations assigned to ead of these
previously defined roles.

CONTROL COMPONENT

We have subdivided the control comporent in
two main areas, namely artifacts and coordi-
nation rules. The former cgptures the required
control information of any shareable objed,
whil e the latter allow programmers establish
plausible user interadion rules.

Data and Visual Artifacts

We defined an artifact as the unit of control
information to model physicd entities (e.g.
pencil) and visual entities (e.g. sprite) charac-
teristics. Clearly, artifacts are related to ane or
more data (D) and visual (V) objects
described in the previous fdion. It isimpor-
tant to point out that an artifact should not
hold actual data drawn from the object prob-
lem domain. Instea it includes the informa-
tion needed to control any object
manipulation in a shared environment. For

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

instance, an artifact representing a rectanguar
figure might contain the maximum number of
users that can access this object at any ore
time and a protocol to handle wnflicts if one
arises.

We classify artifads either as basic (e.g. inte-
ger, puwsh-button) that canna be decomposed
into simpler objects or as complex (e.g.
spreadshed, line) artifads that combine two
or more (basic/complex) objeds. While a
complex artifact might all ow multiple usersto
manipulate it, simple atifads can only allow
at most one user to update its content at any
onetime.

For example, aline can be modeled as a com-
plex artifad, where the underlying basic ati-
fads are its two endpoints. In this case, the
maximum number of users that can grab the
line simultaneously is two, each manipulating
one of itsendpants.

The information that needs to be kept for an
artifact should at least include the following
attributes to control the way users can share a
given set of objeds:

+ Operations: A set of operationsthat can be
applied to the set of objeds being shared.

« Space Granularity: Basic or complex arti-
fad.

« Degree of Ownership (DOO): Maximum
number of concurrent users.

Atrtifacts could be assembled and decompaosed
in arbitrary ways, much like the groupng and
ungrouping functions avail able in drawing
tools that encapsulate two or more objectsin a
complex obed. Any artifad control system
shoud alow the spedfication d these coordi-
nation attributes at any given time. Recall
from section 1,that groupware sessons can
vary dynamicdly, depending an users actions
and the aurrent interaction rule that con-
straints user actions.

1. Operations

We believe that an important goal when
developing successul groupware appli ca-
tions isto allow programmers and users have
the means to specify the necessary group con-

dition for the exeaution o a shareable opera-
tion (or task). The @ntrol informationthat can
be mllected for agiven operation a task must
include exeaution state, artifacts accessbility,
and operation type, among ahers. Thisinfor-
mation can be wlleded either at function- or
artifad-level. The latter case can be viewed as
a olledion of control attributes shared by
every element of the set of artifad operations.

Tentatively, we divide these artifact opera-
tions under the following classfication: real-
time, multi-user interface, underlying data,
and control/coordination functions. Table 2
shows examples for ead of these types of
operations. Red-time operations need to meet
timing constraints, either because data
becomes outdated or the task must meet a
strict deadline.

Operation Type Examples
Red-time telepointer move-
ment,
point-and-drag
Multi-user interface changing fonts,
next-page push-
button.
Underlying data textual insertion
Control and Coordination | set_padlicy

Table 2. Operation on Shared Data

Multi-user interface operations capture the
session state, for example the feedbad given
to users participating in the same session (i.e.
user awareness). Note that user interface oper-
ations can change the look-and-feel of a
shared objec but not necessarily the objed
itself. On the other hand, data atifact func-
tions can transform or retrieve the state of the
object, such as attaching a line annotation to
an image or incrementing the image wunter
whenever a next-image function is executed.
Finally, coordination operations can change
the way usersinteract with each cther.

2. Granularity

Granularity isintrinsically determined by
each shared artifads and the applicaion func-
tionality. It has been foundthat adoping orly

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

one granularity unit (e.g. characters, para-
graph, page) in groupwvare gplications can be
too restrictive or inefficient. In general, col-
laborative goplications require flexible granu-
larity specification that can be changed
dynamically as shown in the foll owing exam-
ple.

Suppose two or more users are working
together with a shared drawing tool. Lines
drawn with this tool can be decomposed in
simpler artifacts such as pairs of pointsin
space (e.g. magnitude and slope). If two users
mani pul ate the same line, the applicaion can
allow simultaneous updates of the line's mag-
nitude and slope done by two different users.
At alater time, another user might need to
apply some operation that requires the owner-
ship of both components. In this case, the
object shoud be treated as abasic artifact (i.e.
no aher user shoud be able to accessit).
Time granularity is aso present in groupware
environments. For example, upchte operations
applied to shared artifacts can be sent: after
some predetermined time interval or at com-
mit point. In a shared editor, text can be prop-
agated either after the user finishes a
document unit (e.g. paragraph) or character by
charader. While the former charaderizes a
coarse update granularity, the latter takes the
finest possible granularity for this artifact.

