
CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

Balancing Energy and Performance
in Dense Linear System Solvers

for Hybrid ARM+GPU platforms

Juan P. Silva, Ernesto Dufrechou, Pablo Ezzatti
Facultad de Ingeniería, Universidad de la República,

11300, Montevideo, Uruguay,
{jpsilva,edufrechou,pezzatti}@fing.edu.uy,

and

Enrique S. Quintana-Ortí
Departamento de Ingeniería y Ciencia de Computadores,

Universidad Jaume I,
12.071, Castellón, Spain,

quintana@icc.uji.es

and

Alfredo Remón and Peter Benner
Max Planck Institute for Dynamics of Complex Technical Systems,

D-39106, Magdeburg, Germany,
{remon,benner}@mpi-magdeburg.mpg.de

Abstract

The high performance computing community has traditionally focused uniquely on the
reduction of execution time, though in the last years, the optimization of energy con-
sumption has become a main issue. A reduction of energy usage without a degradation
of performance requires the adoption of energy-efficient hardware platforms accompanied
by the development of energy-aware algorithms and computational kernels. The solution
of linear systems is a key operation for many scientific and engineering problems. Its
relevance has motivated an important amount of work, and consequently, it is possi-
ble to find high performance solvers for a wide variety of hardware platforms. In this
work, we aim to develop a high performance and energy-efficient linear system solver.
In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA
Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient
usage of the target hardware as well as an efficient memory access. The experimental
evaluation shows that the novel proposal reports important savings in both time and
energy-consumption when compared with the state-of-the-art solvers of the platform.

Keywords: Dense Linear Systems, Gauss-Huard, NVIDIA Jetson K1, Energy-aware computing

1 Introduction

The solution of a system of linear equations of the form

Ax = b, (1)

where A ∈ Rn×n is a dense matrix, and b, x ∈ Rn×m represent respectively, the right-hand side vector of
independent terms (RHS) and the sought-after solution, is the main computational problem in the solution

1



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

of many scientific and engineering applications [1]. The traditional method to solve a general linear system
is based on the LU factorization (i.e., Gaussian elimination), which must be complemented with (partial)
row pivoting to ensure numerical stability [2]. The operation involves the factorization of the matrix A into
the lower-triangular matrix L ∈ Rn×n and the upper-triangular matrix U ∈ Rn×n such that A = LU . Then,
x is obtained via the solution of two triangular linear systems: Ly = b and Ux = y. The factorization stage
is the most time consuming operation of the process, and involves about 2n3/3 floating-point arithmetic
operations (flops), in contrast with the n2 flops of each subsequent triangular solver. The factorization
phase and, therefore, the most time-consuming part of the method, can be expressed in terms of BLAS-3
operations [3]. Thus, an efficient implementation of this method on a parallel platform can potentially deliver
remarkable performance. As a consequence, this is the method implemented in the LAPACK library (routine
gesv), as well as in MATLAB R© (command linsolve or backslash).

The Gauss-Jordan elimination (GJE) is an efficient algorithm to compute the matrix inverse, and can
be easily adapted to obtain the solution of linear systems of equations. The numerical stability can also be
improved via partial pivoting. The main interest in this algorithm lies in its high degree of parallelism and
its reduced number of memory operations. Consequently, this method usually delivers remarkable efficiency
in modern hardware architectures that present a large number of computational units [4, 5]. However,
when applied to the solution of linear systems, GJE incurs a larger computational cost than the traditional
approach based on the LU factorization. In particular, it requires n3 flops, compared with the 2n3/3 flops of
the LU-based method. This limitation makes it useless as soon as the dimension of the system (n) becomes
moderate. In the late 70s, P. Huard presented the Gauss-Huard algorithm (GH) [6], which can be considered
as an extension of the GJE algorithm for the solution of linear systems, and represents an alternative and
reliable method when complemented with column pivoting [7]. Interestingly, this method presents the same
computational cost as the LU-based solver, i.e., 2n3/3 flops.

In recent years, hardware architectures have experienced remarkable changes. Mainly motivated by the
limitations on power consumption, the strategy of increasing the processor frequency has been replaced by
an increment in the number of computational units. GPUs and the Intel Xeon Phi processors are successful
exponents of this trend. These new hardware platforms offer from tens to thousands of computational units,
and are more energy-efficient than traditional multi-core processors. In this domain, the solutions presented
by NVIDIA that integrate in a single board a low power ARM processor and a GPU occupy a relevant
position. In particular, the most important example of this type of platforms is the NVIDIA Jetson TK1,
composed of a quad-core ARM Cortex A15 processor and a Kepler GPU with 192 CUDA cores. However,
to fully exploit the capabilities of these new platforms, the methods and their implementations must be
reformulated.

This work aims to obtain a high-performance and energy-efficient linear system solver based on the
Gauss-Huard method (with partial column pivoting) optimized for the NVIDIA Jetson TK1. We extend
the work in [8] to further improve the new solvers and evaluate their performances in terms of runtime,
but also energy. We include in the evaluation the state-of-the-art solvers in ARM and hybrid CPU-GPU
platforms, specifically OpenBlas [9] and MAGMA [10]. Our experimental results show that one of the new
implementations outperforms, in both runtime and energy consumption, the solvers included in the previous
libraries, for problems of moderate to large dimensions (n > 3, 000).

