CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

Impact of Thresholds and Load Patterns when
Executing HPC Applications with Cloud Elasticity

Vinicius Facco Rodrigues, Gustavo Rostirolla, Rodrigo da Rosa Righi
Cristiano André da Costa, Jorge Luis Victéria Barbosa
Applied Computing Graduate Program - Unisinos
Av. Unisinos, 950 — Sao Leopoldo, RS, Brazil
{vfrodrigues, rostirolla, rrrighi, cac, jbarbosa} Qunisinos.br

Abstract

Elasticity is one of the most known capabilities related to cloud computing, being largely
deployed reactively using thresholds. In this way, maximum and minimum limits are used
to drive resource allocation and deallocation actions, leading to the following problem
statements: How can cloud users set the threshold values to enable elasticity in their cloud
applications? And what is the impact of the application’s load pattern in the elasticity?
This article tries to answer these questions for iterative high performance computing
applications, showing the impact of both thresholds and load patterns on application
performance and resource consumption. To accomplish this, we developed a reactive and
PaaS-based elasticity model called AutoElastic and employed it over a private cloud to
execute a numerical integration application. Here, we are presenting an analysis of best
practices and possible optimizations regarding the elasticity and HPC pair. Considering
the results, we observed that the maximum threshold influences the application time
more than the minimum one. We concluded that threshold values close to 100% of CPU
load are directly related to a weaker reactivity, postponing resource reconfiguration when
its activation in advance could be pertinent for reducing the application runtime.

Keywords: Cloud elasticity, high-performance computing, resource management, self-organizing.

1 Introduction

The emergence of cloud computing offers the flexibility of managing the resources in a more dynamic manner
because it uses the virtualization technology to abstract, encapsulate, and partition machines. Virtualization
enables one of the most known cloud capabilities - the resource elasticity [1, 2]. x the on-demand provi-
sion principle, the interest on elasticity capability is related to the benefits it can provide, which includes
improvements in applications performance, better resources utilization and cost reduction. Another fact
that contributes to better performance could be achieved through dynamic allocation of resources, including
processing, memory, network and storage. The possibility to allocate a short amount of resources in the
beginning of the application, avoiding over-provisioning, besides the need to deallocating them on moderated
load periods, emphasizes the rationale for cost reduction, which impacts directly on energy saving [3].
Today, the combination of horizontal and reactive approaches represents the most-used methodology for
delivering cloud elasticity [4, 5, 6, 7]. In this approach, rule-condition-action statements with upper and lower
load thresholds occur to drive the allocation and consolidation of instances, either nodes or virtual machines
(VMs). Despite being simple and intuitive, this method requires programmer’s technical skills for tuning
the parameters. Moreover, these parameters can vary according to the application and the infrastructure.
Specifically for the High-performance Computing (HPC) panorama, the upper threshold defines for how
long the parallel application should run close to the overloaded state. For example, a value close to 75%
implies always executing the HPC code in a non-saturated environment, but paying for as many instances
(and increasing energy consumption) as needed to reach this situation. Conversely, a value near to 100% for
this threshold is relevant for energy saving when analyzing the number of allocations. However, this could
result in weaker application reactivity, which can generate penalties in execution time. The lower threshold,
in turn, is useful for deallocating resources, whereas a value close to 0% will delay this action. This scenario
can cause overestimation of resource usage because the application will postpone consolidations [8]. The

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

main reason for that behavior in HPC and dynamic applications is to avoid VM deallocations because, in a
near term, the application could increase its need for CPU capacity, forcing another time-costly allocation
action. Figure 1 shows two different situations resulted by different threshold organizations: (a) the load
(either CPU load, network consumption or a combination of metrics, for instance) does not violates the
thresholds and; (b) the load violates both thresholds resulting in elasticity operations.

Some recent efforts have specifically focused on exploiting the elasticity of clouds for traditional services,
including a transactional data store, data-intensive web services and the execution of a bag-of-tasks applica-
tion [9]. Basically, this scenario covers companies aiming at avoiding the downfalls involved with the fixed
provisioning on mission critical applications. Thus, the typical elasticity organization on such systems uses
virtual machines (VMs) replication and a centralized dispatcher. Normally, replicas do not communicate
among themselves and the premature crash of each one does not mean a system unavailability, but an user
request retry [10].

Although the aforementioned solution is successfully employed on server-based applications, tightly-
coupled HPC-driven scientific applications cannot benefit from the use of these mechanisms. Generally,
these scientific programs have been designed to use a fixed number of resources, and cannot explore elasticity
without an appropriate support. In other words, the simple addition of instances and the use of load balancers
have no effect in these applications since they are not able to detect and use these resources [11]. Technically,
over recent years most parallel applications have been developed using the Message Passing Interface (MPT)
1.x, which does not have any support for changing the number of processes during the execution [12].
While this changed with MPI version 2.0, this feature is not yet supported by many of the available MPI
implementations [9]. Moreover, significant effort is needed at application level both to manually change the
process group and to redistribute the data to effectively use a different number of processes. Furthermore,
the consolidation (the act of turning off) a VM running one or more processes can incur in an application
crash, since the communication channels among the processes are suddenly disconnected.

Load Thresholds

scaling out:
+ resources
+energy consumption

- system load scaling in:
A — - resources
S - energy consumption
e + system load
3 3 //\\
S <] ~
- - /
v
Time Time
(@ ° (b)

Figure 1: Different threshold organizations: (a) upper threshold close to 100% and lower threshold close to
0%, so avoiding load violations and; (b) upper and lower thresholds close to 50% resulting load violations.
In (b), we can observe that after exceeding the upper threshold, new resources take place and the load goes
down since it is better distributed over a larger number of compute nodes. Yet in (b), the complementary
situation happens when reaching the lower threshold

Aiming at providing cloud elasticity for HPC applications in an efficient and transparent manner, we
propose a model called AutoElastic!. Efficiency is addressed at both time and energy management per-
spectives on changing from one resource configuration to another to handle modifications in the workload.
Moreover, transparency is addressed by providing cloud elasticity at middleware level. Since AutoElastic
is a PaaS-based (Platform as a Service) manager, the programmer does not need to change any line of the
application’s source code to take profit of new resources. The proposed model specifically assumes that the
target HPC application is iterative by nature, i.e., it has a time-step loop. This is a reasonable assumption
for most MPI programs, so this does not limit the applicability of our framework. AutoElastic’s contributions
can be divided in two ways as follows:

e Elastic infrastructure for HPC applications to provide asynchronous elasticity, both for not blocking
any processes when instantiating or consolidating VMs and for managing the change on the number
of processes avoiding any possibility of application crash;

1Project website: http://autoelastic.github.io/autoelastic

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

e Taking into account the AutoElastic’s reactive behavior, we analyzed the impact of different upper
and lower threshold values and four load patterns (constant, ascending, descending and wave)
on cloud elasticity when executing a scientific application compiled using the AutoElastic prototype.

This article describes the AutoElastic model and its prototype, developed to run over the OpenNebula
private cloud platform. Furthermore, it presents the rationales on AutoElastic evaluation, the implemen-
tation of a numerical integration application and a discussion about its performance with cloud elasticity.
The remainder of this article will first introduce the related work in Section 2. Section 3 is the main part
of the article, describing AutoElastic together with its application model in detail. Evaluation methodology
and results are discussed in Sections 4 and 5. Finally, Section 6 emphasizes the scientific contribution of the
work and notes several challenges that we can address in the future.

2 Related Work

Cloud computing is addressed both by providers with commercial purposes and open source middlewares,
as well as academic initiatives. Regarding the first group, the initiatives in the Web offer elasticity either
manually when considering the user viewpoint [13, 14, 15] or through preconfiguration mechanisms for
reactive elasticity [3, 10, 16]. In particular, in the latter case, the user must setup thresholds and actions of
elasticity, which may not be trivial for those not experts in cloud environments. Systems such as Amazon
EC22, Nimbus® and Windows Azure* are examples of this methodology. In particular, Amazon EC2 eases the
allocation and preparation of the VM but not the automatic configuration which is a requirement for a truly
elastic-aware cloud platform. Concerning the middlewares for private clouds, as OpenStack®, OpenNebula®,
Eucalyptus” and CloudStack®, the elasticity is normally controlled manually, either on the command line or
via a graphical application that comes together with the software package.

Academic research initiatives seek to reduce gaps and/or enhance cloud elasticity approaches. ElasticMPI
proposes elasticity in MPI applications by stop-reconfigure-and-go approach [9]. Such action may have a
negative impact, especially for HPC applications that do not have long duration. In addition, the ElasticMPI
approach makes a change in the application’s source code in order to insert monitoring policies. Mao, Li
and Humphrey [17] deal with auto-scalability by changing the number of VM instances based on workload
information. In their scope, considering that a program has deadlines to conclude each of its phases, the
proposal works with resources and VMs to meet these deadlines properly. Martin et al. [18] present a
typical scenario of requests over a cloud service that works with a load balancer. The elasticity changes the
amount of worker VMs according to the demand on the service. In the same approach of using a balancer
and replicas, Elastack appears as a system running on OpenStack to address the lack of elasticity of the
latter [19].