3. Degree of Ownership

A key asped for controlli ng and coordinating
objectsisits degree of ownership (DOO). We
define the term owner as any user that can
control an ojed, at any ore time, thus DOO
is the number of concurrent owners for a
given olject. DOO values can range from zero
to the sesgon size. DOO is also constrained
by the nature of the atifad and the environ-
ment in which it is being used.

A goal for groupware applicationsis to pro-
mote group ownership. After all, groupware
should support the interadion of two or more
users manipulating shared objeds. Users will
have a closer perception d actual object shar-
ing if they can manipulate these objects con-
currently.

Other research areas have studied concurrent
data access, where each artifact isowned by at
most one user (DOO = 1) at any ore time.
This assumption is sound for basic artifacts,
such as telepointers that cannot be decom-
posed into simpler artifads. However in col-
|aborative environments, concurrent access
need to be fully suppated for complex arti-
facts taking into accourt that data and user
interaction constraints are preserved.

4. General remarks

In collaborative environments, DOO and
spacegranularity are dosely related. Coarse-
grained resources (e.g. complex artifads)
should be ale to handle multiple resource
owners smultaneously, while fine-grain or
basic resources can handle only a limited
number of users. If several users want to
update abasic atifact (e.g. ore bit), itis
required that either mutual exclusion or con-
sistency guarantees must be provided [6].
Elliset.al. [7], Greenberg [12], Dourish [6]
and Cortes et.al. [2] have agued that tradi-
tional concurrency control mechanisms found
in database and qgoerating system areas that do
not need to satisfy cooperative requirements.

Coordination

The Webster dictionary defines coordination
as the act of working together in a smooth
concerted way. Control, on the other hand is
defined as the act of chedking, testing, regu-
lating a verifying [19]. From our system per-
spedive, coordination is the set of rules that
define the interacion (or working together)
between system componrents and within each
component. And control is the adion of veri-
fying that these coordination rules are nat vio-
lated.

In the past, the terms protocol and policy have
been used indiscriminately as equivalent to
generic coordination tasks. In this section, we
define these terms, in order to distinguish
amongseveral types of coordination tasks that
are ommonly foundin workgroups.

Early groupware gplicaions had fixed coor-
dination rules, restricting user-user interac

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

tion. For instance, the shared editor GROVE
[7] was built to suppat democratic sessoning
scenarios, but it does not offer any means to
change this stting. Similarly, early group-
ware programming toals offered very limited,
if any, coordination task support [1]. The
NYNEX toadkit [1] and Groupkit [15] provide
some communication primitives and well
defined architectures to build groupware
applications. However, programmers using
these programming tools have to carry the
burden of programming every detail of the
coordination tasks for each shared resource.

It was quickly recognized by the CSCW
research community [4][8][16] that group-
ware gplications must include suppat for
several protocols and pdiciesin order to cope
with diff erent session environments. Current
applications support several coordination
tasks, but these tasks cannot be redefined
dynamically or coexist by attaching them to
different shared resources.

Coordination tasks can be designed to aacess
and update component dependencies. It can
also make use of control information stored in
the model comporent C to accessthe rre-
spondng unaxlying a visual component. For
instance, suppase ateam has agreed that any
participant should wait in line to use a shared
pen. An application supporting this rule must
verify the atifad’s DOO and its granularity
attributes to correctly enforce the artifact pol-

icy.

Protocols

Protocols can be viewed as a wlledion of
steps that must be foll owed in order to accom-
plish a specific goal. These steps can be exe-
cuted either sequentially or in parallel. We
further divide these aordination tasks in
terms of its functionality as follows: registra-
tion, working, and leaving protocols. Regis-
tration protocols are employed by working
groups to specify the way new users can join
ongdng sessons. Working protocols define
plausible conditions to exeaute artifact opera-
tions requested by any member(s) of the team.
Finally, leaving protocols gecify the way

users must exit from the coll aborative envi-
ronment. A detail description and several
examples for each type of protocol follows.