The rest of the paper is structured as follows: In Section 2, we describe three methods for the solution
of linear systems based on the LU factorization, the GJE based strategy and the GH algorithm. Then, in
Section 3, we present two new GPU-based versions that implement the GH algorithm, this is followed by
an experimental evaluation of their performance and energy efficiency in Section 4. Finally, we discuss some
conclusions and future work in Section 5.

2 Dense linear systems resolution

In this section, we revisit different approaches to compute the solution of a dense linear system Ax = b with
dense A. In numerical linear algebra (NLA), there are two main families of methods to solve this kind of
problems: direct and iterative methods; see [2]. The first family consists of by deterministic methods that
compute the exact solution of the problem (neglecting unavoidable floating-point rounding errors). On the
other hand, iterative methods start with an initial solution and, after successive approximations, converge
to a solution according to certain criteria. This usually means that a threshold, tol, is set such that when
the difference between the computed solution and the exact solution is lower than tol, the method stops.
From the computational point of view, direct methods generally present a computational cost of O(n3) flops
and are mostly based on BLAS-3 operations, allowing an efficient use of the memory hierarchy in modern
hardware platforms. In contrast, iterative methods present a computational cost of O(n2) flops per iteration
and they do not take advantage of BLAS-3 operations which limits their performance. However, an iterative

2



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

method may be faster than a direct method if it presents a lower computational cost, namely, the number
of iterations is considerably smaller than n (i.e., the convergence is fast or the problem does not require a
high accuracy in the solution). On the other hand, direct methods allow to reuse most of the computations
in the successive solution of linear systems with the same coefficient matrix. In this work, we focus on direct
methods for the solution of dense linear systems. In more detail, in this section we describe three direct
approaches based on the traditional LU, the GJE and the GH algorithms. All methods are in-place and,
therefore, present a similar cost in terms of memory requirements.

2.1 Solution of linear systems via the LU factorization

The LU-based algorithm for the solution of linear systems is analogous to the traditional strategy based on
Gaussian elimination. Specifically, the method consists of three steps that initially (first step) compute the
LU factorization of A. This operation requires of a row pivoting strategy to ensure numerical stability [2].
The decomposition takes the form PA = LU , where P ∈ Rn×n is a permutation matrix, and the factors
L,U ∈ Rn×n are, respectively, unit lower triangular and upper triangular. The L and U factors are stored
in the memory space of A (i.e. in-place) to reduce the memory requirements. The main diagonal of L does
not need to be stored since L is unit lower triangular. To further reduce memory use, P is implicitly stored
as a vector. Then, the system is rewritten as LUx = (Pb) = b̂ and, therefore, x can be obtained by solving
the triangular linear systems Ly = b̂ followed by Ux = y.

Algorithm: [A] := LU_unb(A)

Partition A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(A) do
Repartition

(
ATL ATR

ABL ABR

)
→


A00 A01 A02

A10 α11 a12

A20 a21 A22


where α11 is a scalar

a21 :=
1

α11
· a21 Vector scaling

A22 := A22 − a21a12 Rank-1 update

Continue with

(
ATL ATR

ABL ABR

)
←


A00 A01 A02

A10 α11 a12

A20 a21 A22


endwhile

Figure 1: Scalar in-place algorithm to compute the LU factorization of matrix A. Upon completion, A is
overwriten by the triangular factors L and U .

Most of the computational cost is due to the factorization of A. This can be exploited when several
systems involving the same coefficient matrix must be solved. In this case, the factors L and U can be
reused while the matrix decomposition needs to be computed only once. Consequently, the solution of the
successive systems presents a computational cost of 2n2 flops. Figure 1 shows an in-place unblocked variant
of the Gaussian elimination algorithm to compute the LU factorization using the FLAME notation [11, 12].
In the figure, n(A) stands for the number of columns of A.

Figure 2 shows the blocked version of the method, where nb is the algorithmic block size. For simplicity,
pivoting is not included in both algorithms. In general, blocked variants tend to offer better performance in
modern hardware architectures, since they improve the computational intensity [2] and reduce the memory
operations.

The LU-based method presents some drawbacks that limit its performance on massively parallel archi-
tectures. Concretely:

• The method consists of three sequential stages (LU factorization, upper triangular solve and lower

3



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

Algorithm: [A] := LU_blk(A)

Partition A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(A) do
Determine block size nb
Repartition

(
ATL ATR

ABL ABR

)
→


A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is nb× nb[
A11

A21

]
:= LU_unb

([
A11

A21

])
Scalar LU factorization

A12 := trilu(A11)−1A12 Triangular system solver
A22 := A22 −A21A12 Matrix-matrix product

Continue with

(
ATL ATR

ABL ABR

)
←


A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 2: Blocked in-place algorithm to compute the LU factorization of A. Upon completion, A is overwriten
by the triangular factors L and U .

triangular solve), implicitly defining two synchronization points.

• In addition, it requires the solution of two triangular linear systems, an operation that presents a rich
collection of data dependencies and limited concurrency. Furthermore, small triangular linear systems
also appear during the factorization stage.

These problems present little relevance when the dimension of A grows, since the factorization concen-
trates most of the computational effort. In this situation, the possibility to use BLAS-3 kernels during the
factorization turns the method extremely suitable for parallel platforms.