Weiwei et al. [20] use CloudSim [21] to enable dynamic resource allocations using thresholds. The
resources monitoring occurs between malleable time intervals according the application regularity. Although,
the application execution blocks during the resource reorganizations and there is no peak treatment when
violating a threshold. This approach requires previous application information to define the thresholds. The
system monitors variations in the workload to decide when resource organizations are necessary. In the tests
using CloudSim, the authors used the threshold values 95%, 75% and 50%. Rui Han et al. [22] present
an approach to resource management focusing IaaS (Infrastructure as a Service) to Cloud providers. The
system monitors the application response time and compare the values with predetermined thresholds. When
the response time reaches a threshold, the system uses horizontal and vertical elasticity to reorganize the
resources. The thresholds 80% and 30% were used in the tests. Spinner et al. [23] propose an algorithm that
calculates at every new application phase the ideal resource configuration based in thresholds. In this way,
the approach uses vertical elasticity to increase or decrease the number of CPU’s available to the application
through virtual machines. The algorithm works with a aggressiveness parameter to define the elasticity
behavior. In the tests, the authors used the threshold 75%.

Chuang et al. [24] affirm that we need a model in which programmers do not need be aware of the actual
scale of the application or of the runtime support that dynamically reconfigures the system to distribute
application state across computing resources. To address this point, the authors developed EventWave, a
programming model and runtime support for tightly coupled elastic cloud applications. The initiative focuses

2http://aws.amazon.com
3http://www.nimbusproject.org
4http://azure.microsoft.com
Shttps://www.openstack.org
Shttp://opennebula.org

Thttps:/ /www.eucalyptus.com
8http://cloudstack.apache.org

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

on a game server and works only with VM migration. Gutierrez-Garcia and Sim [25] developed an agent-
based framework to address cloud elasticity for bag-of-tasks demands. The status of the BoT execution is
verified every hour; if it is not completely executed, all the cloud resources are reallocated for the next hour.
Wei et al. [26] explore elastic resource management on the PaaS level. When applications are deployed, they
are first allocated on separate servers, so that they can be monitored more meticulously. Then, the authors
collect long-term monitoring data to estimate the application’s characteristics, time that is added to the
normal execution of the application. Aniello et al. [27] developed an architecture for automatically scaling
replicated services. A queuing model of the replicated service is used to compute the expected response time,
given the current configuration (number of replicas) and the distributions of both input requests and service
times. However, a queuing system is not the best option for dynamic applications and/or infrastructure
because it is based on rigid parameters. Leite et al. [28] developed a middleware named Excalibur to
execute parallel applications in the cloud automatically. Excalibur works with independent tasks organized
in different partitions. The algorithms must to know some information in advance, such as the total number
of tasks and the estimated CPU time to execute each type of task.

Table 1 presents a comparison of the most representative works discussed in this section. Elasticity is
explored further in the TaaS level as a reactive approach. In this way, the works are not unisons about the
use of a single threshold for the tests. For example, it is possible to note the following values: (i) 70% [30];
(il) 75% [31]; (iii) 80% [32]; (iv) 90% [19, 33]. These values deal with upper limits that when exceeded,
trigger elasticity actions. Furthermore, an analysis of the state-of-the-art in elasticity allows to point out
some weaknesses of the academy initiatives, which can be summarized in five statements: (i) no strategy is
proposed to assess whether it is a peak when reach a threshold [18, 19]; (ii) need to change the application
source code [9, 29]; (iii) need to know the application’s data before its execution, such as the expected
time of execution of each component [9, 34]; (iv) need to reconfigure resources with stop of the application
and subsequent recovery [9]; (v) supposition that the communication between VMs is given at a constant
rate [35].

To summarize, in the best of our knowledge, three articles address cloud elasticity for HPC applica-
tions [9, 18, 29]. They have in common the fact that they approached the master-slave programming model.
Particularly, the initiatives [9, 29] are based on iterative applications, where there is a redistribution of
tasks by the master entity at each new phase. Applications that do not have an iterative loop cannot be
adapted to this framework, since it uses the iteration index as execution restarting point. In addition, the
elasticity in [29] is managed manually by the user, obtaining monitoring data using the framework proposed
by the authors. Finally, the purpose of the solution of Martin et al. [18] is the efficient handling of requests
to a Web Server. It acts as a delegator and creates and consolidates instances based on the flow of arrival
requests and the load of worker VMs.

3 AutoElastic: Reactive-based Cloud Elasticity Model

This section describes the AutoElastic model, which analyzes alternatives for the following problem state-
ments:

1. Which mechanisms are needed to provide cloud elasticity transparently at both user and application
levels?

2. Considering resource monitoring and VM management procedures, how can we model the elasticity as
a viable capability on HPC applications?

Our idea is to provide reactive elasticity totally in a transparent and effortless way to the user, who
does not need to write rules and actions for resource reconfiguration. In addition, users must not need
to change their parallel application, not inserting elasticity calls from a particular library or modifying
the application to add/remove resources by themselves. Considering the second aforementioned question,
AutoElastic should be aware of the overhead to instantiate a VM, taking this knowledge to offer this feature
without prohibitive costs. Figure 2 (a) illustrates the traditional approaches of providing cloud elasticity to
HPC applications, while (b) highlights AutoElastic’s idea. AutoElastic allows users to compile and submit
a HPC non-elastic aware application to the cloud. So, the middleware at PaaS level firstly transforms a
non-elastic application in an elastic one and secondly, it manages resource (and also application processes,
consequently) reorganization through automatic VM allocation and consolidation procedures.

The first AutoElastic ideas were published in [36]. In [36], our idea was to present a deep analysis of the
state-of-the-art in the cloud elasticity area, presenting the gaps in the HPC landscape. The mentioned article
considered only a pair of thresholds (one upper threshold and one lower threshold), besides not explaining the
interaction between the application processes and the AutoElastic Manager. Now, the current article presents

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

Table 1: Elasticity-related initiatives, emphasizing their goals and weak points

System

Description

Drawbacks

ElasticMPI [9]

Elasticity in MPI applications by stop-reconfigure-and-
go approach. The user must define constraints based on
a specific time frame within which the user would want
the application to complete, or based on a threshold
value of the cost that they are willing to spend.

Necessary modifications in the application’s
source code in order to insert monitoring poli-
cies; Requires to know the application’s data
before its execution; Need to reconfigure re-
sources with stop of the application and sub-
sequent recovery.

Mao, Li and
Humphrey [17]

Deal with auto-scalability by changing the number of
VM instances based on workload information. The ap-
proach reduces user cost by acquiring appropriate in-
stance types which incurs less money and shuts down
unnecessary instances when they approach full hour op-
eration.

Requires to know the application’s data before
its execution.

Martin et Typical scenario of requests over a cloud service that No strategy is proposed to assess whether it is
al. [18] works with a load balancer. The elasticity changes the a peak when reach a threshold.
amount of worker VMs according to the demand on the
service.
Weiwei et Propose a threshold-based dynamic resource allocation The application blocks during the resource re-
al. [20] scheme for cloud computing that dynamically allocate organizations and there is no peak treatment
the virtual resources among the cloud computing ap- when violating a threshold. This approach re-
plications based on their load changes and can use the quires previous application information to de-
threshold method to optimize the decision of resource fine the thresholds.
reallocation. In the tests using CloudSim, the authors
used the threshold values 95%, 75% and 50%.
Rui Han et Propose a lightweight approach to enable cost-effective No strategy is proposed to assess whether it is
al. [22] elasticity for cloud applications. The approach operates a peak when reach a threshold.
fine-grained scaling at the resource level itself (CPUs,
memory, I/O, etc) in addition to VM-level scaling. The
thresholds 80% and 30% were used in the tests.
Spinner et Propose a layered performance model based on queuing- Do not distinguish between different workload
al. [23] theory that describes the non-trivial relationship be- classes in the application performance.
tween the application performance and its resource al-
location. The authors focus on the vertical scaling of
individual VMs of an application, where resources are
added to or removed from each VM at runtime. The
threshold values 75% and 30% were used in the tests.
Rajan et Approaches cloud elasticity for the master-slave pro- Needs to change the application source code.
al. [29] gramming model. The elasticity is managed manually

by the user, obtaining monitoring data using the frame-
work proposed by the authors

EventWave [24]

The authors developed a programming model and run-
time support for tightly coupled elastic cloud applica-
tions. The initiative focuses on a game server and works
only with VM migration.

The application code must consider the Event-
‘Wave context.

