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Abstract

Dealing with dynamics is a vital problem in Artificial Intelligence (AI). An intelligent
system should be able to perceive and interact with its environment to perform its tasks
satisfactorily. To do so, it must sense external actions that might interfere with its tasks,
demanding the agent to self-adapt to the environment dynamics. In AI, the field that
studies how a rational agent should change its knowledge in order to respond to a new
piece of information is known as Belief Change. It assumes that an agent’s knowledge
is specified in an underlying logic that satisfies some properties including compactness:
if an information is entailed by a set X of formulae, then this information should also
be entailed by a finite subset of X. Several logics with applications in AI, however, do
not respect this property. This is the case of many temporal logics such as LTL and
CTL. Extending Belief Change to these logics would provide ways to devise self-adaptive
intelligent systems that could respond to change in real time. This is a big challenge in
AI areas such as planning, and reasoning with sensing actions. Extending Belief Change
beyond the classical spectrum has been shown to be a tough challenge, and existing
approaches usually put some constraints upon the system, which are either too restrictive
or dispense some of the so desired rational behaviour an intelligent system should present.
This is a summary of the thesis “Belief Change without Compactness” by Jandson S
Ribeiro. The thesis extends Belief Change to accommodate non-compact logics, keeping
the rationality criteria and without imposing extra constraints. We provide complete
new semantic perspectives for Belief Change by extending to non-compact logics its three
main pillars: the AGM paradigm, the KM paradigm and Non-monotonic Reasoning.
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1 Introduction

Reasoning about dynamics is a challenge in both Computer Science (CS) and Artificial Intelligence (AI).
Consider, for instance, the planning problem in AI: given a task, an agent needs to find a chain of actions (a
plan) whose execution successfully achieves the task goal. Now imagine that an agent, say ‘A’, is executing
a plan, and an external agent interferes with it (it blocks one of agent ‘A’ resources, for instance). In
this case, agent ‘A’ original plan is no longer suitable, and the agent needs to come up with a whole new
plan, considering the new circumstances of the environment. Completion of complex tasks, such as rescue
missions, are susceptible to frequent external interferences. For instance, a malicious agent could attempt
to steal information, or put a member of a rescue team on the wrong track. The nature of interference
can be more innocuous: a piece of missing/unavailable information can interfere with the completion of the
task. In these scenarios, the re-planning task should be performed automatically by the agent and it should
guarantee the quality of its solution.

Software development is also dynamic, as a system often needs to be changed throughout its development
process for many reasons: deal with a recently identified error, evolve the system to incorporate a new feature,
or a change of requirements due to a misspecification. In this case, the system needs to be modified/repaired.
Although, many approaches to automatically verify systems exist (e.g. Model Checking [1]), standard
approaches to repair a system are mostly manual and exhaustive error-prone processes. Intelligent systems
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Figure 1: A crossing road (a) and an automatic traffic light system model (b). We use (gr) and (rd) to
indicate respectively colours green and red, for instance at state 2, (rd) tf1 means tf1 is red. The u.t
abbreviation means unit of time.

in AI could assist in handling dynamics in software development. For example, they could automate the
process to modify/repair a system to accommodate new requirements or remove errors.

The core problem in reasoning about dynamics revolves around how an agent maintain its corpus of
knowledge: any action an agent makes, including a response to an event (e.g. an external interference),
is motivated and justified by the information the agent holds when the event is triggered. The field in AI
that deals with the dynamics of an agent body of knowledge is known as Belief Change [2]. The two most
influential theories in Belief Change are the AGM paradigm of belief revision, initially proposed in [3] and
further developed in works such as [4], [5]; and the KM paradigm [6] of belief update. Both approaches
conceptualise the notion of rational change motivated by the idea that the changes involved should be
minimised. This minimality principle is formalised by rationality postulates which prescribe good behaviours
for belief change operators. These paradigms also propose classes of belief change constructions strongly
characterized by these rationality postulates.

This thesis considers the problem of how to deal with dynamics in AI, with the motivation that this can
be extended to devise enhanced and autonomous intelligent systems. This thesis focuses on the foundations
of Belief Change and AI. In Sections 1.2 and 5.1, we discuss in detail the impact and applications of this
work.

The knowledge (or beliefs) of an agent is classically expressed via sentences specified in propositional
logic. Relying solely on propositional logic to represent knowledge, however, is too restrictive. There are
many other kinds of knowledge that need to be expressed in AI and computational systems. For instance,
conceptual knowledge which can be expressed via Description Logics [7], Horn Logic [8] which are used for
rule-based systems, and a variety of Modal Logics, such as Temporal Logics [9], which are widely used in
planning and Formal Methods to specify the behaviour of the systems via temporal operators. To this end,
considering Belief Change in the context of non-classical logics is essential to develop enhanced intelligent
systems. Let us consider, for example, the problem of how a computer system could self-repair or repair
other systems, by showing an intelligent system being developed in the context of smart cities. Figure 1 (a)
illustrates a very simple scenario that this system should manage. There is a “T” Junction with two traffic
lights, tf1 and tf2, that respectively control the traffic flow to point C from points A and B respectively. A
pedestrian can use the pedestrian crossing, Figure 1 (a), only when both the traffic lights, tf1 and tf2, are
red; and may press a button B0 for this purpose.