LAPACK [13] is a specification that provides many important NLA operations, and offers high per-
formance and numerically reliable implementations for many types of platforms. Certain implementations
may include a number of high performance computing (HPC) techniques and also particular customizations
for different processors and architectures. The LAPACK specification includes support for the different
stages of the LU-based solver. In particular, the routine getrf computes the LU factorization (applying
partial row pivoting) of a non-singular matrix, while the routine getrs allows the solution of the subsequent
triangular systems from the factors computed by getrf. Additionally, LAPACK includes the gesv driver
routine for the solution of linear systems, which simply performs the appropriate calls to the routines getrf
and getrs.

2.2 The Gauss-Jordan method

An alternative method for the solution of dense linear systems is the so-called Gauss-Jordan Elimination
method (GJE). This algorithm calculates the inverse of a matrix, but can be easily adapted to obtain
the solution of a linear system. Additionally, if row pivoting is employed, the algorithm exhibits stability
properties similar to those of the Gaussian Elimination method [14].

The solution of linear systems with this method implies the application of GJE to the extended matrix
Â = [A, b]. The method processes the extended matrix from left to right, updating, at each iteration, all
the entries of Â. For the solution of linear systems, only the elements to the right of the active column need
be updated, reducing the computational cost to n3 flops. Once the process is completed, the solution of the
linear system (i.e., the x vector) is stored in the last column of the extended matrix Â.

Figure 3 shows the blocked version of the GJE to solve the linear system of equations associated with A.
For simplicity we do not include pivoting in the description. A description of a scalar version of the GJE
method, that is invoked in the blocked version, can be found in [15]. It should be noted that this is also an
in-place method, which means that, when the process is completed, the matrix A is overwritten with the
transformed matrix and x overwrites b (in the last column of Â).

4



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

Algorithm: Â := GJE_blk(Â)

Partition Â→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(Â) do
Determine block size nb
Repartition

(
ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is nb× nb A01

A11

A21

 := GJE_unb

 A01

A11

A21

 Scalar Gauss-Jordan

A02 := A02 +A01A12 Matrix-matrix product
A22 := A22 +A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 3: Blocked GJE algorithm for the solution of linear systems of the form Ax = b. Initially, Â = [A, b].
Upon completion, the solution x overwrites the last column of Â.

This method is rich in BLAS-3 operations. In particular, the updates Â are performed via matrix-matrix
products. This usually yields a high throughput when executed on massively parallel platforms. On the
other hand, the use of the GJE method to solve a linear system requires n3 flops, in contrast to the 2/3n3

flops for the LU-based method. In consequence, this method cannot compete with the LU-based algorithm
for the solution of systems of large dimension.

2.3 The Gauss-Huard method

As previously stated, the GJE method presents some features that turn it especially appealing for its imple-
mentation on massively parallel platforms. Unfortunately the algorithm also presents a high computational
cost for the solution of linear systems of equations compared with the LU-based method. This drawback was
addressed by P. Huard [6] in the late 1970s. In his work, he presents a smart variant of the GJE algorithm
to solve linear systems that incurs a computational cost analogous to that of the LU-based method. This
method, known as the Gauss-Huard (GH) algorithm, presents a convenient memory access pattern. But this
feature is destroyed if row pivoting is introduced to ensure numerical stability. This problem was overcome
by T. J. Dekker et al. in [16, 7]. They proposed the inclusion of column pivoting and proved that the
resulting method offers numerical characteristics similar to those of the LU factorization with row pivoting.

Figure 4 describes the GH for the solution of a linear system of equations. Pivoting is not included in the
algorithm for simplicity, although all our variants integrate partial column pivoting. In practice, pivoting can
be easily added as follows: before the diagonalization of

[
α̂11, â

T
12

]
, this vector is searched for its maximum

entry in magnitude (excluding its last element, which corresponds to an entry of b) and the column of Â
corresponding to this entry is then swapped with the column of Â containing the diagonal entry α̂11.

A blocked variant of GH was introduced for distributed-memory (message-passing) systems in [17]. Un-
fortunately, the authors did not perform any experimental evaluation of the implementation, and simply
stated that its performance could be expected to be close to that of an LU-based solver.

Figure 5 describes a blocked version of the Gauss-Huard algorithm which processes nb columns of the
matrix per iteration.

3 Gauss-Huard implementations for hybrid CPU-GPU platforms

CPU-GPU platforms have currently reached a prominent position in HPC, as revealed by the top positions of
the Top500 list [18]. They are also widely used in the domain of numerical methods and linear algebra. This
is reflected by the efforts integrated in modern scientific numerical libraries to exploit this kind of platforms;

5



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

Algorithm:
[
Â
]
:= GaussHuard_unb(Â)

Partition Â→
(

ÂTL ÂTR

ÂBL ÂBR

)
where ÂTL is 0× 0

while m(ÂTL) < m(Â) do
Repartition

(
ÂTL ÂTR

ÂBL ÂBR

)
→


Â00 â01 Â02

âT10 α̂11 âT12

Â20 â21 Â22


where α̂11 is 1× 1[

α̂11, â
T
12

]
:=

[
α̂11, â

T
12

]
− âT10 ·

[
â01, Â02

]
Row elimination[

α̂11, â
T
12

]
:=

[
α̂11, â

T
12

]
/ α̂11 Diagonalization (row scaling)

Â02 := Â02 − â01 · âT12 Column elimination

Continue with

(
ÂTL ÂTR

ÂBL ÂBR

)
←


Â00 â01 Â02

âT10 α̂11 âT12

Â20 â21 Â22


endwhile

Figure 4: Scalar (unblocked) Gauss-Huard algorithm for the solution of linear systems of the form Ax = b.
Initially, Â = [A, b]. Upon completion, the solution x overwrites the last column of Â.