Wei et al. [26] Explore elastic resource management on the PaaS level. No strategy is proposed to assess whether it is
The system collect long-term monitoring data to esti- a peak when reach a threshold.
mate the application’s characteristics, time that is added
to the normal execution of the application.
Aniello et Developed an architecture for automatically scaling Requires to know the application’s data dur-
al. [27] replicated services. A queuing model of the replicated ing the execution; A queuing system is not the

service is used to compute the expected response time,
given the current configuration (number of replicas) and
the distributions of both input requests and service
times.

best option for dynamic applications and/or
infrastructure because it is based on rigid pa-
rameters.

Leite et al. [28]

Developed a middleware named Excalibur to execute
parallel applications in the cloud automatically. Excal-
ibur works with independent tasks organized in different
partitions. The algorithms must to know some informa-
tion in advance, such as the total number of tasks and
the estimated CPU time to execute each type of task.

Requires to know the application’s data before
its execution.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

Rules Actions Application Application
if metric > x Af:Allocate | | #include< AutoElastic Manager '\ | #include<
then A1 VM int main() X int main()
if metric <y A2: Deallocate | | {.... {n
then A2 VM } }
Y
Monitoring %
 Rules ;| Ations Resources
......... N
Resources 1 T 1
ARSI Rl i Application Resource
! Application } Resource {(AutoElastic "\ L] Management
: *] Management I\ Middleware /'
e Cloud Front-End
Cloud Front-End
Cloud Cloud
() ° (b)

Figure 2: General ideas on using elasticity: (a) standard approach adopted by Amazon AWS and Windows
Azure, in which the user must pre-configure a set of elasticity rules and actions; (b) AutoElastic idea,
contemplating a manager that coordinates the elasticity actions and configurations on behalf of the user

a novel prediction function (see Equations 1 and 2), a graphical demonstration about how an application
talks with the Manager and extensive details about the application used in the tests. Moreover, in the current
article we are presenting novel types of graphs, exploring the impact of the thresholds in the application
performance, the relationship between CPU load and allocated CPU cores, and energy consumption profiles.

3.1 Architecture

AutoElastic is a cloud elasticity model that operates at the PaaS level of a cloud platform, acting as a
middleware that enables the transformation of a non-elastic parallel application in an elastic one. The
model works with both automatic and reactive elasticity in their horizontal (managing VM replicas) and
vertical modes (resizing computational infrastructure), providing allocation and consolidation of compute
nodes and virtual machines. As PaaS proposal, AutoElastic proposes a middleware to compile an iterative-
based master-slave application, besides an elasticity manager. Figure 3 (a) depicts users interaction with the
cloud, who needs to concentrate their efforts only on the application coding. The Manager hides the details
from the user on writing elasticity rules and actions. Figure 3 (b) illustrates the relation among processes,
virtual machines and computational nodes. In our scope, an AutoElastic cloud can be defined as follows:

e Definition 1 - AutoElastic cloud: a cloud modeled with m homogeneous and distributed computa-
tional resources, where at least one of them (Node0) is always active. This node is in charge of running
a VM with the master process and other ¢ VMs with slave processes, where ¢ means the number of
processing units (cores or CPUs) inside a particular node. The elasticity grain for each scaling up or
down action refers to a single node, and consequently, its VMs and processes. Lastly, at any time, the
number of VMs running slave processes is equal to n = ¢ X m.

Here, we are presenting the AutoElastic Manager as an application outside the cloud, but it could be
mapped to the first node, for example. This flexibility is achieved by using the API (Application Program-
ming Interface) of the cloud software packages. Taking into account that HPC applications are commonly
CPU intensive [37], we opted for creating a single process per VM and ¢ VMs per compute node to explore
its fully potential. This approach is based on the work of Lee et al. [38], where they seek to explore a better
efficiency in parallel applications.

The user can enter an SLA (Service Level Agreement) with the minimum and maximum number of allowed
VMs. If this file is not provided, it is assumed that this maximum is twice the number of VMs observed
at the application launch. The fact that the Manager, and not the application itself, increases or decreases
the number of resources provides the benefit of asynchronous elasticity. Here, asynchronous elasticity means
that process execution and elasticity actions occur concomitantly, not penalizing the application because of
resource overhead (node and VM) reconfiguration (allocation and deallocation). However, this asynchronism
leads to the following question: How can we notify the application about resource reconfiguration? To
accomplish this, AutoElastic communicates among the VMs and the Manager using a shared memory area.
Other options of communication should also be possible, including using NF'S, message-oriented middleware
(such as JMS or AMQP) or yet tuple space (JavaSpaces, for instance). The use of a shared area for data

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

SSH Connection and

Application Cloud-supported
Application Program
o Interface (API)
I L

Virtual Mo VMe-1 | VMzc-1 | VMzc | VMac-1 | VM (m-1)e VMn1 A
AutoElastic
Area Manager
for

Machines Masler

Computational 5 Data
Resources i Share
q Front-End
@ Master process
Int tion Network @ Slave process
AutoElastic Cloud nterconnection Networ P

Figure 3: Distribution of nodes, VMs and processes using the AutoElastic cloud infrastructure, where each
VM encompasses a single application process and each node runs ¢ processing VMs, where ¢ denotes the
number of processing units in the node

interaction among VM instances is a common approach in private clouds [13, 14, 15]. AutoElastic uses this
idea to trigger actions as presented in Table 2.

Table 2: Actions provided through the shared data area

Action Direction Description

Action 1 AutoElastic Manager — Master Process There is a new compute node with ¢ virtual machines, each one with a
new application process, which has an IP and a unique identification.

Action 2 AutoElastic Manager — Master Process Request permission to consolidate a compute node and its VMs.

Action 3 Master Process — AutoElastic Manager Giving permission to consolidate the previously requested node.

Based on Actionl, the current processes may start working with the new set of resources (a single node
with ¢ VMs, each one with a new process). Figure 4 illustrates the functioning of the AutoElastic Manager
when creating a new slave, so launching Action 1 afterwards. Action2 is relevant for the following reasons:
(i) not stopping a process executing while either communication or computation procedures take place; (ii)
ensuring that application will not be aborted with the sudden interruption of one or more processes. In
particular, the second reason is important for MPI applications that run over TCP/IP networks, since they
commonly crash with a premature termination of any process. Action3 is normally taken by a master process,
which ensures that the application has a consistent global state where processes may be disconnected properly.
Afterwards, the remaining processes do not exchange any message to the given node. We are working with
a shared area because it makes easier the notification of all processes about resource addition or dropping
and then, performing communication channel reconfigurations in a simple way.

AutoElastic offers cloud elasticity using the replication technique. In the activity of enlarging the in-
frastructure, the Manager allocates a new compute node and launches new virtual machines on it using an
application template. The bootstrap of a VM is ended with the execution of a slave process which will
do requests to the master. The instantiation of VMs is controlled by the Manager and only after they are
running the Manager notifies the other processes through Actionl. The consolidation procedure increases
the efficiency on resource utilization (not partially using the available cores) and also provides a better man-
agement of energy consumption. Particularly, Baliga et al. [39] claim that the number of VMs in a node is
not an influential factor for energy consumption, but the fact of a node is turned on or not.

As in [16] and [31], data monitoring is given periodically. Hence, AutoElastic Manager obtains the
CPU metric, applies time series based on past values and compares the final metric with the maximum
and minimum thresholds. More precisely, we are employing Moving Average in accordance with Equations
2 and 1. LP(i) returns a CPU load prediction when considering the execution of the n slave VMs in the
Manager intervention number i. To accomplish this, M M (i, j) informs the CPU load of a virtual machine
j in the observation i. Equation 2 uses moving average by considering the last z observations of the CPU
load Load(k,j) over the VM j, where ¢ — z < k < 4. Finally, Actionl is triggered if LP is greater than the
maximum threshold, while Action2 is thrown when LP is lower than the minimum threshold.

n—1
- % > MM, j) (1)
=0

where

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

Verifies the occurrence of Action 1.
The Master accepts a connection
from the new slave, reorganizing

the communication topology

Master

Pocess —@—@— @ @ @@

(compiled with

the AutoElastic Scaling out Writes Action
middleware) operation: Verification 1in the
VM of the VM shared
allocation status partition
AutoElastic r_’kﬁ
Manager
VM Launching
New VM, with
A NEW SIAVE - vm e, N N
Process Overhead Time
related to VM Requef;ts
bootstrappin connection
i with the
master

Verification of elasticity Periodical After bootstrappi
A - pping a
actions in the shared O observation O VM, a new process is U Procedure D Information
data area at each point automatically executed
external loop iteration

Figure 4: Functioning of the master, the new slave and the AutoElastic Manager to enable the Asynchronous
Elasticity

Y keiozsq Load(k, j)

z

MM(i,j) =

for i > z.