A rather näıve implementation of this traffic control system is depicted in Figure 1 (b). This model
illustrates the possible states of the system and how they transition from one state to another. By default,
the system cycles between State 1 to State 2 after an elapse of s units of time. When button B0 is pressed,
the system goes to State 3, allowing pedestrians to cross the road, stays in that state for s units of time,
and then transitions to State 1. At the first glance, this implementation of the traffic control system might
appear to fit the bill.

Now, consider what is known as liveness – a very desirable property that a system is often required to
satisfy. In the context of our traffic control system, a good instance of this property is the requirement
that vehicles on both sides A and B, as well as pedestrians, should have the opportunity to go through the
pedestrian crossing. As we will show shortly, the model of Figure 1 (b) does not satisfy liveness for the cars
from direction B.

To see this, suppose that a pedestrian pushes the button B0 to cross the road. This makes the system go
to state 3. After s units of time elapses, the system goes to state 1 opening the traffic for cars from side A.
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Then, before it changes to state 2, a new pedestrian requests to cross, moving the system to state 3 again.
This loop of actions can continue indefinitely, preventing cars on side B to go through the crossing, thus
violating the liveness property. Although such an indefinite line-up of pedestrians stretches the imagination,
it demonstrates that the system is genuinely vulnerable to malicious attacks: instead of a huge number of
pedestrians, it could be a single invader on the network that intends to disrupt the system. At the rush
time, pedestrians continuously pressing button B0 would significantly delay the cars on side B. Hence, there
is a real need to fix the model in Figure 1 (b).

Standard approaches to repair a system consist in giving a counter-example (a piece of the model re-
sponsible for the failure) and letting the system designer manually repair the system. This makes the repair
process an exhaustive task prone to introductions of errors. This simple model above is just a small piece of
a complex system with possibly hundreds of states, and numerous constraints imposed upon them. Manually
repairing such a system is impractical.

An ideal approach would not only identify causes of failure, but also suggest which modifications should
be carried out in order to repair the model in order to satisfy the relevant requirements. In other words,
we should construct a system that is capable of repairing other systems. However it is not obvious how such
systems can be constructed. Existing proposals that suggest system repair at purely syntactical or structural
levels are rather simplistic.

The system repair problem can actually be seen as an instance of the belief change problem: a system
model is analogous to the knowledge of an agent, and the required specification that such a system has
to satisfy corresponds to an acquired piece of information. The result of accommodating the new piece of
information corresponds to the process of repairing the system. In this case, the agent changes its knowledge
(respectively, changes the system model) in order to incorporate (satisfy) the new piece of information
(requirement). From this perspective, belief change could lead to a rich notion of rational system repair.

Many approaches for formal specification and verification of systems rely on temporal logics. These
logics are used in Formal Methods and many fields in AI, such as: planning, reasoning about actions, and
sensing actions [10]. In these applications, an agent has to deal with dynamics, while its body of knowledge
is usually represented via temporal logics. Although one can represent such kind of knowledge, dealing with
the dynamics of temporal beliefs is still a tough task, and approaches to deal with changes are usually ad-hoc
[10], [11].

Given the relevance of temporal logics in AI, understanding the dynamics involved in the management of
knowledge in these logics will allow the construction of enhanced and robust intelligent systems. To this end,
as for classical logics, a general framework capable of explaining and guiding belief change in these logics
would be ideal. There are, however, a number of complicating factors in constructing this formal framework.
The standard approaches of belief change make some strong assumptions about the background logic used to
represent an agent’s knowledge in terms of what properties they satisfy. Such assumptions may excessively
limit when and how belief change can be performed. One of these assumptions is that the logic in question
satisfies compactness: if a formula ϕ is entailed by a set of formulae K, then ϕ must also be entailed by a
finite subset of K.

Example of non-compact logics include Hybrid logics (e.g. PDL[12]) which are used to represent the
dynamics of computational systems; and more expressive temporal logics, such as CTL and LTL[1], which
are among the most widely used logics in AI. As investigated by Ribeiro et al. [13], compactness has an
important role in Belief Change theory, and dispensing with it has serious consequences. For instance, in
the AGM paradigm the connection between the standard constructions of belief change and the rationality
postulates is lost. Even worse, Guerra and Wassermann [14] have shown that it is not possible to define
such constructions in logics without compactness. Regardless of how we intend to extend Belief Change to
temporal logics, it is clear we have to deal with the problem of discarding compactness. This is the main
purpose of this thesis: how to extend Belief Change for non-compact logics. Addressing compactness will
not only allow us to apply belief change to a huge class of logics, but also to understand why the traditional
mechanisms of belief change depend so strongly on this property and, therefore, to better understand belief
change itself. In addition, it will allow us to assume very little about the underlying logic, and look at
belief change more freely, focusing on the aspect of rationality change rather than on properties from the
underlying logic. This text is a summary of some of the results present in the PhD thesis “Belief Change
without Compactness”, by Jandson S Ribeiro, submitted to University of São Paulo (USP) and Macquarie
University under a cotutelle agreement. This summary is a visit to that thesis, and it does not present in
detail all the discussed results.

1.1 Contributions

Belief Change is founded on three main pillars: (i) the AGM paradigm of belief revision, (ii) the KM paradigm
of belief update and (iii) belief change as a non-monotonic system. The two main pillars, AGM and KM
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paradigms, have an extra-logical point of view on belief change: an agent’s knowledge is represented via an
underlying logic, whereas extra-logical constructions, such as epistemic preference relations, are used to devise
belief change mechanisms. For the third pillar, an agent’s knowledge is represented in an underlying logic
whose consequence relation is non-monotonic: acquisition of new information may expel previous information
contradictory with the new one. In this case, a natural question to pose is: which non-monotonic systems
behave accordingly to the belief change rationality postulates? This thesis extends all the three main pillars
of Belief Change to the realm of non-compact logics. By doing so, we provide a complete redefinition of
Belief Change to new fields.