Algorithm:
[
Â
]
:= GaussHuard_blk(Â)

Partition P →
(

ÂTL ÂTR

ÂBL ÂBR

)
where ÂTL is 0× 0

while m(ÂTL) < m(Â) do
Determine block size nb
Repartition

(
ÂTL ÂTR

ÂBL ÂBR

)
→


Â00 Â01 Â02

Â10 Â11 Â12

Â20 Â21 Â22


where Â11 is nb× nb[

Â11, Â12

]
:=

[
Â11, Â12

]
− Â10 ·

[
Â01, Â02

]
Blocked-row elimination[

Â11, Â12

]
:= GaussHuard_unb

([
Â11, Â12

])
Block diagonalization

Â02 := Â02 − Â01 · Â12 Blocked-column elimination

Continue with

(
ÂTL ÂTR

ÂBL ÂBR

)
←


Â00 Â01 Â02

Â10 Â11 Â12

Â20 Â21 Â22


endwhile

Figure 5: Blocked Gauss-Huard algorithm for the solution of linear systems of the form Ax = b. Initially,
Â = [A, b]. Upon completion, the solution x overwrites the last column of Â.

see e.g., MAGMA [19], PETSc [20] or ViennaCL [21]. All those libraries include routines to solve (dense
and sparse) linear systems taking advantage of the capabilities provided by this kind of hybrid architectures.
Current GPUs offer not only an ample parallelism, but also remarkable flops-per-Watt ratios and competitive
economical cost. This has motivated the development of boards that embed one or more general-purpose low-
power processors (like those developed for mobile devices by ARM) with low-power GPUs. The performance
and moderate power consumption of such hybrid boards has motivated the assembly of powerful clusters with
hundreds of these boards. This is the case of the Tibidabo supercomputer at the Barcelona Supercomputer
Center [22].

The GH algorithm combines highly parallel operations suitable for GPUs and fine-grain parallelism
computations (mainly due to pivoting) that suits general-purpose processors. Thus, this algorithm represents
a good candidate for hybrid CPU-GPU platforms.

6



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

In this context, we present two implementations of the GH algorithm that target hybrid CPU-GPU low-
power platforms. The first variant performs all computations in the GPU. The second variant distributes
the computations between the CPU and the GPU, but incurs in a overhead due to data transfers between
the CPU and the GPU memories.

3.1 GPU version (GHgpu)

Due to the moderate computational power offered by the general-purpose processor when compared with
that offered by the GPU, this implementation performs all the computations in the latter. On the other
hand, the main drawback of GHgpu is that not all the computational units in the platform are employed.
This variant is an implementation of algorithm gausshuard_blk using the kernels offered by the CUBLAS
library, i.e., the implementation of the BLAS provided by NVIDIA.

In an initial phase, the whole Â matrix is transferred from the CPU to the GPU. Then, the algorithm
proceeds in the GPU, and upon completion, the last column of Â, containing x, is transferred back to the
CPU memory.

As previously stated, most of the computational effort in algorithm gausshuard_blk lies in the matrix-
matrix products. To fully exploit the capabilities of the GPU during the execution of these products, the
matrices involved must be of a moderate to large size. The dimension of these matrices is determined by
the system dimension, n, and the algorithmic block size, nb. Consequently, a small value of nb limits the
performance of this variant. On the other hand, a large value of nb increases the relative computational effort
of the block diagonalization, which is a BLAS-2 operation that delivers limited performance. To partially
overcome this problem, we included a multiple nested algorithmic block sizes strategy in GHgpu. Specifically,
the block diagonalization is performed via a blocked variant of the GH algorithm, i.e., Gauss-Huard_blk.
As a result, BLAS-3 kernels can be employed during most of this computation. To maximize the performance
of GHgpu, both algorithmic block-sizes must be carefully chosen.

3.2 Hybrid Version(GHhyb)

This variant aims to exploit both available computational resources in the platform, i.e., the CPU and GPU.
To achieve this, it requires data transfers between the CPU and the GPU and, consequently, incurs a certain
overhead due to communications. To alleviate this, as an initial phase, the matrix Â is transferred from
the CPU memory to the GPU memory. With this we avoid to transfer the panel [Â11, Â12] from CPU
to GPU at each iteration of the algorithm. The total amount of data transferred remains the same but,
given the platform specifications, a single larger data transfer is more efficient than several smaller transfers.
Furthermore, this data transfer can be partly overlapped with the diagonalization of the first panel. This
way, we save time as well as energy.

Most of the computations in the algorithm are cast in terms of matrix-matrix products. This operation
exhibits a high level of concurrency and suits the GPU architecture. In contrast, the block diagonalization
presents a moderate cost and its concurrency is constrained by the pivoting scheme. Thus, the natural way to
distribute the operations is to perform the matrix-matrix products in the GPU and the block diagonalization
in the CPU. Therefore, the bulk of the computations are performed in the most powerful processor, the GPU.
This partitioning of the workload (diagonalization in the CPU and the remaining block eliminations in the
GPU) requires that, at each step of the gausshuard_blk algorithm, the block [Â11, Â12] is sent from the
GPU (after completing the block-row elimination) to the CPU and retrieved from there back into the GPU
(after the computation of the block diagonalization). Consequently, the volume of data transferred at each
iteration of the algorithm is proportional to n and nb. After the procedure is completed, the solution vector
(stored in the last column of Â) must be sent to the CPU.