3.2 Model of Parallel Application

AutoFElastic exploits data parallelism on iterative-based message passing parallel applications. Figure 5
shows an iterative application supported by AutoElastic where each iteration is composed by three steps:
(a) the process master distributes the load among the active slave processes; (b) slave processes compute
the load received by the master process; and (c) the slave processes send the computed results to the master
process. The elasticity occurs always in between each iteration where the computation has a consistent global
state, allowing changes in the number of processes. In particular, the current version of the model still has
the restriction to operate with applications in the master-slave programming style. Although trivial, this
style is used in several areas, such as genetic algorithms, Monte Carlo techniques, geometric transformations
in computer graphics, cryptography algorithms and applications that follow the Embarrassingly Parallel
computing model [9]. However, the Actionl allows existing processes to know the identifiers of the new
ones allowing an all-to-all communication channel reorganization eventually. Another characteristic is that
AutoFElastic deals with applications that do not use specific deadlines for concluding the subparts.

As AutoElastic project decision, elasticity feature must be offered to programmers without changing their
application. Thus, we modeled the communication framework by analyzing the traditional interfaces from
MPI 1.x and MPI 2.x. The first creates processes statically, where a program begins and ends with the same
number of processes. On the other hand, MPI 2.0 has support for elasticity, since it offers the possibility of
creating processes dynamically, with transparent connections to the existing ones. AutoElastic follows the
MPMD (Multiple Program Multiple Data) approach from MPI 2.x, where the master has an executable and
the slaves another.

Based on the MPI 2.0, AutoElastic works with the following directives: (i) publication of connection ports;
(ii) finding the server based on a particular port; (iii) accepting a connection; (iv) requesting a connection;
(v) making a disconnection. Different from the approach in which the master process launches the slaves
using a spawn-like directive, the proposed model operates according to another approach of MPI 2.0 for
dynamic process management: connection-oriented communication using point-to-point, as sockets do. The
launching of a VM automatically occurs in the execution of a slave process, which requests a connection with
the master afterwards. Here, we emphasize that an application with AutoElastic does not need to follow the
MPI 2.0 interface, but the semantic of each aforementioned directive.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

Consistent Global State of the
Distributed System

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration n

/—/Hér—/% — /—HEK—M

process

@ Master
1. Verify 2. Connect 8. Distribute 4.Receive 5. Disconnect process
C : load among the data from
elasticity. with slaves. slaves.
the slaves slaves.
@ Slave

Step-by-step execution of an iteration in the Master side

Figure 5: Iterative application supported by AutoElastic. Process reorganization takes place before starting
each new iteration

1. size = initial_mapping(ports); ® 1. master = lookup(master_address, naming); ® 1.int changes =0;
2. for (j=0; j< total_tasks; j++) 2. port = create_port(IP_address, VM_id); 2.if (action == 1)
3.4 3. while (true) 3.{
4. publish_ports(ports, size); 4.{ 4 changes += add_VMs();
5. for (i=0; i< size; i++) 5. connection_request(master, port); 5.}
6 { 6. recv_sync(master, task); 6. else if (action == 2)
7 conection_accept(slaves|i], ports[i]); 7. result = compute(task); 7.4
8. 8. send_assync(master, result); 8 changes -= drop_VMs();
9. calculate_load(size, work[j], intervals); 9. disconnect(master); 9. allow_consolidation();
10. for (i=0; i< size; i++) 10.} 10.
11. { 11.if (action ==1 or action == 2)
12. task = create_task(work([j], intervals[i]]); 12. {
13. send_assync (slaves]i], task); 13. reorganize_ports(ports);
14. } 14.}
15. for (i=0; i< size; i++) 15. size += changes;
16.
17. recv_sync(slavesl[i], results[i];
18.
19. store_results(slave[j], results);
20. for (i=0; i< size; i++)
21.
22. disconnect(slaves[i]);
23. }
24. unpublish_ports(ports);
25.}
(a) ° (b) ® (c)

Figure 6: Application model in pseudo-language: (a) Master process; (b) Slave process; (¢) elasticity code
to be inserted in the Master process at PaaS level by using either method overriding, source-to-source
translation or wrapper technique

Figure 6 (a) presents a pseudo-code of the master process. The master performs a series of tasks,
sequentially capturing a task and dividing it before sending for processing on slaves. Concerning the code,
the method in the line 4 of Figure 6 (a) checks the distributed environment and publishes a set of ports
(disjoint set of numbers, names or a combination of them) to receive a connection from each slave process.
Data communication happens in an asynchronous model, where sending data to the slaves is non-blocking
and receiving data from them is blocking. The occurrence of an external loop is convenient for elasticity,
since the beginning of each iteration is a possible point for resource and process reconfiguration, including
communication channel reorganizations. Still, the beginning of a new loop implies in a consistent global
state for the distributed system.

The transformation of a non-elastic in an elastic application can be offered in different ways:

(i) implementation of an object-oriented program using polymorphism to override the method to manage
the elasticity;

(ii) using a source-to-source translator to insert code between lines 4 and 5 of the master code;

(iii) development of a wrapper for procedural languages in order to change the function in line 4 of Figure

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

6 (a). Regardless of the technique, the elasticity code is simple and shown in Figure 6 (c). A region of
additional code checks the shared directory if there is a new action for AutoElastic. For example, this
part of code can be inserted as an extension of the function publish_ports() following the technique
number iii above.

Although the initial focus of AutoElastic is on master-slave, the use of the sockets-like MPI 2.0 ideas
eases the inclusion of processes and the reestablishment of connections to compose a new totally arbitrary
topology. At implementation level, it is possible to optimize connections and disconnections if the process
persists in the list of active processes. This behavior is especially pertinent over TCP /IP connections, since
this suite uses an onerous three-way hand shake protocol for connection establishment.

4 Evaluation Methodology

We developed an iterative application to execute in the cloud with different sets of load patterns and elas-
ticity thresholds. Besides the metric application time, our idea consists in analyzing the elasticity reactivity
and the costs in terms of infrastructure to achieve a particular execution time. The application computes
the numerical integration of a function f(z) in a closed interval [a,b]. In general, numerical integration
has been used in two ways: (i) as benchmark for HPC systems, including multicore, GPU, cluster and grid
architectures [40, 41]; (ii) as a computational method employed on simulations of dynamic and electrome-
chanical systems [42, 43]. The first case explains why we are using numerical integration to evaluate the
AutoElastic model. Here, we are using the Composite Trapezoidal rule from Newton-Cotes postulation [42].
Newton-Cotes formula can be useful if the value of the integrand is given at equally-spaced points. Firstly,
consider the division of the interval [a,b] in s equally-spaced subintervals, each one with length h ([z;, z;41],
fori=0,1,2,....,s — 1). Thus, x;41 —x; = h = b% The integral of f(z) is defined as the sum of the areas
of the s trapezoids contained in the interval [a,b] as presented in Equation 3. Figure 7 shows two examples
of splitting the interval [a,b]: in (a) with 4 and in (b) with 20 trapezoids. Considering this figure, we can
observe that the larger the number of trapezoids, or subintervals, the greater the precision to the precision
to compute the total area in [a,b].

b
/ f(CC) d$%A0+A1+A2+A3+...+AS,1 (3)
where A; = area of trapezoid i, with ¢ =0,1,2,3,...,s — 1.

f(x) ® A f(x

A TN

rrrrrruri
a b a b

@) ¢ (b)

Figure 7: Representation of two examples of the Newton-Cotes postulation splitting the interval [a,b] in 4
and 20 equally-spaced subintervals. The larger the number of subintervals, the larger the precision and the
computing workload to calculate the numerical integration

b z—1
[@y dom J1fa0) + fa) + 2.3 i) (4)

a i=1
Equation 4 shows the development of the numerical integration in accordance with the Newton-Cotes
postulation. This equation is used to develop the parallel application modeling. The values of xy and
Zs in Equation 4 are equal to a and b, respectively. In this context, s means the number of subintervals.
Following this Equation, there are s+1 f(x)-like simple equations for getting the final result of the numerical
integration. The master process must distribute these s + 1 equations among the slaves. Logically, some

10

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

slaves can receive more work than others when s+ 1 is not fully divisible by the number of slaves. As being
defined in s the amount of subintervals to compute the integration, the greater this parameter, the larger
the computational load involved on reaching the result for a particular equation.

Aiming at analyzing the impact of different thresholds in the parallel application, we used the aforesaid
parameter s to model four load patterns: Constant, Ascending, Descending and Wave. An execution of
a load consists in start the application with a set of integral equations with the same parameters and a
different s for each one. In each iteration the master process distributes the load of one equation. Varying
the parameter s we can increase or decrease the load for each equation. Table 3 shows the function used to
calculate the load for each equation in each iteration. The idea of using different patterns, or workloads, for
the same HPC application is widely explored in the literature to observe how the input load can impact in
points of saturation, bottlenecks and resource allocation and deallocation [44, 45, 46].