The first question to pose is if it is even possible to define belief change functions according to AGM
and KM paradigms rationality postulates. Toward this end, we identify the properties a logic must possess
in order to guarantee the existence of such functions, without depending on compactness. We do this for
both the AGM paradigm and the KM paradigm. For the latter, we also identify the rationality postulates
that emerge from the standard constructions of the KM paradigm in the absence of compactness. For the
non-monotonic logics point of view, we define a new non-monotonic system that behaves as to the AGM
rationality postulates of belief revision.

1.2 Significance and Impact

For decades, belief change approaches have relied on strong assumptions about the underlying logic used to
express an agent corpus of beliefs. These assumptions, which include compactness, however, forbid applying
belief change in expressive and interesting logical formalisms with applications in AI and CS. Negative results
have shown that the classical semantic constructions and their connections with the rationality criteria cease
in the absence of such assumptions. It is not clear, however, what is the role of these assumptions for the
connection between the rationality postulates and their standard semantic constructions.

This thesis makes a big step towards answering this question: the rationality criteria are indeed consistent
with non-compact logics, but the issue is that the classical constructions rely on these assumptions to
semantically connect with the rationality postulates. As one of reviewers of this thesis put: by extending
Belief Change to accommodate non-compact logics, this thesis causes a so long needed paradigm disruption
in Belief Change: it provides the semantically counterparts of Belief Change without relying on strong
assumptions, therefore making Belief Change more independent from the underlying logic. This disruption
opens new research lines inside Belief Change itself, and provides new mechanisms to devise enhanced
applications in both AI and CS. Consequently, this disruption compels a reinvestigation of the other forms of
belief change (e.g. Iterative and Multiple Belief Change) in more expressive logics. We discuss in Section 5.1
some of these future lines of research.

1.3 Overview

In Section 1.4, we introduce some notation and technical background necessary to the understanding of
this thesis. In Section 2, we briefly review the AGM paradigm. We then introduce the problem of AGM
belief change in non-compact logics, and we show how to perform AGM belief change in logics that do not
have the compactness property. We provide semantic constructions to the two main forms of AGM belief
change: contraction and revision. We also show that the interdefinability of revision and contraction, via
the Levi and Harper identities, does not depend on compactness. In Section 3, we review the KM paradigm
and the consequences of dispensing with compactness in this system. We devise classes of (fully) KM
rational functions, and we identify some issues with the original KM rationality postulates regarding non-
finitary languages. In Section 4, we bring to light the connection between AGM revision and non-monotonic
reasoning, and we devise a new non-monotonic system, without compactness, that reconnects with the AGM
revision. In the final section, we summarise the main results obtained in this work and their significance. We
end by discussing some research directions worth pursuing in future, and some relevant applications. Some
of the results reported at Section 2 were previously published at [15]. Results presented at Section 3 and
Section 4 were published at [16] and [17], respectively.

1.4 Notation and Technical Background

Given a set A, the power set of A will be denoted as 2A. We use the terms formula and sentence in-
terchangeably. We will use upper case Roman letters (A, B, X, Y . . . ) to denote sets, and lower case
Greek letter (ϕ,ψ, α, β, . . . ) will be used to denote formulae. Propositional symbols will be denoted by lower
case Roman letters (p, q, r, . . . ). The maximal elements of a set A w.r.t a Partial Order < are given by
max<(A) = {a ∈ A | ∀b ∈ A, a 6< b}.

The material implication will be represented as usual, that is, ϕ→ ψ = ¬ϕ ∨ ψ. We consider a logic as
a pair 〈L,Cn〉, where L is a language and Cn: 2L → 2L is a logical consequence operator that maps a set
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of formulae to the set of all its inferred formulae. For readability, for any formula ϕ, the set Cn({ϕ}) will
often simply be written as Cn(ϕ). We will often pretend that the consequence operation Cn itself represents
a logic when no confusion is imminent. We limit ourselves to logics that are Tarskian, that is, logics whose
consequence operator satisfies the following three properties:

1. (Monotonicity): if A ⊆ B then Cn(A) ⊆ Cn(B);

2. (Idempotence): Cn(A) = Cn(Cn(A));

3. (Inclusion): A ⊆ Cn(A);

Apart from being Tarskian, the consequence operation is often granted some other properties in the AGM
belief change literature, and they are often dubbed AGM Assumptions:

• (deduction): ϕ ∈ Cn(A ∪ {ψ}) iff ψ → ϕ ∈ Cn(A);

• (supraclassicality): if ϕ is a logical consequence of A in classical propositional logic, then ϕ ∈ Cn(A);

• (compactness): if ϕ ∈ Cn(A) then there is a finite subset A′ of A such that ϕ ∈ Cn(A′).

For notational convenience, we take A+ ϕ to mean Cn(K ∪ {ϕ}), where A is a set of formulae and ϕ a
formula. The operator + is in fact the belief expansion operator used to add a new piece of information ϕ to
a set of formulae A, without taking into consideration whether or not ϕ is consistent with A. See Section 2
for a discussion about this operator.