Similarly to the fully GPU implementation, GHgpu, the efficiency of GHhyb strongly depends on the value
of nb: small values of nb close to 32, 64, limit the performance of the matrix-matrix products performed in
the GPU, though this ensures that the execution of the algorithm is driven by computation instead of data
transfers. However, a large value of nb may hurt the performance of GHhyb because a significant part of the
computations is mapped to the less powerful processor, the CPU. Again, we propose to perform the block
diagonalization via a blocked variant of the algorithm and, therefore, we leverage a double algorithmic block
size, namely nbd and nbg. The former is uniquely employed for the computations in the ARM processor, i.e.,
during the block diagonalization. This way, BLAS-3 kernels can be employed during this stage, accelerating
its execution. At a higher level, in gausshuard_blk we set nbg = nb. A more efficient execution of
the block diagonalization phase permits to chose larger values for nbg, which also yield higher performance
during the execution of the matrix-matrix products in the GPU. Additionally, larger values of nbg reduce
the number of iterations and, thus, the number of data transfers (despite it might increase the amount of
data transferred, transfers will be performed in a more efficient manner).

7



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

Additionally, GHhyb makes a heavy use of tuned computational kernels in OpenBLAS and NVIDIA
CUBLAS, respectively, for the ARM and the GPU processors. Moreover, a few key scalar and Level-1 BLAS
operations are performed via ad-hoc kernels, parallelized with OpenMP, which yield higher performance than
their counterparts in OpenBLAS.

4 Experimental evaluation

In this section we show the experimental evaluation of the GH-based solvers introduced in the previous
section. The evaluation focuses on two aspects, performance (measured in execution time and GFLOPS)
and energy consumption. All experiments are performed employing single precision arithmetic. We compare
the solvers on the solution of randomly generated systems of dimension n = 1, 024, . . . , 7, 168.

The novel codes has been tuned for the hardware platform employed, and compared with two LU-
based solvers considered as the state-of-the-art for ARM processors and hybrid CPU-GPU platforms. In
particular, the solver in OpenBLAS v.0.2.14 to exploit the ARM processor and its counterpart in MAGMA
v.1.6.2 to leverage the CPU and GPU processors. Note that the routine in MAGMA internally uses kernels
in OpenBLAS to perform computations in the ARM.

4.1 Experimental platform

The experimental hardware platform, a JETSON TK1 [23] board, is composed of a Tegra K1 SoC (Systems
on a Chip) processor with 2GB of DDR3L RAM. In more detail, the Tegra K1 includes an NVIDIA GPU
with 192 CUDA Kepler cores and an ARM quad-core Cortex-A15 processor at 2.32 GHz.

The board runs an extended version of Linux Ubuntu 14.04 adapted for the ARM architecture. The
codes for the ARM are compiled using gcc v.4.8.2, while the codes developed for the NVIDIA GPU are
compiled with nvcc v.6.0.1.

The platform configuration was adapted such that the maximum performance level was reported with
a negligible loss of energy efficiency. This involved to: (1) set the frequency governor of the CPU to
performance (instead of its default value, ondemand), (2) turn on the ARM-cores as required, (3) and set
the GPU clock to the highest available frequency, i.e., 852, 000, 000 Hz (by default set to 12, 000, 000 Hz).

4.2 Performance evaluation

The runtimes showed for the different GPU-variants include the overhead associated with data transfers
between CPU and GPU memory spaces.

Table 1: Execution time (in seconds) and performance (in GFLOPS) attained with the solvers.
MAGMA OpenBLAS

1-thread 4-threads 1-thread 4-threads
n gflops time gflops time gflops time gflops time
1K 0.40 1.81 0.44 1.62 3.81 0.19 11.18 0.06
2K 1.09 5.24 1.18 4.87 4.07 1.41 13.57 0.42
3K 1.80 10.74 1.91 10.14 4.20 4.61 14.69 1.32
4K 2.38 19.26 2.61 17.58 4.10 11.17 14.47 3.17
5K 3.09 28.98 3.36 26.65 4.29 20.88 15.62 5.73
6K 3.76 41.17 4.05 38.18 4.29 36.04 15.74 9.82
7K 4.41 55.74 4.74 51.75 4.32 56.77 15.97 15.38

GHhyb GHgpu

1-thread 4-threads 1-thread 4-threads
n gflops time gflops time gflops time gflops time
1K 2.44 0.29 2.14 0.33 1.50 0.48 - -
2K 2.65 2.16 2.14 2.67 5.29 1.08 - -
3K 2.95 6.55 2.68 7.21 10.53 1.84 - -
4K 3.14 14.59 3.08 14.85 15.06 3.04 - -
5K 3.28 27.32 3.59 24.96 18.59 4.81 - -
6K 3.40 45.52 4.06 38.09 21.95 7.04 - -
7K 3.50 70.24 4.25 57.80 24.56 9.99 - -

8



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

.

5.29

10.53

15.06

18.59

21.95

24.56

.