Table 3: Functions to express different load patterns. In load(z), z is the iteration index at application
runtime

Parameters
Load Load Function
v w t Z
Constant load(z) = % - 1000000 - -
Ascending load(z) =z *xt*z - - 0.2 500
Descending load(z) =w — (x *t* z) - 1000000 0.2 500
Wave load(z) =v*z*xsen(t*z)+v*z+w 1 500 0.00125 500000

Figure 8 shows a graphical representation of each pattern. The x axis in the graph of Figure 8 expresses
the functions (each iteration represents a function) that are being tested, whereas the y axis informs the
respective load. Again, the load represents the number of subintervals s between limits a and b, which
in this experiment are 1 and 10, respectively. A greater number of intervals is associated with a greater
computational load for generating the numerical integration of the function. For simplicity, the same function
is employed in the tests, but the number of subintervals for the integration varies.

Ascending Constant Descending Wave

=
o

Number of subintervals
[load(x)] x 200000

o B N W A OO N O ©
T T T T T T T T T

1 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
Iteration

Figure 8: Graphical representation of the load patterns considered in the model evaluation

The loads were executed in two different scenarios: (i) starting with 2 nodes and (ii) starting with 4
nodes. We are using 2.9 GHz dual core nodes with 4 GB of RAM memory and an interconnection network
of 100 Mbps. Each load was executed against each scenario when considering AutoElastic with and without
enabling the elasticity feature. In the case where the elasticity is active, all loads were tested 25 times, where
25 is the number of combinations of maximum and minimum possible thresholds. Assuming the choices of
different works, where we can find thresholds like 50% [47], 70% [30][47], 75% [31], 80% [33][47] and 90%
[19][47], for the maximum value, we adopted 70%, 75%, 80%, 85% and 90%, while the minimum thresholds
were 30%, 35%, 40%, 45% and 50%. Particularly, the range for the minimum threshold is based on the
work of Haidari et al. [47], who propose a theoretical analysis with queuing theory to observe cloud elasticity
performance.

n

Energy = Z(z x T(7)) (5)

i=1

11

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

Cost = Energy x App_Time (6)

Besides the performance perspective, we also analyze the energy consumption in order to perceive the
impact of the elasticity feature. In other words, we do not want to reduce the application time by using
a large number of resources, thus consuming much more energy. Empirically, we are using Equation 5
for estimating the energy consumption. This equation relies on the close relationship between energy and
resource consumption as presented by Orgerie et al. [48]. In this context, we use Equation 5 to create an
index of the resource usage. Here, we use the same ideas of the pricing model employed by Amazon and
Microsoft; they consider the number of VMs at each unit of time, which is normally set to an hour. T'(7)
presents the time that the application executed with ¢ virtual machines. Therefore, our unit of time depends
on the measure of T' (in minutes, seconds or milliseconds, and so on) in which the final intent is to sum
the number of VMs used at each unit of time. For example, considering a unit of time in minutes and an
application completion time of 7 min, we could have the following histogram: 1 min (2 VMs), 1 min (2
VMs), 1 min (4 VMs), 1 min (4 VMs), 1 min (2 VMs), 1 min (2 VMs) and 1 min (2 VMs). Finally, 2 VMs
were used in 5 min (partial resource equal to 10) and 4 VMs in 2 min (partial resource equal to 8), summing
to 18 for Equation 5. Thus, Equation 5 analyzes the use from 1 to n VMs, considering the partial execution
time on each infrastructure size. To the best of our understanding, the energy index here is relevant for
comparison among different elastic-enabled executions. Figure 9 represents the energy consumption as an
area calculation. Taking into account both our measure of energy (see Equation 5) and the application time,
we can evaluate the cost Cost by multiplying both aforementioned values (see Equation 6). The final idea
consists of obtaining a better cost when enabling the AutoElastic’s elasticity feature in a comparison with
an execution of a fixed number of processes.

=
o

Energy

Active Virtual Machines
o (=] N w £ o (=2} ~ © ©o

Time

Figure 9: Graphic representation of energy consumption using Equation 5

5 Discussing the Results

This section shows the results obtained when executing the parallel application in the cloud considering two
scenarios:

(i) using AutoElastic, enabling its self-organizing feature when dealing with elasticity;

(ii) using AutoElastic, considering scheduling computation, but without taking any elasticity action. Par-
ticularly, the values of thresholds are not important in this second scenario since infrastructure recon-
figuration does not take place.

Subsection 5.1 presents an analysis of the impact on the application time when varying the threshold
configuration. The results concerning energy consumption and cost to execute the application are presented
in the Subsection 5.2.

5.1 Impact of the Thresholds on Application Time

Aiming at analyzing the impact and possible trends of the employed thresholds on application time, we
organized the results in the Figures 10 and 11. Both present the final execution time when enabling
elasticity and maximum and minimum thresholds. At performance perspective, we observed that the time
is not significantly changed when varying the minimum threshold (see the lower part of the Figures 10
and 11). On the other hand, the maximum threshold impacts in the application performance directly, where

12

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

the larger the maximum threshold the larger the execution time. The lack of reactivity is the main cause
for this situation, i.e, the application will execute in the overloaded stated during a larger period when
evaluating thresholds close to 90%. Particularly, this behavior is more evident when using the Ascending
function. In this case, the workload grows up continuously and then, a threshold close to 70% can allocate
more resource faster, relieving the system CPU load quickly too.

—o—Constant -#-Ascending Descending —>Wave
Lower threshold = 30 Lower threshold = 35 Lower threshold = 40 Lower threshold = 45 Lower threshold = 50
24 24 24 24
23 v 23 v 23 23 o
22 22 22 22
o 21 o 21 g 21 o 21 o 21
2 20 = 20 220 =20 = 20
X x X X
=19 =19 — 19 = =19 =19
8 8 3 18 B 18 B 18
218 T 18 g)
§ v § 17 U 17 o 17 § 17
2 16 216 7 w16h "’16 i & 160
£ 15 £ 15 £ 15 E 15 £ 15
T s S g = 14 Ry
13 13 ——"t—t+—+— 13 13 18
70 75 80 85 90 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90
Upper Threshold Upper Threshold Upper Threshold Upper Threshold Upper Threshold
(a)
Upper threshold = 70 Upper threshold = 75 Upper threshold = 80 Upper threshold = 85 Upper threshold = 90
o - > 2 2! ey
23 23 23 23 w 23— —v—'v
22 22 22 22 22
o 21 o 21 o 21 o 21 o 21
o
= 20 =20 = 20 = 20 = 20
x < <
=19 =19 =19 —19 =19
12} w w 172 1%
gws\M gmm g8 g8 g1
8 17] 17] 17] 17] 17
LAHAT AT AT A— 4| 216 216 216 216
T e — o} T T 9]
£ 15 E15 E15 £15 £15
Ty g g g g
13 —at—F—+— 18—ttt 13 18—ttt 18—ttt
30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50
Lower Threshold Lower Threshold Lower Threshold Lower Threshold Lower Threshold

(b)

Figure 10: Trend of application execution time starting with 2 nodes varying the upper (a) and the lower
(b) thresholds

Table 4 presents the results for the best and the worst execution times when varying the used load patterns
and the scenarios. In addition, Figures 12 and 13 illustrate the performance involving the column of the
best results under the two aforementioned scenarios. Each node starts with two VMs, each one running a
slave process in one of two cores of the node. Considering that the application is CPU-bound, the execution
with 4 nodes outperforms about 65% in average the tests with 2 nodes without enabling elasticity. This
explains also the better results with elasticity when considering the start configuration with 2 and 4 nodes.
In other words, the possibility to change the number of resources has a stronger impact when initializing a
more limited configuration. For example, Figure 12 (a) shows the Ascending function and the increment up
to 12 CPUs (6 nodes) with elasticity, denoting a performance gain up to 31%. Here, we can observe that
the used CPU reaches the total allocated quickly, demonstrating the application’s CPU-bound character.
Considering this figure and the Descending function, we allocate up to 10 CPUs that become underutilized,
being deallocated close to the final of the application. This occurs because AutoElastic does not work with
previous knowledge of the application, acting only with data captured at runtime.