1. Registration Protocols

Although registration protocols have been
used exclusively for session registration, it is
conceavable to attach registration protocols to
underlying data and visual artifacts. In this
case, participants shoud foll ow someregistra-
tion protocols to access or update object
attributes. Under this perspective, accesscon-
trol issues can be viewed as a spedal case of
this protocol type.

The following list of registration protocolsis
by nomeans exhaustive, however it presents
several examples currently being used in face-
face meetings.

« Invitation: Users can join the sesgon only
after receiving an invitation, i.e. acces is
restricted to the list of guests.

« Open house: No restrictions are imposed
on the usersto register in advance.

« Democratic: Group members can use a
voting tool to determine whether a new-
comer can join the sesson. Ongang wsers
shoud specify the appropriate parameter to
accept a new member.(e.g. 50+%).

« Appointment: Managers can appoint
employees to participate in a given sesson
in ahierarchical environment.

Noticethat registration protocols and sesson
types, described in sedion 2, are orthogonal
concepts. Any sesgon type can have any reg-
istration protocol attached to it. For instance,
an invitation protocol can be associated with a
democratic sesson, where users can only join
after being invited, havever once the user has
joined he/she can interad fredy with other
participants.

In summary, aregistration protocol specifies
how users can gain accessto a session o
object, whil e session type states the way users
can interact once they have gain thisright.

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

2. Working Protocols

Working protocols gpeafy the order in which
artifact functions can be executed when
groups of users interact. Althoughmany
working protocols constrain task exeaution to
aseria order, these protocols can speadfy con
current execution of collaborative tasks.
Again, the following list of working protocols
is by nomeans exhaustive, howvever it illus-
trates various working protocols:

« Deadline: User(s) performing a task must
finish before certain time.

« Consensus: Users must find a common
ground to agreeon, such as the task to be
performed or the final outcome of a shared
object.

« Strict Order: User(s) must follow some
predefined steps to accomplish atask.

Clealy, these coordinating tasks are not
orthogmal. For example. suppose awork-
group agrees to comply with the following
rule: a aconsensus must be reach within some
timeinterval.

3. Leaving Protocols

Similar to registration isaues, leaving proto-
cols can be applied gobally to asession, a it
might be needed for some given resource. For
instance, a privileged user can revoke access
privilege to other user. The foll owing exam-
ples of leaving protocols

« Any time: users can leave asession at any
time, i.e. noauthorizationis needed.

« Authorized: A user intending to leave
must make aformal request, and a decision
is taken by ae or more ongang wsers (e.g.
voting or boss), accepting/rejeding his’her
request.

« Ejection: One or more users can have the
authority to eject a participant from an
ongang sesson.

Several leaving protocols can coexist in the

same sesgon. For instance, gjed and “Any

time” protocols can coexist in a hierarchical
session, such as avirtual ledure hall. In this
case, a profeswor will be @le to dsmissa stu-

(s

A
Sy

<— Execute |- ®

) ©)

Figure2. A waiting pdicy

dent, and students can leave the virtual class-
room at any time.

Policies

The term padlicy has been defined by the Web-
ster Dictionary as. a definite @urse of action
seleded from among dternatives and in light
of given condtions to gude and determine
present and future decisions [19]. Following
this definition, we will use the term policy to
indicate a dedsion-making algorithm that
establi shes some seledion criteriain case a
conflicting situation arises.

Programmers should be ale to define group-
ware policies that can be assciated to multi-
ple sets of shareable objeds. This oftware
flexibility allows usersto have severa objects
under the one palicy, and several paliciesfor a
given ohect. In the latter case, only one pol-
icy should be present at any one time, how-
ever depending on the coll aborative scenario,
users will be ale to choose the policy that
best fits their needs.

In the scope of this gudy, we considered the
following types of pdlicies:

« Queueing systems: user requests are
added to a queue only if another user isin
control of the artifact. Depending on the
artifact, designer, or group of users, many
policies can be implemented such as prior-
ity gqueues and multi-level queues. The
former is aiitable, for example in a hierar-
chicd environment where boss-employee
should be taken into accournt. The latter is
suitable for multi-hierarchical environ-

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

ments, for example avery large program-
ming projects involving technical and
commercial groups. Figure 2. is a snapshat
of the state of a queueing pdicy that can be
associated to some basic shared
resource.This policy spedfies a bounded
priority queue, where a user with the usher
role can placenew requests into the queue
acocording to a priority table. This protocol
also includes time constraints such ast: (1)
users canna keep control of the atifact for
extended periods of time; (2) users must
leave the queue dter some time interval
even if the request was not executed. And
finally, users can drop arequest (3) at any
time.