A logic 〈L,Cn〉 is closed under classical negation iff the language L is closed under the negation operator:
for each formula ϕ ∈ L, Cn(ϕ) ∩ Cn(¬ϕ) = Cn(∅), and Cn({ϕ,¬ϕ}) = L. In other words, the negation is
interpreted classically. Analogously, the logic is closed under the disjunction if the language is closed under
such a connective and it is also classically interpreted.

A theory or belief set is a set of formulae logically closed under the consequence operator Cn, that is,
a theory A is a set of formulae such that A = Cn(A). We will reserve the letter K to denote theories.
Let I be an interpretation domain of a logic 〈L,Cn〉, and M a model in I. Given a set of models A,
Th(A) = {ϕ | ∀M ∈ A,M |= ϕ} is the theory of the formulae satisfied by all models in A. Moreover, given
a theory X ⊆ L, the set of models that satisfy all formulae in X is JXK = {M ∈ I | ∀ϕ ∈ X,M |= ϕ}. For
simplicity, given a set of formulae X and a model M , we will write M |= X to mean that M satisfies every
formulae in X. Furthermore, we will call a theory T a complete theory if and only if, for every sentence ϕ,
either ϕ ∈ T or ¬ϕ ∈ T , and use TL to denote all such complete theories. Notice that, in logics closed under
classical negation, the existence of complete theories is trivial.

A theory is said to be consistent if it does not entail some formula ϕ and its negation ¬ϕ. The set of all
Consistent Complete Theories (CCT) that entail a formula ϕ is given by the set ω(ϕ) = {T ∈ TL | ϕ ∈ T}.
Conversely the set of all consistent complete theories that do not entail a formula ϕ is given by ω(ϕ) = {T ∈
TL | ϕ 6∈ T}. A consistent complete theory from ω(ϕ) will be called a complement of ϕ.

2 AGM Paradigm Beyond Compactness

Portions of texts used in this section were borrowed from [15]. The AGM paradigm, initially proposed in
[3] and further developed in works such as [2] and [5], is the most influential theory in the discipline of
Belief Change. In the AGM paradigm, the beliefs of an agent is represented as sentences expressed via
an underlying logic 〈L,Cn〉. An epistemic state comprises all the beliefs an agent hold in a given instant
of time, and it is expressed in this paradigm as a theory. We recall from the introductory section that a
theory is a set of formulae K logically closed under Cn, that is, K = Cn(K). Besides being Tarskian, the
underlying logic Cn is assumed to satisfy some properties: deduction, supraclassicality and comapctness see
Section 1.4). Following [18] and [19], these conditions are here dubbed AGM assumptions.

An agent presents three actions regarding its epistemic states in the light of a formula ϕ:

Expansion: K + ϕ, add ϕ to K;

Contraction: K−̇ϕ, relinquish ϕ;

Revision: K ∗ ϕ, incorporate ϕ keeping consistency.

Expansion simply adds the new information to the current epistemic state of an agent: K+ϕ = Cn(K ∪
{ϕ}). Contraction, on the other hand, removes the piece of information ϕ in hand. The revision operation
incorporates the new piece of information and, unlike expansion, it maintains consistency of the new epistemic
state (given that ϕ is consistent). The three operations are ruled by sets of rationality postulates inspired
on the principle of minimal change: when changing its beliefs an agent should preserve most of its beliefs,
modifying only those that are essential to accommodate or remove the piece of information in hand.
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2.1 Contraction

In the AGM paradigm, the contraction form of belief change is governed by a set of six basic rationality
postulate and two supplementary ones. Let K be the set of all theories, a belief change function is any
function f : K×L→ K that maps a pair of epistemic state and formula to a new epistemic state. Let −̇ be
a belief change function, the AGM rationality postulates for contraction are:

(K−1 ) K−̇ϕ = Cn(K−̇ϕ) (closure)
(K−2 ) K−̇ϕ ⊆ K (inclusion)
(K−3 ) If ϕ 6∈ K, then K−̇ϕ = K (vacuity)
(K−4 ) If ϕ 6∈ Cn(∅), then ϕ 6∈ K−̇ϕ (success)
(K−5 ) K ⊆ (K−̇ϕ) + ϕ (recovery)
(K−6 ) If Cn(ϕ) = Cn(ψ), then K−̇ϕ = K−̇ψ
(K−7 ) (K−̇ϕ) ∩ (K − ψ) ⊆ K−̇(ϕ ∧ ψ)
(K−8 ) If ϕ 6∈ K−̇(ϕ ∧ ψ) then K−̇(ϕ ∧ ψ) ⊆ K−̇ϕ

The postulates (K−1 ) to (K−6 ) are basic rationality postulates, while (K−7 ) and (K−8 ) are the supplementary
postulates and dictates rules to contract conjunctive formulae. For a discussion about the rationality behind
these postulates, see [2], [5].

Any belief change operation that satisfies closure and success will be called a contraction operation.
Moreover, any contraction operation that satisfy the six basic AGM rationality postulates of contraction
will be called AGM rational, and if besides the six basic postulates it satisfies that two supplementary ones,
then we will say that it is fully AGM rational.

The rationality postulates dictates what is a rational change, but it does not inform how to construct
contraction operations that follows such guidelines. Many AGM rational contraction operations have been
proposed in the literature, and the most influential one is known as Partial Meet Function [3]. In order to
contract a formula ϕ from a theory K, a partial meet function resorts to remainders: maximal subsets of K
that do not entail ϕ. A partial meet function then applies a strategy of select and intersect: it chooses some
of the remainders of K modulo ϕ (this choice is rationalised by the idea that the formulae in the picked
remainders are the most reliable beliefs of the agent), and then it intersects all the selected remainders with
K, corresponding to the contraction result. If the selection is made according to a pre-order (a transitive
and reflexive relation) on remainders, then the respective partial meet function is called a transitive partial
meet function.