5.2 Energy Consumption and Cost

Figures 14 and 15 present an application execution profile, depicting the mapping of VMs when considering
the best and worst results (see Table 4). The start with 2 nodes (4 VMs) does not present elasticity actions
in the worst case when using the maximum threshold equal to 90%. This explains the results in the part
(b) of Figure 14. Yet with 2 nodes in the starting moment, threshold 70% is responsible for allocating up
to 12 VMs in the Ascending load as we can observe in Figure 14 (a). Contrary to this situation, Figure 15
shows less variation on resource configuration, when 4 nodes (or 8 VMs) are maintained in the larger part
of the execution. As exception, we can observe the Ascending function as the worst case, where a maximum
threshold equal to 90% is employed. The application starts reducing the number of VMs from 8, to 6 up 4,
using this last value in 96% of the execution. Although not exceeding a load of 90%, so not enlarging the

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

=4—Constant =#=Ascending -#-Descending =>=Wave

Lower threshold = 30 Lower threshold = 35 Upper threshold = 40 Lower threshold = 45 Lower threshold = 50
24 24 24 24 24
23 23 23 23 23
22 22 22 22 22
= 21 Z 21 g 2 g2 g2
o o o
— 20 — 20 — 20 — 20 — 20
X X X X X
— 19 =19 —19 =19 =19
8 8 S 18 3 18 3
T 18 ° 18 2 2 ° 18
317 317 317 317 317
Q [0} [0} [0} [0
216 £ 16 216 £ 16 2 16
(9] (o} [o} (o} Q
£ 15 €15 £15 £ 15 £ 15
Ty Y s Ry Y
13 13 13 13 13
70 75 80 85 90 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90
Upper Threshold Upper Threshold Upper Threshold Upper Threshold Upper Threshold
(a)
Upper threshold = 70 Upper threshold = 75 Upper threshold = 80 Upper threshold = 85 Upper threshold = 90
2 2% 2 - B
23 238 23 238 23
22 22 22 22 22
oo oo g2 o B-E-E-EE)
= 20 = 20 220 220 T 20 e
X X % x x
=19 =19 =19 =19 =19
3 3 3B 18 3B 18 W S 18
218 218 2 2 g
317 317 317 317 317
[0} [o] Q Q fo]
216 £ 16 216 2 16 £ 16

[} [} o] T [0}

£ 155! I I I £ 15 £ 15 £ 15 £ 15

Tugpgaa TufAAAg T s .
13 13 13 13 13

30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50
Lower Threshold Lower Threshold Lower Threshold Lower Threshold Lower Threshold

(b)

Figure 11: Trend of application execution time starting with 4 nodes varying the upper (a) and the lower
(b) thresholds

Table 4: The best and the worst results considering the time (in seconds) to execute the application of each
load in all scenarios. Here, Energy and Cost refer to the Equations 5 and 6, respectively

Best Results Worst Results
Mode Nodes/ Load Thresholds) Thresholds .
CPUs Pattern — Time Energy Cost — Time Energy Cost
Upper Lower Upper Lower
Ascending 70 ALL 1601 11160 17867160 90 ALL 2354 9416 22165264
g - 2/4 Constant 70 ALL 1569 11206 17582214 85 ALL 2305 9220 21252100
& 8 Descending 70 50 1580 12014 18982120 90 ALL 2334 9336 21790224
2 % Wave 70 30 1730 12518 21656140 90 ALL 2383 9532 22714756
‘é % Ascending 70 ALL 1578 11268 17780904 90 ALL 2348 9632 22615936
*g E 4/8 Constant 70 ALL 1401 11208 15702408 75 ALL 1435 11480 16473800
< Descending 70 30 1374 14184 19488816 80 45 1538 11636 17896168
Wave 70 30 1487 14082 20939934 90 50 1987 10578 21018486
Ascending - - 2317 9268 21473956 - - - - -
§ 2/4 Constant - - 2281 9124 20811844 - - - - -
-‘é ‘g Descending - - 2308 9232 21307456 - - - - -
o % Wave - - 2345 9380 21996100 - - - - -
E E, Ascending - - 1510 12080 18240800 - - - - -
g 2 us Constant - - 1384 11072 15323648 - - - - -
25 Descending - . 1506 12048 18144288
Wave - - 1544 12352 19071488 - - - - -

infrastructure, the allocation of more resource in this situation could help on both balancing the load among
the CPUs and reducing the application time.

Figure 16 illustrates the amount of allocated and used CPU considering the best cases of Table 4. All
loads used less CPU when enabling the elasticity, except in the Constant load when starting with 4 nodes

14

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

Allocated CPU === Thresholds Used CPU CPU Load
14 14 1 14 14
12 12 4 12 12
& 10 - 2 10 - Z 10 1 Z 10 -
o [O o
S 814 5 81 5 81 5 81
g 61 8 6 8 61 8 6 -
[€ € S
2 4 Z 4 2 4 Z 4
2 r”'” 2 2 J—‘W\ﬁ 2 m
0 0 T T T] 0 0 T T T]
0 600 1200 1800 2400 0 600 1200 1800 2400 0 600 1200 1800 2400 0 600 1200 1800 2400
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
14 14 - 14 - 14
12 12 A 12
=) > > o)
o & 10 o o
&) [) O
§ 8 4 “6 8 4 B 8 4 .‘5 8 .
g 2 g 5
£ 61 2 6 £ 61 2 6 -
=3 =] =} =}
Z 4 Z 4 Z 4 Z 4
2 2 2 2 1
0 T T T 1 0 T T T] 0 T T T 1 0 T T T]
0 600 1200 1800 2400 0 600 1200 1800 2400 0 600 1200 1800 2400 0 600 1200 1800 2400
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(@ (b) () (d
100% A r 14 100% 1 r 14
90% - L 1o 90% 4 .
80% A o, [80% { |~
70% e Hes r10 70% A-seeeofrmeen{fomeapemss - 10
kel / a k] | \ a
8 60% o / | o © 8 60% 4 | ! o
o 8 &5 5] 8 &
= 50% o = 50% o
=) lg 2 o) 6 D
& 40% A o & 40% 1 o
) o
30% I a 30% 1 4
20% A [2 20% A 2
10% 4/ 10% - ‘
0% T T T T T 0 0% T T T T T 0
0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400
Time (seconds) Time (seconds)

(e) ()

Figure 12: History of resource utilization of the best results of Table I when starting with 2 nodes. The
upper part refers to an execution without elasticity, while bottom one considers this capability. Each column
denotes a particular load pattern: (a) ascending; (b) constant; (c) descending; (d) wave. In the bottom,
we highlight the functioning of the ascending (e) and descending (f) load patterns. These two graphs are
pertinent to see the relation between the available CPU cores and the used CPU load

which we achieved the same value in both cases. However, the use of 2 nodes as start configuration implies on
allocating more CPU when enabling elasticity. This behavior was expected for two reasons: (i) AutoElastic
does not use a prior information about application behavior; (ii) after allocating resources, the overall load
decreases implying on a better load balancing but on a worse resource utilization.

Considering the Figures 14 (a) and 15 (a), we computed the energy consumption as declared in Equation
5. Considering this metric and the application time, we can configure the cost as previously mentioned in
Equation 6. The final idea regarding the cost is summarized in the Inequality 7, where our plan is either
to reduce the time but not paying a large resource penalty for this or to present a time slightly larger than
a non-elastic execution but improving resource utilization. In this Inequality, s1 means the scenario with
AutoElastic and elasticity, while s2 means the scenario with same middleware but resource reconfiguration
does not take place. Figure 17 illustrates the cost results when starting with 2 and 4 nodes. Elasticity is
responsible for the better results in the former case over all evaluated loads. On the other hand, the lack
of reactivity and static thresholds were the main reasons for the results in the latter case. In other words,
the application executes inefficiently during a large period up to reaching a threshold, so implying after
this on resource reconfiguration. The prediction of application behavior and adaptable thresholds could aid
to improve performance when using configurations with a reduced computation grain (index that can be
estimated by dividing the work involved on computational tasks by the costs on network communication).

Energys1 X App_times < Energyss X App Timego (7)

15

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

AllocatedCPU - Thresholds Used CPU CPU Load
14 - 14 - 14 4 14 4
12 A 12 A 12 4 12 A
2 10 2 10 - 2 10 10
&) [O &)
B 84 5 84— 5 84 —m G 8
(93 i [(93
£ €’ | —— £°] £
Zz 44 Z 4 Z 4 Z 4
2 A 2 2 2 4
0 T T T " 0 T T T " 0 T T T \ 0 T T T "
0 400 800 1200 1600 0 400 800 1200 1600 0 400 800 1200 1600 0 400 800 1200 1600
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
14 14 - 14 14 -
12 12 4 12 12 4
2 2 2 2
S o 10 4 5] 10 4 S 10 4
B 8 4 6 8 4 B 8 4 B 4 :'"'.‘ ','"‘.‘
g g g g RS
g 61 R N——— g 61 E '
> \ =] =] =]
Z 4 4° Z 4 Z 4 P4
2 T 2 - 2 A
0 T T T " 0 T T T 1 0 T T T " 0 T T T 1
0 400 800 1200 1600 0 400 800 1200 1600 0 400 800 1200 1600 0 400 800 1200 1600
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(@) (b) (c) (d)
100% -~ r 14 100% r 14
90% A L 1o 90% L 1o
80% - 80% { / \ﬂ
70% e I - 10 70% 17 = r 10
Ve \ [- » [73
= 50% {\ | o = 50% {| > o
2 | L D 2 [le D
% 40% 4 / 5 % 40% A 5
30% L 4 30% At L 4
20% 4 / 5 20% 5
10% 1/ 10%
0% T T T 0 0% T T T 0
0 400 800 1200 1600 0 400 800 1200 1600
Time (seconds) Time (seconds)

(e) ()

Figure 13: History of resource utilization of the best results of Table I when starting with 4 nodes. The
upper part refers to an execution without elasticity, while bottom one considers this capability. Each column
represents a studied load pattern: (a) ascending; (b) constant; (c¢) descending; (d) wave. In the bottom,
we highlight the functioning of the ascending (e) and descending (f) load patterns. These two graphs are
pertinent to see the relation between the available CPU cores and the used CPU load

6 Conclusion

This article presented a model named AutoElastic and its functioning in the HPC scope when varying both
the cloud elasticity thresholds and the application’s load pattern. Considering the problem statements (listed
in Section 3), AutoElastic acts at middleware level targeting message-passing applications with explicit
parallelism, which use send/receive and accept/connect directives. Particularly, we adopted this design
decision because it can be easily implemented in MPI 2, which offers a sockets-based programming style for
dynamic process creation. Moreover, considering the time requirements of HPC applications, we modeled a
framework to enable a novel feature denoted asynchronous elasticity, where VM transferring or consolidation
happens in parallel with application execution.