« Master/slave: a specia user polls for or
receives requests from other users. For
example, atalk show haost pollsits audience
or alecturer waits questions from the stu-
dents.

« Votingtool: sesson participants cast votes
to take adedsion on a given issue (e.g.
allow new users join an ongoing session).
Several parameters can set the acceptance
criteria, such as limited/unlimited voting
time, pulic/private vote, and number of
votes needed to approve or reject arequest.

The queueing systems gives a broad range of
possibilities, such as roundrobin, gabbing,
priority queues, timed requests, multiqueue
systems, etc. For example, atimed-queue pal-
icy can be either implemented with round-
robin or discard policies. In the former, the
user is added again to the queue whenever the
timer expires. In the latter, the owner (whose
time has elapsed) needs to do an explicit
request to be included again in the queue. In
either case, a second timer can be used to
remove old user requests (e.g. the user needs
to leave at certain time).

These basic policies can be combined, form-
ing complex policies, modelling actual poli-
cies foundin face-face meetings.

1. Numbersin parenthesis refer to arrows in Figure 2.

COORDINATION LANGUAGE

Describing Cooperative Work Programming
Language (DCWPL) is a textual program-
ming language designed to ease the develop-
ment of collaborative gplications. This
progranming language is aimed to asgst pro-
grammers in the construction and mainte-
nance of coll aborative applications to support
multiple coperative scenarios given a com-
putational appli cation. Each cooperative sce-
nario can be specified by a DCWPL program,
which establishes a set of group interacion
rules to be followed by ongoing sesson par-
ticipants.

The group interadion rules that can be sped-
fied in DCWPL include artifact accesscon-
trols, waiting policies, sesson management
protocols, and working protocols. In order to
establish these rules, programmers must
describe from a aoordination viewpoint the
artifads that can be shared by sesson partici-
pants. In ou framework, an artifact is the
coordination speafication counterpart of a
computational class. An artifact describes the
way classinstances (i.e. objects) can be
shared by agroup d participants. Similar to a
class definitionin an oljed oriented program-
ming language, an artifad definition com-
prises attributes and functions. However,
artifact attributes represent control informa-
tion abou its computational class courterpart,
while artifad functions spedfy the runtime
condtions that must be met to execute acom-
putational function. Furthermore, program-
mers can include in the definition of an
artifad function, the exeaution d any adion,
computational or otherwise. Using artifact
attributes and functions, programmers can
write acces control privileges, policies, and
protocols.

It must be pointed ou that programmers do
not need to define an artifad for each class
suppated in the computational program. That
IS, N0 one-one mapping is nealed between an
artifact and a class definition. Moreover, it is
not required that the computational program
be developed in an objed-oriented program-

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

ming language or methodology. In ou frame-
work, a computational classis an abstraction
of agroup o entities, identical or otherwise,
that neal to be controlled under the same con-
trol specification. Later in this chapter, we
present an example where an artifact is
defined as an abstraction of an application
which includes many diff erent computational
classs.

Our goal wasto design and implement a cor-
dination programming language that allow
programmers build flexible groupware gpli-
caions. DCWPL [3] enables programmers to
specify how users can share information, as
opposed to a computational language that
allows programmers define the information
that is being shared among a group of users.
Moreover, several coordination programs can
be developed for a given computational appli-
cation. For instance, we shoud be able to
develop two or more coordination programs
for a shared whiteboard application. Each
coordination program represents the rules that
govern how the group d users will i nteract,
such as avirtual lecture hall or study room.

CONCLUSIONS

In this paper we have presented a groupware
model that decouples the development of
coordination mechanisms from traditional
computational objects. This programming
strategy may lead to the @nstruction d flexi-
ble groupware systems. In particular, pro-
grammers can develop several group
interaction environments for a given set of
visual and unaerlying ohjects.

In previous programming models, front-end
or display servers have been used to display
the visual artifads while dient appli cations
have been in charge of maintaining the appli-
caion'sunderlying cata. Asnoted by Lauwers
[13], this model falls short for the develop-
ment of groupware systems. In ou view, the
ladk of support for coordination mechanisms
forces programmers to include the interaction
rulesin the artifacts themselves.