4.41
3.81 4.07

4.20 4.10 4.29 4.29

11.18

13.57
14.69

14.47

15.62 15.74 15.97

0

5

10

15

20

25

30

0 1024 2048 3072 4096 5120 6144 7168 8192

G
F
L
O
P
S

Dimension

GHgpu

GHhib

M AGM A

OpenBLAS

GHhib(4)

OpenBLAS(4)

M AGM A(4)

GHgpu

GHhyb(1T)

MAGMA(1T)

OpenBLAS(1T)

GHhyb(4T)
MAGMA(4T)
OpenBLAS(4T)

GF
LO

PS

Dimension (n)

Figure 6: Power-efficiency (measured in GFLOPS/Watt) attained by the OpenBLAS and GHgpu solvers.

The quality of the numerical results obtained with all solvers are numerically equivalent. In other words,
the residual error associated with all the computed solutions are of the same order.

Table 1 summarizes the runtime (in seconds) and performance (in GFLOPS or billions of flops per second)
obtained by the four solvers, i.e., OpenBLAS, MAGMA, GHgpu and GHhyb. Additionally, for each variant
(except GHgpu), we include the number of threads employed on the CPU. In particular, we present two
options for each variant, corresponding to the use a single thread and use 4 threads (one per core in the
Cortex A-15 processor). For GHgpu and GHhyb, we evaluate several block sizes (both, internal and external),
but for simplicity, only the best performance for each system dimension is shown. A graphical comparison
of the performance attained by all variants is offered in Figure 6.

First of all, we focus on the results obtained with solvers in OpenBLAS and MAGMA. The solver in
the MAGMA library reports a moderate performance on the solution of small to moderate-scale systems.
This might be caused by the CPU-GPU communication overhead. The performance rapidly improves with
the problem dimension. Additionally, the use of 4 threads (note that MAGMA offers a hybrid CPU-GPU
method) delivers marginal gains, about a 10% of time reduction. OpenBLAS offers a remarkable performance
despite it uses only the ARM processor (that presents a lower computational power than the GPU), but its
performance is far from that of GPU-based solvers. ts parallel version is able to beat the MAGMA solver
for all problem dimensions.

Regarding the GH-based solvers, the hybrid variant (GHhyb) offers execution times comparable with
those obtained with the MAGMA library for the larger problems, but it is clearly superior on the solution
of small systems, especially when a single thread is employed in the CPU. In contrast, the GHgpu variant,
which performs all the computations in the GPU, achieves a remarkable performance, especially for larger
problems. This is because the capabilities of the massively parallel architecture in the GPU can be exploited
more efficiently in the solution of large systems. It should be note that GHgpu is the best option for problems
of dimension n larger than 3, 072.

In a conclusion, the hybrid implementations do not attain high performance because of the high overhead
introduced by the data transfers. For the solution of small problems, the use of the ARM processor only is
convenient since it does not require of data transfer. For larger problems, the higher computational power
of the GPU promotes the GPU-only variant as the best option.

4.3 Power consumption evaluation

In this section we address the power and energy evaluation of the two more efficient solvers, i.e., the solver
in the OpenBLAS library and GHgpu. We exclude from this comparison the hybrid solvers (GHhyb and the
solver in the MAGMA library) because the power required by them is expected to be higher than that of the
solvers that are fully executed in one of the processors in the platform. Additionally, they exhibited a higher

9



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

runtime and thus, larger energy requirements are to be expected by the hybrid solvers. For the OpenBLAS
solver we evaluate its behavior with 1 and 4 threads.

In order to measure the power consumption, we connected a WattsUp?Pro wattmeter (accuracy of
±1.5% and a rate of 1 sample/sec.) to the power line from the electric socket to the power supply unit
(PSU) of the Tegra TK1 device. Thus we measure the power consumption of the whole board. The power
measurements are collected, stored, and treated in a different server, so that the measurement does not
disturb the solvers execution. All tests were executed for a minimum of 1 minute, after a warm-up period
of 2 minutes.

Table 2 collects the average power (Pavg), total energy (Etot), and GFLOPS/Watt reported by the
solvers. Figure 7 shows the GFLOPS/Watt ratio of the solvers. The results show that, when the system
dimension n ≤ 2, 000, the most energy-efficient solver is that provided by the OpenBLAS library (using
4 threads). This is explained by the absence of expensive CPU-GPU data transfers. Although the GPU
architecture is more energy-efficient than the ARM processors, it cannot be fully exploited for the solution
of small problems. Thus, the time and energy spent in data transfers is superior to the gains reported by
the GPU usage. This is exposed by the Pavg values. GHgpu delivers a lower Pavg but a longer execution
time (see Table 4.2), resulting in higher energy consumption. For larger systems, the GHgpu reported the
best results in terms of energy. For this kind of problems, the full exploitation of the GPU capabilities
compensates the time and energy spent in data transfers (note than only two data transfers are required in
GHgpu, initially the whole Â matrix is sent to the GPU and, upon completion, the x vector is retrieved by
the CPU). A special case occurs when n = 3, 000. In this case, the solver in OpenBLAS (with 4 threads)
reports the shorter execution time, but due to the lower Pavg of GHgpu, the latter consumes less energy. If we
focus on the Pavg results, the OpenBLAS solver with a single thread presents the lowest power consumption.
This is explained by the fact that the solver uses a single core of the ARM processor. On the other hand,
when the same solver operates with 4 threads, it delivers a speed-up of about 3.5, while the power is nearly
doubled. Consequently, the use of 4 threads in OpenBLAS is more energy-efficient. The average power
consumed by GHgpu (remember this solver is completely executed in the GPU) is lower than that of the
parallel OpenBLAS kernel (using 4 cores of the ARM processor), reporting up to 50% of power reduction
depending on the system dimension. This implies that the GPU presents a higher peak performance and
also a lower energy-consumption and thus, this architecture specially appealing for our purposes.