The main contribution of this work is the joint analysis of an elasticity model and a HPC application when
varying both elasticity parameters and load patterns. Thus, the discussion here can help cloud programmers
to tune elasticity thresholds to exploit better performance and resource utilization on CPU-driven demands.
At a glance, the gain with elasticity depends on: (i) the computational grain of the application; (ii) elasticity
reactivity. We showed that a CPU-bound application can execute faster with elasticity when comparing
its execution with other scenarios which use a fixed and/or reduced number of resources. Considering this
kind of applications, we observed that a maximum threshold (that drives the infrastructure enlargement)
close to 100% can be seen as a bad choice because the application will execute unnecessarily with overloaded
resources up to reach this threshold level. In our tests, our lower value for this parameter was 70%, which
had generated the best results over all load patterns.

Future research concerns the study of network, storage and memory elasticity to employ these capabilities

16

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

M avvs Hevms M svms [1ovms [12vms

Time (seconds)

@)

0 300 600 900 1200 1500 1800 2100 2400
Time (seconds)
(b)
[| - T T T TS T TS T T T T T T T T | 1
:@ Ascending with elasticity :@ Constant with elasticity : @ Descending with elasticity : @ Wave with elasticity :
1 1 1 1 1
|@ Ascending without elasticity |® Constant without elasticity |@ Descending without elasticity 1 Wave without elasticity 1
1 1 1 1 1

Figure 14: Profile of the best (a) and the worst (b) application execution time starting with 2 nodes

[RPRVYS Hevms M svms O i1ovms [12vms

Time (seconds)

(@

Time (seconds)
(b)
[| B B |
:@ Ascending with elasticity :@ Constant with elasticity : @ Descending with elasticity : @ Wave with elasticity :
1 1 1 1 1
|® Ascending without elasticity |@ Constant without elasticity 1 @ Descending without elasticity 1 Wave without elasticity 1
1 1 1 1 1

Figure 15: Profile of the best (a) and the worst (b) application execution time starting with 4 nodes

in the next versions of AutoElastic. Moreover, we plan to develop a hybrid proactive and reactive strategy
for the elasticity, joining ideas from reinforcement learning, neural networks and/or time-series analysis.
Future works also include investigations on designing the SLA. Today, we are considering only the maximum
number of VMs, but metrics like time, energy and cost can be also combined in this context. The study

17

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

M used cPu B Allocated CPU

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Energy (Equation 5)

@

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Energy (Equation 5)
(b)
[e |
:@ Ascending with elasticity :@ Constant with elasticity : @ Descending with elasticity : @ Wave with elasticity :
1 1 1 1 1
|@ Ascending without elasticity |® Constant without elasticity |@ Descending without elasticity 1 Wave without elasticity 1
1 1 1 1 1

Figure 16: Efficiency of the best application execution time: (a) starting with 2 nodes and (b) starting with
4 nodes

I AutoElastic without elasticity support I AutoElastic with elasticity support
4 VMs 8 VMs

24 - A A

Cost [x 1000000]

Ascending Constant Descending Wave Ascending Constant Descending Wave
Load

Figure 17: Cost of the best application execution time in accordance with Equation 6

of elasticity grain and the execution of highly irregular applications also contemplate future steps. The
grain, in particular, refers to the number of nodes and VMs involved on each elasticity action. Regarding
the target application, although the numerical integration application be useful to evaluate AutoElastic
ideas, we intend to explore elasticity on highly-irregular applications [49]. Our plans also consider to extend
AutoElastic to cover elasticity on other HPC programming models, such as divide-and-conquer, pipeline and
bulk-synchronous parallel (BSP). In addition, the current article focused mainly on exploring the impact of
the lower and upper thresholds in the application performance; so future work also includes the development
of 3D graphs in order to demonstrate their impact also in the energy and cost perspectives.

Acknowledgment

The authors would like to thank to the following Brazilian agencies: CNPq, CAPES and FAPERGS.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

References

[1]

M. Mohan Murthy, H. Sanjay, and J. Anand, “Threshold based auto scaling of virtual machines in cloud
environment,” in Network and Parallel Computing, ser. Lecture Notes in Computer Science, C.-H. Hsu,
X. Shi, and V. Salapura, Eds. Springer Berlin Heidelberg, 2014, vol. 8707, pp. 247-256.

J. Bao, Z. Lu, J. Wu, S. Zhang, and Y. Zhong, “Implementing a novel load-aware auto scale scheme

for private cloud resource management platform,” in Network Operations and Management Symposium
(NOMS), 2014 IEEFE, May 2014, pp. 1-4.

S. Sah and S. Joshi, “Scalability of efficient and dynamic workload distribution in autonomic cloud
computing,” in Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International
Conference on, Feb 2014, pp. 12-18.

A. Weber, N. R. Herbst, H. Groenda, and S. Kounev, “Towards a resource elasticity benchmark for
cloud environments,” in Proceedings of the 2nd International Workshop on Hot Topics in Cloud Ser-
vice Scalability (HotTopiCS 2014), co-located with the 5th ACM/SPEC International Conference on
Performance Engineering (ICPE 2014). ACM, March 2014.

P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource provisioning for cloud-based software,”
in Proceedings of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS 2014. New York, NY, USA: ACM, 2014, pp. 95-104. [Online].
Available: http://doi.acm.org/10.1145/2593929.2593940

Y. Guo, M. Ghanem, and R. Han, “Does the cloud need new algorithms? an introduction to elastic
algorithms,” in Cloud Computing Technology and Science (CloudCom), 2012 IEEE jth International
Conference on, December 2012, pp. 66 —73.

G. Galante and L. C. E. d. Bona, “A survey on cloud computing elasticity,” in Proceedings of the 2012
IEEE/ACM Fifth International Conference on Utility and Cloud Computing, ser. UCC '12. Washing-
ton, DC, USA: IEEE Computer Society, 2012, pp. 263—-270.

A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing,” Future Gener. Comput. Syst., vol. 28, no. 5, pp.
755-768, May 2012. [Online]. Available: http://dx.doi.org/10.1016/j.future.2011.04.017

A. Raveendran, T. Bicer, and G. Agrawal, “A framework for elastic execution of existing mpi programs,”
in Proceedings of the 2011 IEEE Int. Symposium on Parallel and Distributed Processing Workshops and
PhD Forum, ser. IPDPSW ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 940-947.

P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource provisioning for cloud-based software,”
in Proceedings of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS 2014. New York, NY, USA: ACM, 2014, pp. 95-104. [Online].
Available: http://doi.acm.org/10.1145/2593929.2593940

E. F. Coutinho, G. Paillard, and J. N. de Souza, “Performance analysis on scientific computing and
cloud computing environments,” in Proceedings of the 7th Euro American Conference on Telematics
and Information Systems, ser. EATIS '14. New York, NY, USA: ACM, 2014, pp. 5:1-5:6. [Online].
Available: http://doi.acm.org/10.1145/2590651.2590656

R. R. Expésito, G. L. Taboada, S. Ramos, J. Tourifio, and R. Doallo, “Evaluation of messaging
middleware for high-performance cloud computing,” Personal Ubiquitous Comput., vol. 17, no. 8, pp.
1709-1719, Dec. 2013. [Online]. Available: http://dx.doi.org/10.1007/s00779-012-0605-3

B. Cai, F. Xu, F. Ye, and W. Zhou, “Research and application of migrating legacy systems to the
private cloud platform with cloudstack,” in Automation and Logistics (ICAL), 2012 IEEE International
Conference on, August 2012, pp. 400 —404.

D. Milojicic, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud management tool,” Internet
Computing, IEFEE, vol. 15, no. 2, pp. 11 =14, March-April 2011.

X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of open-source cloud management plat-
forms: Openstack and opennebula,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th
International Conference on, May 2012, pp. 2457 —2461.