Theorem 1 ([3]). In the presence of the AGM assumptions, a contraction function is AGM rational iff
it is a partial meet function. Moreover, a contraction function is fully AGM rational iff it is a transitive
relational partial meet function.

2.2 AGM Contraction: Dispensing with Compactness

The representation results between partial meet functions and the AGM rationality postulates, presented in
the previous section, depends strongly on the AGM assumptions. Negative results have shown that lifting
compactness has serious consequences: Ribeiro et al. [13] has shown that the connection between partial
meet functions and the AGM rationality postulates breaks down; even worse Guerra and Wassermann [14]
has shown that it is not even possible to define partial meet in these logics. These negative results, however,
bring more questions than answers. Precisely, what is the cause for this disruption between postulates
and constructions in the absence of compactness? We show that the answer for this question is that the
standard constructions depend on the compactness to establish its rational behaviours, but AGM rational
constructions can be defined in non-compact logics. To show this, we need first to consider what is known
as AGM-compliance: a logic Cn is said to be AGM-Compliant if and only if, with Cn as the background
logic, it is possible to define a contraction operation that satisfies all the six contraction AGM postulates.

The first result of this thesis comprises AGM-compliance to a huge class of non-compact logics:

Theorem 2. Every Tarskian logic closed under classical negation and disjunction is AGM- Compliant.

2.3 Basic Contraction Rationality without Compactness

In this section, we devise new classes of AGM rational contraction functions. In the AGM approach, the
partial meet contraction depends on remainder sets whose existence is guaranteed by the compactness
property of the background logic. But since we do not have the compactness property to fall back upon,
the contraction function we define will depend on a selection of complete consistent theories which will be
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intersected with the belief set K. Accordingly we assume a Choice Function (CF) δ : L → 2TL that maps
each formula ϕ of L to a set of complete theories δ(ϕ), subject to constraints:

1. δ(ϕ) 6= ∅;

2. if ϕ 6∈ Cn(∅), then δ(ϕ) ⊆ ω(ϕ);

3. for any formulas ϕ and ψ, if ϕ ≡ ψ then δ(ϕ) = δ(ψ).

The purpose of a CF is to pick the best complete theories that do not entail a non-tautological formula
ϕ (condition 2). A CF is not syntax-sensitive (condition 3). Condition 1 dictates that for any formula, at
least one complete theory has to be selected. We define a new kind of contraction function:

Definition 3. Let K be a theory, ϕ a formula, and δ a choice function. An operation −δ is an Exhaustive
Contraction Function (ECF) iff

• K −δ ϕ = K ∩
⋂
δ(ϕ), if Cn(∅) ⊂ K ∩ Cn(ϕ) = Cn(ϕ) and either ¬ϕ 6∈ Cn(∅) or ⊥ ∈ K;

• K −δ ϕ = K, otherwise.

An ECF works in the following way. A formula ϕ must only be retracted from a belief set K when: (1)
K is not simply the set of all the tautological formulas, (2) ϕ is not a tautology and (3) ϕ is in K. These
three constrains are jointly expressed as Cn(∅) ⊂ K ∩Cn(ϕ) = Cn(ϕ). Besides, ϕ has to be consistent, that
is ¬ϕ 6∈ Cn(∅), in order to be retracted from K; or K is inconsistent. Otherwise, K is left untouched.

For illustration purposes, let us contract a formula from a theory expressed in a non-compact logic. The
Linear Temporal Logic [1] is a good candidate for it. For simplicity, we will consider only two temporal
operators of that logic: G and X. The former means Globally (always) in the future, and X means in
the “neXt” time instant. We will keep the disjunction and negation of that logic which are interpreted
classically. For our example, it will suffice to know two properties regarding these two operators. First,
Cn({Gp, p,Xp,X2p, . . . ,Xnp, . . . } ⊆ Cn(Gp). In other words, Gp implies that p is true in the current
time instant and in all next future instants. As disjunction and negation are interpreted classically, note
that formulas such as Xp → Gp also belong to Cn(Gp). The second point we need to know is that
Cn({p,Xp, . . . ,Xnp, . . . }) = Cn(Gp). For more details of this logic and its whole semantics, see [1].

Example 1. Consider the theory K = Cn(Gp) and we wish to contract Xp from it. Let our choice function
be δ1 where:

1. If Cn(ψ) = Cn(Xp), then
δ1(ψ) = {Cn({p,¬Xp,Xp→ Gp,¬X2p, (X2p)→ Gp, . . .})};

2. Else, if Cn(ψ) = Cn(∅) then δ1(ψ) = TL;

3. Else, δ1(ψ) = {S ∈ TL | ψ 6∈ S}.

If ψ is a tautology, we just let δ1(ψ) = TL. The first constrain above regards the complete theories chosen
to contract the formula Xp. From the semantics of LTL, it is easy to check that the only theory in δ1(XP )
is a complete consistent theory. As Xp is the only formula we are interested in retracting, for all other
non-tautological formulas ψ we let δ1 choose all the complete theories that do not imply ψ (third constrain).
So, K −δ1 Xp = K ∩ δ1(Xp) = Cn({p,Xp→ Gp,X2p→ Gp, . . . }).