Table 2: Average power consumption (in Watts), total energy (in Joules) and performance per Watt (in
GFLOPS/Watt) obtained for the three solvers on the solution of linear systems of equations of dimension
n.

OpenBLAS GHgpu

1-thread 4-threads 1-thread
n Pavg Etot GFLOPS/Watt Pavg Etot GFLOPS/Watt Pavg Etot GFLOPS/Watt

1K 6.3 1.18 0.60 12.6 0.80 0.89 6.1 2.92 0.25
2K 6.3 8.86 0.65 13.2 5.57 1.03 6.9 7.47 0.77
3K 6.3 29.02 0.67 13.7 17.99 1.07 8.1 14.87 1.30
4K 6.3 70.36 0.68 13.7 43.26 1.06 9.2 27.99 1.64
5K 6.3 131.51 0.68 14.0 80.31 1.11 9.9 47.64 1.88
6K 6.3 227.07 0.68 14.1 138.77 1.11 10.7 75.36 2.05
7K 6.3 357.66 0.69 14.2 218.37 1.12 10.9 108.99 2.25

Since the platform contains several devices —e.g., network interface cards— we measured the average
power while idle for 1 minute, PI , showing a value of 2.6 Watts. This correspond to the power consumption
of the board when no operation is executed. We use this value to compute the net energy, corresponding
to the energy consumption that is obtained after subtracting PI from the power samples. The net energy
approximates the actual energy spent in computations, and allows a fair comparison between the compu-
tational kernels. Figure 8 shows the GFLOPS/Watt computed with the average net power (left) and the
net energy of the solvers. Both figures show the superiority of GHgpu, because it performs more arithmetic
operations per Watt and also requires less energy.

5 Concluding Remarks

During the last years, energy consumption has become a major issue in high performance computing, too.
In this work we present two efficient solvers for linear sytems of equations that present remarkably low
energy consumption. The new solvers exploit the capabilities of a low-power hardware platform, an NVIDIA

10



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

0.25

1

1
0

.

.
.

3

0
8

0

3
9

1.64

1.88

2.05

2.25

0.60 0.65 0.67 0.65 0.68 0.68 0.69

1.07 1.06
1.11 1.11 1.12

0.0

0.5

1.0

1.5

2.0

2.5

1024 2048 3072 4096 5120 6144 7168

G
F
L
O
P
S
/
W
a
t
t

Dimension

GHgpu

OpenBLAS

OpenBLAS(4)

GHgpu

OpenBLAS(1T)

OpenBLAS(4T)GF
LO

PS
/W

at
t

Dimension (n)

Figure 7: Energy-efficiency (measured in GFLOPS/Watt) attained with the OpenBLAS and GHgpu solvers.

0.43

1.23

1.91

2.28
2.55

2.71
2.96

1.03 1.10 1.13 1.11 1.16 1.16 1.17

1.12 1.28 1.33 1.31 1.37 1.37 1.38

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1024 2048 3072 4096 5120 6144 7168

G
FL
O
PS
/W
at
ts

Dimension(n)

GHgpu

OpenBLAS

OpenBLAS(4)

10.1 20.0
35.1

57.0
82.9

0.7 5.2
17.0

41.3

77.2

133.3

210.0

35.0

65.4

113.2

178.3

0

50

100

150

200

250

1024 2048 3072 4096 5120 6144 7168

Jo
ule
s

Dimension(n)

GHgpu

OpenBLAS

OpenBLAS(4)GF
LO

PS
/W

at
t

Jo
ul

es

Dimension (n) Dimension (n)

OpenBLAS(4T)

OpenBLAS(1T)

GHgpu

OpenBLAS(4T)

OpenBLAS(1T)

GHgpu

Figure 8: Net energy-efficiency measured in GFLOPS/Watt (left) and total net energy in Joules (right),
attained with the OpenBLAS and GHgpu solvers.

JETSON K1 (formed by an ARM quad-core processor and a NVIDIA GPU with 192 CUDA cores) device
to efficiently run a Gauss-Huard-based solver. The Gauss-Huard algorithm presents some features which
turn it more suitable for the target hardware platform than the traditional LU-based solver. The GHhyb

solver aims to exploit all the computational units in the platform concurrently. Despite it is able to perform
computations concurrently in both processors, it also requires data transfers between their memory spaces,
incurring into a considerable overhead. The GHgpu solver performs all the computations in the most powerful
processor, the GPU. Thus, it incurs a minor communication overhead that is compensated with both higher
performance and energy-efficiency of the GPU. The performance of both solvers is compared with the solvers
in OpenBLAS and MAGMA libraries. The experimental results show the superior behavior of the GHgpu

solver on the solution of linear systems of dimension n ≥ 4, 000. For smaller systems, the OpenBLAS solver
reports the best execution times because it runs entirely in the ARM processor and does not require any
CPU-GPU communication. The power and energy evaluation show the convenience of the GPU processor
over the ARM quad-core. The GPU consumes less power and delivers a higher GFLOPS rate. Consequently,
the GHgpu variant attains the best energy-efficiency on the solution of moderate to large-scale systems. On
the solution of small systems, again the absence of CPU-GPU communications in the OpenBLAS kernel turns
it into the most energy-efficient variant. The communication overhead affects negatively the performance
(and therefore the energy efficiency) of the hybrid solvers (i.e., the solver in the MAGMA library and GHhyb)
and thus, both deliver limited performance.