19

[16]

[29]

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

D. Chiu and G. Agrawal, “Evaluating caching and storage options on the amazon web services cloud,”
in Grid Computing (GRID), 2010 11th IEEE/ACM International Conference on, October 2010, pp. 17
—24.

M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and budget constraints,” in Grid
Computing (GRID), 2010 11th IEEE/ACM International Conference on, October 2010, pp. 41 —48.

P. Martin, A. Brown, W. Powley, and J. L. Vazquez-Poletti, “Autonomic management of elastic services
in the cloud,” in Proceedings of the 2011 IEEE Symposium on Computers and Communications, ser.
ISCC ’'11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 135-140.

L. Beernaert, M. Matos, R. Vilaga, and R. Oliveira, “Automatic elasticity in openstack,” in
Proceedings of the Workshop on Secure and Dependable Middleware for Cloud Monitoring and
Management, ser. SDMCMM ’12. New York, NY, USA: ACM, 2012, pp. 2:1-2:6. [Online]. Available:
http://doi.acm.org/10.1145/2405186.2405188

W. Lin, J. Z. Wang, C. Liang, and D. Qi, “A threshold-based dynamic resource allocation scheme for
cloud computing,” Procedia Engineering, vol. 23, no. 0, pp. 695 — 703, 2011, pEEA 2011.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23-50, 2011. [Online]. Available:
http://dx.doi.org/10.1002/spe.995

R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scaling for cloud applications,”
Cluster Computing and the Grid, IEEE International Symposium on, vol. 0, pp. 644-651, 2012.

S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and R. Griffith, “Runtime vertical scaling of
virtualized applications via online model estimation,” in Proceedings of the 2014 IEEE 8th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), September 2014.

W.-C. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and C. Killian, “Eventwave: Programming
model and runtime support for tightly-coupled elastic cloud applications,” in Proceedings of the 4th
Annual Symposium on Cloud Computing, ser. SOCC ’13. New York, NY, USA: ACM, 2013, pp.
21:1-21:16. [Online]. Available: http://doi.acm.org/10.1145/2523616.2523617

J. O. Gutierrez-Garcia and K. M. Sim, “A family of heuristics for agent-based elastic cloud bag-of-tasks
concurrent scheduling,” Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1682-1699, Sep. 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.future.2012.01.005

H. Wei, S. Zhou, T. Yang, R. Zhang, and Q. Wang, “Elastic resource management for
heterogeneous applications on paas,” in Proceedings of the 5th Asia-Pacific Symposium on Internetware,
ser. Internetware ’'13. New York, NY, USA: ACM, 2013, pp. 7:1-7:7. [Online]. Available:
http://doi.acm.org/10.1145/2532443.2532451

L. Aniello, S. Bonomi, F. Lombardi, A. Zelli, and R. Baldoni, “An architecture for automatic scaling
of replicated services,” in Networked Systems, ser. Lecture Notes in Computer Science, G. Noubir and
M. Raynal, Eds. Springer International Publishing, 2014, pp. 122-137.

A. F. Leite, T. Raiol, C. Tadonki, M. E. M. T. Walter, C. Eisenbeis, and A. C. M. a. A. de Melo,
“Excalibur: An autonomic cloud architecture for executing parallel applications,” in Proceedings of the
Fourth International Workshop on Cloud Data and Platforms, ser. CloudDP '14. New York, NY,
USA: ACM, 2014, pp. 2:1-2:6. [Online]. Available: http://doi.acm.org/10.1145/2592784.2592786

D. Rajan, A. Canino, J. A. Izaguirre, and D. Thain, “Converting a high performance application to an
elastic cloud application,” in Proceedings of the 2011 IEEE Third International Conference on Cloud
Computing Technology and Science, ser. CLOUDCOM ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 383-390.

W. Dawoud, I. Takouna, and C. Meinel, “Elastic v for cloud resources provisioning optimization,”
in Advances in Computing and Communications, ser. Communications in Computer and Information
Science, A. Abraham, J. Lloret Mauri, J. Buford, J. Suzuki, and S. Thampi, Eds. Springer Berlin
Heidelberg, 2011, vol. 190, pp. 431-445.

20

[31]

[32]

[33]

[34]

[35]

[36]

[45]

[46]

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

S. Imai, T. Chestna, and C. A. Varela, “Elastic scalable cloud computing using application-level mi-
gration,” in Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud
Computing, ser. UCC ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 91-98.

M. Mihailescu and Y. M. Teo, “The impact of user rationality in federated clouds,” Cluster Computing
and the Grid, IEEFE International Symposium on, vol. 0, pp. 620-627, 2012.

B. Suleiman, “Elasticity economics of cloud-based applications,” in Proceedings of the 2012 IEEE Ninth
International Conference on Services Computing, ser. SCC ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 694-695.

T. Knauth and C. Fetzer, “Scaling non-elastic applications using virtual machines,” in Cloud Computing
(CLOUD), 2011 IEEE International Conference on, July 2011, pp. 468 —475.

X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Virtual machine migration in an over-committed
cloud,” in Network Operations and Management Symposium (NOMS), 2012 IEEE, April 2012, pp. 196
-203.

R. d. R. Righi, V. F. Rodrigues, C. A. da Costa, G. Galante, L. C. E. de Bona, and T. Ferreto,
“Autoelastic: Automatic resource elasticity for high performance applications in the cloud,” IEFE
Transactions on Cloud Computing, vol. 4, no. 1, pp. 6-19, Jan 2016.

F. Azmandian, M. Moffie, J. Dy, J. Aslam, and D. Kaeli, “Workload characterization at the virtual-
ization layer,” in Modeling, Analysis Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2011 IEEE 19th International Symposium on, July 2011, pp. 63-72.

Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanovic, “Exploring the
tradeoffs between programmability and efficiency in data-parallel accelerators,” in Computer Architec-
ture (ISCA), 2011 38th Annual International Symposium on, 2011, pp. 129-140.

J. Baliga, R. Ayre, K. Hinton, and R. Tucker, “Green cloud computing: Balancing energy in processing,
storage, and transport,” Proceedings of the IEEFE, vol. 99, no. 1, pp. 149-167, 2011.

K. Banas and F. Kruzel, “Comparison of xeon phi and kepler gpu performance for finite
element numerical integration,” in Proceedings of the 2014 IEEE Intl Conf on High Performance
Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security,
2014 IEEE 11th Intl Conf on FEmbedded Software and Syst (HPCC,CSS,ICESS), ser. HPCC
'14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 145-148. [Online]. Available:
http://dx.doi.org/10.1109/HPCC.2014.27

K. A. Hawick, D. P. Playne, and M. G. B. Johnson, “Numerical precision and benchmarking very-
high-order integration of particle dynamics on gpu accelerators,” in Proc. International Conference on
Computer Design (CDES’11), no. CDE4469. Las Vegas, USA: CSREA, 18-21 July 2011, pp. 83-89.

M. Comanescu, “Implementation of time-varying observers used in direct field orientation of motor
drives by trapezoidal integration,” in Power Electronics, Machines and Drives (PEMD 2012), 6th IET
International Conference on, 2012, pp. 1-6.

E. Tripodi, A. Musolino, R. Rizzo, and M. Raugi, “Numerical integration of coupled equations for high-
speed electromechanical devices,” Magnetics, IEEE Transactions on, vol. 51, no. 3, pp. 1-4, March
2015.

S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can measure elasticity for cloud
platforms,” in Proceedings of the third joint WOSP/SIPEW international conference on Performance
Engineering, ser. ICPE ’12. New York, NY, USA: ACM, 2012, pp. 85-96. [Online]. Available:
http://doi.acm.org/10.1145/2188286.2188301

M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet application deadlines in
cloud workflows,” in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC '11. New York, NY, USA: ACM, 2011, pp. 49:1-49:12.
[Online]. Available: http://doi.acm.org/10.1145/2063384.2063449

Y. Zhang, W. Sun, and Y. Inoguchi, “Predict task running time in grid environments based on cpu
load predictions,” Future Generation Computer Systems, vol. 24, no. 6, pp. 489 — 497, 2008. [Ounline].
Available: http://www.sciencedirect.com/science/article/pii/S0167739X07001215

21

[47]

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 1, PAPER 1, APRIL 2016

F. Al-Haidari, M. Sqalli, and K. Salah, “Impact of cpu utilization thresholds and scaling size on au-
toscaling cloud resources,” in Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, vol. 2, Dec 2013, pp. 256-261.

A.-C. Orgerie, M. D. D. Assuncao, and L. Lefevre, “A survey on techniques for improving the energy
efficiency of large-scale distributed systems,” ACM Computing Surveys, vol. 46, no. 4, pp. 1-31, Mar.
2014. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2597757.2532637

L. Jin, D. Cong, L. Guangyi, and Y. Jilai, “Short-term net feeder load forecasting of microgrid con-
sidering weather conditions,” in Fnergy Conference (ENERGYCON), 2014 IEEE International, May
2014, pp. 1205-1209.

22