It is easy to notice that −δ1 satisfies (K−1 ) to (K−4 ). Postulate (K−6 ) follows from condition 3 of the
definition of CF. For Recovery (K−5 ), it suffices to note that Xp → Gp is in both δ1(Xp) and K, whereby,
(K −δ1 Xp) +Xp = K.

Now we reach our first representation result, Theorem 4 below: the class of the ECF comprises exactly
all and only the AGM rational functions.

Theorem 4. A contraction function satisfies (K−1 ) to (K−6 ) iff it is an ECF.

2.4 Full Rationality

To semantically characterize all the eight AGM rationality postulates, we slightly modify the ECF to work
over binary relations on CCTs. The main idea is that a preference relation 6 reveals some hidden preference
an agent has among its beliefs, and the choice function δ6 always choose the best CCTs modulo 6. We
call a choice function that backs upon a binary relation on CCTs a relational choice function. Not every
binary relation, however, is suitable to represent this epistemic preference an agent has over its beliefs.
We precisely identify two conditions that these binary relations should satisfy in order to yield fully AGM
rational contraction functions:

7
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A B

C D

Figure 2: Mirroring. A is preferred to C, hence to D.

(ω-Maximal Cut) for every non-tautological formula ϕ ∈ L, ω(ϕ) has a maximal element w.r.t. <;

(Mirroring) if S1 6≤ S2 and S2 6≤ S1; then for any S′ ∈ TL, if S1 ≤ S′ then S2 ≤ S′.

The first condition on <, ω-maximal cut, is similar to the Limit Assumption of Lewis [20] and the Finite
Stopperedness of Gärdenfors and Makinson [21]. It guarantees that for every formula ϕ, an agent chooses
at least one complement theory of ϕ. The purpose of the ω-Maximal cut is to ensure that every formula
to be dropped will be successfully relinquished, that is, the theory being contracted will be intersected by
complements of ϕ. We call a binary relation that satisfies ω-Maximal-cut contra-headed . A relational choice
function whose corresponding binary relation is contra-headed will be called an annulment. We will use µ
instead of δ to denote annulment functions.

Definition 5. Let < be a contra-headed relation over TL. An annulment is a function µ< : L → 2TL such
that (i) µ<(ϕ) = max<

(
ω(ϕ)

)
if Cn(ϕ) 6= Cn(∅); and (ii) µ<(ϕ) = some ∅ 6= X ⊆ TLotherwise.

As for the second condition, Mirroring is similar to the modular relation defined in [22] which was based
on modular partial orders of [23] and [24]. Though the concept of modular relation is confined to be a partial
order, we impose no such restriction. The intuition behind mirroring is that if an agent has no preference
between two theories A and B, then those that are preferable to A should also be preferable to B and vice
versa. For instance, when dropping a formula ϕ an agent may choose among the four complements of ϕ:
A,B,C and D. It prefers A to C and B to D, that is, its preference relation is {(C,A), (D,B)} which is
depicted in Figure 2 by solid arrows. So, it will choose both A and B to contract ϕ. However, there is no
preference between C and D. According to mirroring, all theories that are preferable to C are also preferable
to D (and vice versa). Thus, the pairs (C,B) and (D,A) also need to be present in the relation (depicted
by dashed arrows in Figure 2).

We define now a special case of the ECF: the Blade Contraction Function (BCF, for short).

Definition 6. A Blade Contraction Function (BCF) −̇< is an ECF whose choice function is an annulment
µ< founded on a contra-headed <.

The interesting aspect of BCFs is that we can study the rationality of the contraction functions that they
yield by just looking at how these relations structure epistemic preferences. The ω-Maximal-cut guarantees
postulate (K−7 ), while mirroring guarantees (K−8 ). This leads to our representation theorem for fully AGM
rational functions on non-compact logics:

Theorem 7. A contraction function is fully AGM rational iff it is a BCF whose contra-headed relation
satisfies mirroring.

2.5 AGM Revision without Compactness

The revision operation consists in adding a new information to a belief set guaranteeing its consistency if
the new information is consistent. Let ∗ be a belief change operator, the AGM rationality postulates for
revision are:

(K∗1) K ∗ ϕ = Cn(K ∗ ϕ) (closure)
(K∗2) ϕ ∈ K ∗ ϕ (success)
(K∗3) K ∗ ϕ ⊆ K + ϕ (inclusion)
(K∗4) If ¬ϕ 6∈ K, then K + ϕ ⊆ K ∗ ϕ (preservation)
(K∗5) K ∗ ϕ = Cn(⊥) iff ¬ϕ ∈ Cn(∅) (consistency)
(K∗6) If Cn(ϕ) = Cn(ψ), then K ∗ ϕ = K ∗ ψ
(K∗7) K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ
(K∗8) If ¬ψ 6∈ K ∗ ϕ, then K ∗ ϕ+ ψ ⊆ K ∗ (ϕ ∧ ψ)

8
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The postulates (K∗1) to (K∗6) constitute the basic rationality postulates, while (K∗7) and (K∗8) are the sup-
plementary postulates. For a discussion about the rationality behind these postulates, please refer to [2],
[5].