Several years ago, researchers argued that the
separation d underlying data and the gplica

tion’s visual presentation in two different
components was unfeasible. These reseach-
ersraised the following issues against the sep-
aration: significant increase in user response
time and increase in the complexity of devel-
oping visual interfaces separated from its
underlying data. At the present time, this
model is widely accepted by the research
community and every major computer envi-
ronment typicaly has a visual presentation
engine or GUI server.

Similarly, reseachers have argued that our
implementation model isimpradical. At first
sight, the new coordination component intro-
duces an additional burden to the programmer
who nedls to build yet another program, i.e.
coordination program. However, the benefits
of separating coordination from computa-
tional issues outweigh this additional work,
because new collaborative scenarios can be
supported by developing new coordination
programs.

We developed a oordination language and its
runtime interpreter to allow programmers
specify sets of coordination rules representing
some oll aborative environment.

In this framework, a coordination program
models the group interadion rules found in
everyday collaborative scenarios. This allows
programmers to creae multiple coordination
programs for a given computationa program.
This enables end-users to pick the mordina-
tion program that best suitstheir needs.

REFERENCES

[1] Cortes, M., CSCW Survey: Concepts,
Applications, and Prooramming Todls,
Tech. Report 94-006, SUNY at Stony
Brook, 1994.

[2] Cortes, M., Mishra, P., Replicaed
Servers for On-line Groupware, Sec-
ond International Concurrent Engi-
neering Conference, Washington,
Aug.1995.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

CLEI ELECTRONIC JOURNAL, VOLUME 1, NUMBER 1, PAPER 2, JUNE 1998

Cortes, M., DCWPL: A Coordination
Language for Developing Collabora-
tive Applications, Ph.D. Thesis, State
University of New York a Stony
Brook, 1997.

Crowley, T., Forsdick H., MMConf:
An infrastructure for building shared
appli cations, Proceedinas of
CSCW'90,ACM, pp. 329342.

De Paoli, F., Tisato, F., CSDL: A lan-
quage for Cooperative System Design,
IEEE Transactions on Software Enaqi-
neering, Vol.20, No.8, pp. 60616,
Aug. 1994.

Dourish, P., The Parting d the Ways:
Divergence, Data Management and
Collaborative Work, ECSCW ‘95,
Stockholm, pp. 215230, Sept. 95

Ellis, C., and Gibbs S.J. Concurrency
Control in Groupware Systems, Pro-
ceedings of the 1989 ACM SIGMOD
International Conference on Manage-

ment of Data, Portland, Oregon, pp.

399407, 1989.

Ellis, C., Gibbs, SJ., Ren, G.L.,
Groupware Some isues and experi-
ences, Comm. of the ACM, Vol.34
N.1, pp.3858, 1991.

Ellis, C., Wainer J., Goal-based mod-
els of collaboration, Collaborative
Computing,Vol.1,N. 1,March, 1994.

Ellis, C., Wainer J., A Conceptual
Model of Groupware, Proceeadings
CSCW'94,ACM, pp.7988, 1994

Greenberg, S., Persondlizable group
ware: accommodating individua roles
and goup dfferences, Proceedings of
2ndECSCW pp.1731, 1991.

[12

[13

[14

[13

[16

[17]

[18

[19

Greenberg, S., Marwood, D., Red
Time Groupware as a Distributed Sys-
tem: Concurrency Control and its
Effect on the Interface, Proceadinas of
the CSCW’'94, ACM, pp.207217,
1994,

Lauwers, J.C., Lantz, K.A., Collabora-
tion awarenessin suppat of collabora-
tion transparency: Requirements for
the next generation d shared window
systems, Proceedinos of the ACM
SIGCHI Conference in Human Factors
in Computing, ACM, 190

Olson, G., Olson, J,, Defining a meta-
pha for group work, |EEE Software,
pp.9395,May 1992

Roseman, M., Greenbera, S., Group
kit: A Groupware Toakit for Building
Real-time Conferencing Applications,
Dept. Computer Science-University of
Calaary, Proceedings CSCW '92, pp.
43-50, 1992.

Roseman, M. Greenberq, S., Building
Flexible Groupware Through Open
Protocols, Dept. Computer Science
University of Cagary, Tech.report 93
51820, 1993

Szyperski, C., Ventre G., A Character-
ization d Multi-Party Interadive Mul-
timedia Applications, Computer
Communications, September 1994.

Watson, R., Hua Ho, T., Raman, S.,
Culture: A fourth dmension d aroup

suppat systems, CACM, Vol.37N.10,
pp.4455, 1994.

Webster Dictionary, http://
c.gpcs.cmu.edu:5103prog/webster.