There are different aspects that were not addressed in the current work but deserve more investigation.
For example, it is important to study new techniques to improve the results of the hybrid solvers. For
example techniques like look-ahead [24] have demonstrated important benefits in similar applications. It

11



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

should also be evaluated how the hybrid CPU-GPU implementations can benefit from the improvements in
the Unified-Memory-Access announced by NVIDIA for their future devices. Additionally, we plan to extend
this study to other low power consumption hardware platforms, e.g., Samsung ODROID-XU4. Finally,
although this work targets single precision arithmetic (due to the low performance of the architecture on
double precision), we plan to investigate how GH can be complemented with an iterative refinement to attain
a full double precision solution.

Acknowledgment

Juan Silva, Ernesto Dufrechou and Pablo Ezzatti acknowledge the support from Programa de Desarrollo de
las Ciencias Básicas, and Agencia Nacional de Investigación e Innovación, Uruguay. Enrique S. Quintana-Ortí
was supported by project TIN-2014-53495-R of the Ministerio de Economía y Competitividad and FEDER.
All researchers acknowledge the support from the EHFARS project funded by the German Ministry of
Education and Research BMBF.

References

[1] J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1997.

[2] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore: The Johns Hopkins University
Press, 1996.

[3] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff, “A set of level 3 basic linear algebra subpro-
grams,” ACM Trans. Math. Soft., vol. 16, no. 1, pp. 1–17, March 1990.

[4] P. Ezzatti, E. Quintana-Ortí, and A. Remón, “Using graphics processors to accelerate the computation
of the matrix inverse,” The Journal of Supercomputing, vol. 58, pp. 429–437, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11227-011-0606-4

[5] P. Benner, P. Ezzatti, E. S. Quintana-Ortí, and A. Remón, “Matrix inversion on CPU-GPU platforms
with applications in control theory,” Concurrency and Computation: Practice and Experience, vol. 25,
no. 8, pp. 1170–1182, 2013. [Online]. Available: http://dx.doi.org/10.1002/cpe.2933

[6] P. Huard, “La méthode simplex sans inverse explicite,” EDB Bull, Direction Études Rech. Sér. C Math.
Inform. 2, pp. 79–98, 1979.

[7] T. J. Dekker, W. Hoffmann, and K. Potma, “Stability of the Gauss-Huard algorithm with partial
pivoting,” Computing, vol. 58, pp. 225–244, 1997.

[8] J. P. Silva, E. Dufrechou, E. Quintana-Ortí, A. Remón, and P. Benner, “Solving dense linear systems
with hybrid CPU-GPU platforms,” in Proceedings of the XLI Latin American Computing Conference,
CLEI 2015, Arequipa, Peru, 2015. IEEE, to appear.

[9] OpenBLAS website, Z. Xianyi; [accessed 2015 Dec], http://www.openblas.net/.

[10] B. J. Smith, “R package MAGMA: Matrix algebra on GPU and multicore architectures, version 0.2.2,”
September 3, 2010, [On-line] http://cran.r-project.org/package=magma.

[11] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn, “FLAME: Formal linear algebra
methods environment,” ACM Trans. Math. Soft., vol. 27, no. 4, pp. 422–455, 2001.

[12] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ortí, and R. A. van de Geijn, “The science
of deriving dense linear algebra algorithms,” ACM Trans. Math. Soft., vol. 31, no. 1, pp. 1–26, 2005.

[13] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide. Philadelphia: SIAM, 1992.

[14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2002.

[15] E. Quintana-Ortí, G. Quintana-Ortí, X. Sun, and R. van de Geijn, “A note on parallel matrix inversion,”
SIAM J. Sci. Comput., vol. 22, pp. 1762–1771, 2001.

12



CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 2, APRIL 2016

[16] T. J. Dekker, W. Hoffmann, and K. Potma, “Parallel algorithms for solving large linear systems,” Journal
of Computational and Applied Mathematics, vol. 50, no. 1–3, pp. 221–232, 1994.

[17] W. Hoffmann, K. Potma, and G. Pronk, “Solving dense linear systems by Gauss-Huard’s method on a
distributed memory system,” Future Generation Computer Systems, vol. 10, no. 2–3, pp. 321–325, 1994.

[18] TOP500.org; [accessed 2015 Dec], http://www.top500.org/.

[19] MAGMA, Univ. of Tennessee; [accessed 2015 Dec], http://icl.cs.utk.edu/magma/.

[20] S. Balay, W. Gropp, L. C. McInnes, and B. Smith, “PETSc 2.0 users manual,” Argonne National
Laboratory, Tech. Rep. ANL-95/11, October 1996.

[21] TU Wien and FASTMathSciDAC Institute, http://viennacl.sourceforge.net/.

[22] Barcelona Supercomputing Center, http://www.bsc.es.

[23] NVIDIA, http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html.

[24] P. Strazdins, “A comparison of lookahead and algorithmic blocking techniques for parallel matrix factor-
ization,” Department of Computer Science, The Australian National University, Canberra 0200 ACT,
Australia, Tech. Rep. TR-CS-98-07, 1998.

13