The constructions proposed to give semantics to AGM revision, as for instance the Grove’s System of
Spheres [2], [25], strongly depends on the assumption of Compactness. In this section, similarly to how we did
for contraction, we propose new classes (for both basic and full rationality) of AGM revision constructions
without assuming compactness. Our approach to devise AGM revision functions relies, as for contraction,
on a choice function. The difference here is that instead of choosing complements of a formula ϕ, a choice
function shall choose among the Complete Consistent Theories that indeed entail ϕ. The reason for this is
because a revision function wants to incorporate a formula ϕ rather than expelling it, thus instead of looking
for complements, it will pick up supporters of ϕ. To avoid misinterpretation, a “choice” function δ : L→ 2TL

for revision purposes will be called a casting function subject of the following constraints:

(1) δ(ϕ) 6= ∅;

(2) if Cn(ϕ) 6= Cn(⊥), then δ(ϕ) ⊆ ω(ϕ);

(3) for every formulas ϕ and ψ, if ϕ ≡ ψ then δ(ϕ) = δ(ψ).

The only difference between the constraints put upon a casting function and those of a choice function
(for contraction) is condition (2) which requires the casting function to choose complete theories that entail
a formula ϕ. This restriction of picking only complete consistent theories that entail a formula ϕ is imposed
only when ϕ is consistent. In the case that ϕ is inconsistent, this restriction is lifted, and δ can choose
any complete consistent theories. Conditions (1) and (3) are respectively the same as in a choice function
definition.

We define the Exhaustive Revision Functions (ERF, for short) which satisfy the six basic AGM revision
rationality postulates. The intuition behind an ERF is that given a theory K and a formula ϕ: if either ϕ
is inconsistent, or K + ϕ is not inconsistent (this corresponds to K being consistent with ϕ), then such an
expansion is the revision result. On the other hand, if ϕ is inconsistent with K, then the revision function can
choose any theory that entails ϕ. Such a theory is constructed by the intersection of the theories provided
by a casting function.

Definition 8. Given a casting function δ, an Exhaustive Revision Function (ERF) ∗δ is defined as

1. K ∗δ ϕ = K + ϕ, if ¬ϕ 6∈ K or Cn(ϕ) = Cn(⊥);

2. K ∗δ ϕ =
⋂
δ(ϕ), otherwise.

The class of the ERFs comprises exactly the class of all the basic AGM rational revision function:

Theorem 9. A revision function satisfies (K∗1) – (K∗6) iff it is an ERF.

To semantically characterize all the eight AGM revision postulates, we constrain the class of ERFs in way
that the choice function of each ERF picks its consistent complete theories according to a binary relation.
All we need is Mirroring and:

(ω-Maximal cut) for every consistent formula ϕ ∈ L, ω(ϕ) has a maximal element w.r.t <.

We will refer to ω-maximal cut as simply maximal-cut. A casting function whose relation satisfies
maximal-cut will be called a coalition, and a revision function constructed on a coalition function will be
called a Constellar Revision Function. Maximal cut guarantees postulate (K∗7), while mirroring captures
(K∗8). This give rise to our representation theorem for fully AGM rational revision functions:

Theorem 10. A revision function is fully AGM rational iff it is a CRF ∗< such that < satisfies mirroring.

2.6 Levi and Harper Identities

Contraction and revision functions can be defined in terms of each other via the Levi and Harper identities:

(Levi Identity) K ∗ ϕ = (K−̇¬ϕ) + ϕ
(Harper Identity) K −̇ ϕ = K ∩ (K ∗ ¬ϕ).

This interdefinability is known to occur in the presence of the AGM assumptions which includes com-
pactness. We show that Levi and Harper identities will only require a logic to be Tarskian and closed under
classical negation and disjunction.

9
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Theorem 11. Given a contraction function −̇δ and the revision operator ∗ obtained from −̇δ via Levi
Identity. If −̇δ satisfies (K−1 ) to (K−4 ) and (K−6 ), then ∗ satisfies (K∗1) to (K∗6). Additionally, if −̇δ satisfies
(K−1 ) to (K−8 ) then ∗ satisfies all eight AGM revision postulates.

Theorem 12. If a revision function ∗ satisfies (K∗1)-(K
∗
6) (respectively (K∗7) and (K∗8)) then the contraction

function −̇δ obtained via Harper identity satisfies (K−1 ) to (K−6 ) (respectively (K−7 ) and (K−8 )).

3 KM Paradigm

Portions of texts used in this section were borrowed from [17]. The AGM paradigm is undoubtedly the most
influential theory in Belief Change literature. Another paradigm that is central in Belief Change is the KM
paradigm, proposed by Katsuno and Mendelzon [6]. Both KM and AGM paradigms are seen as the two
cornerstones that sustain Belief Change.

In the KM paradigm, dispensing with compactness also makes the connection between the standard
constructions of belief update and the KM rationality postulates to break down. We show that in the
KM case, the culprit is not compactness itself, but rather a property that non-compact logics have: non-
finitaryness. A logic is non-finitary if it has an infinite number of models. It turns out that this poses
as a serious problem that requires immediate solution, as besides for propositional logics and some of its
fragments (such as Horn Logics), most of logics are non-finitary. The modal system K, for instance, which
is a very simple and decidable normal modal logic, it is already non-finitary. We consider the problem of
KM paradigm on non-finitary logics, specifically its update form of belief change: accommodate a piece of
information and potentially keep consistency of an agent body of knowledge.

Originally, the KM paradigm represents an agent belief state as a single finite formula. This is because,
every theory can be finitely represented in finitary logics. When dealing with non-finitary logics, however,
representing epistemic states in this way may be inconvenient. Mainly because in these logics not every
belief set can be represented via a single formula or a finite set of formulae. We translate the rationality
postulates and the standard constructions of update considering epistemic states as theories.

(K�1) K � ϕ is a theory;
(K�2) ϕ ∈ K � ϕ;
(K�3) If ϕ ∈ K, then K � ϕ = K;
(K�4) K � ϕ is consistent, if both K and ϕ are consistent;
(K�5) If Cn(ϕ) = Cn(ψ), then K � ϕ = K � ψ;
(K�6) K � (ϕ ∧ ψ) ⊆ K � ϕ+ ψ;
(K�7) If ψ ∈ K � ϕ and ϕ ∈ K � ψ, then

K � ϕ = K � ψ;
(K�8) If K is complete, then

K � ϕ ∨ ψ ⊆ (K � ϕ) ∪ (K � ψ);
(K�9) (K ∩K ′) � ϕ = (K � ϕ) ∩ (K ′ � ϕ).

As we require an epistemic state to be a theory, the postulate (K�1) is added here with the purpose
to ensure that every update function goes from a belief set to another one. For a discussion about the
rationality behind the remaining postulates, please refer to [6]. The rationality postulates give rise to a class
of belief change functions, here dubbed the Classical Update (CUP) functions

CUP : K � ϕ = Th
( ⋃
M∈JKK

Max6M
(JϕK

)
.

Given a theory K and a formula ϕ, a CUP operator � behaves as follows. For each model M of K, the
operator � chooses from the models of ϕ those ones closest to M . The notion of distance between models
is usually given by a pre-order 6M . A model M1 is closer to M than a model M2, if M2 6M M1. These
selected models are then assembled, and the theory of these models corresponds to K � ϕ. Each model M
is assigned to a pre-order 6M subject to:

faithfulness if M ′ 6= M , then M ′ <M M , for every model M ′.

A function that assigns each model M to a partial pre-order <M that satisfies the above constrains is
called a faithful assignment. The intuition behind the faithfulness constrain is that a relation <M assigned
to a model M puts M as the most preferable model of that relation. Katsuno and Mendelzon [6] show that
in Propositional Logic, the KM update postulates characterize the CUP functions:

Theorem 13. A belief change function satisfies the KM update postulates iff it is a CUP function.

10
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The connection between the KM update postulates and CUP functions cease for non-finitary logics. For
instance, for non-finitary logics CUP functions do not satisfy postulate (K�7). The reason for this is related
to the characteristic of non-finitary logics having an infinity number of models. In this case, a pre-order may
induce an infinite chain in which it is not possible to determine a maximal (resp. minimal) element.

We will propose, in the next section, a new class of functions that satisfy all the KM update postulates.

3.1 KM Basic Rationality

The functions we will devise here will operate over complete consistent theories rather than models, following
our approach in Section 2.3. In this way, we bring an uniformity between the semantics constructions of
AGM and KM paradigms. We propose here to split the update rationality postulates into two groups: the
basic rationality postulates which comprises postulates (K�1) to (K�5) and (K�9); and the supplementary
postulates (K�6) to (K�8). Any belief change function that satisfies all the basic update postulates is dubbed
an update function.

We will assume that, instead of a pre-order, an agent has an appointee function that judges which
complete theories of a formula ϕ are closest to a complete theory K. This appointee function is used to
perform the update of K by ϕ. We recall, from the Introductory section that TL stands for the set of all
complete theories.

Definition 14. An appointee is a function δ : TL × L → 2TL that maps each consistent complete theory
and formula ϕ to a set of consistent complete theories subject to:

(D1) δ(S, ϕ) 6= ∅, if S and ϕ are consistent;

(D2) δ(S, ϕ) ⊆ ω(ϕ);

(D3) δ(S, ϕ) = {S}, if ϕ ∈ S;

(D4) δ(S, ϕ) = δ(S, ψ), if Cn(ϕ) = Cn(ψ).

The purpose of an appointee is to select the best complete consistent theories that satisfy a formula ϕ
(condition D2). This criterion is given locally, and it depends on the fixed complete theory S as background.
An appointee is compelled to choose at least one consistent complete theory that contains ϕ, as long as ϕ
is consistent (condition D1). If a formula ϕ belongs to a complete theory S, then the best theory for ϕ is S
itself (condition D3). Finally, condition (D4) simply determines that an appointee is syntax independent.

We define a new class of update functions: the splinter functions which is similar in spirit to CUP
functions.

Definition 15. Given an appointee δ, a splinter is a function �δ such that

1. if K and ϕ are consistent, then

K �δ ϕ =
⋂

S∈ω(K)

(⋂
δ(S, ϕ)

)
;

2. otherwise, K �δ ϕ = Cn(⊥).

We recall from the introduction section that ω(K) corresponds to the set of all complete consistent
theories that contains a theory K. The splinter functions semantically characterise the the basic KM update
postulates: (K�1) to (K�5) and (K�9).

Theorem 16. A belief change function satisfies postulates (K�1) to (K�5) and (K�9) iff it is a splinter.

3.2 Revisiting the Supplementary Postulates

To capture the supplementary postulate, we make the appointees resort to binary relations in order to pick
consistent complete theories. An appointee δ will assign, for each consistent complete theory K, a binary
relation 6K . The appointee chooses the maximal elements within ω(ϕ) modulo 6K . We impose these
relations to satisfy maximal-cut, which was introduced in Section 2.5, with the purpose to guarantee that
for every formula ϕ, as long as it is consistent, the agent chooses at least one consistent complete theory of
ϕ. This ensures that ϕ will be successfully incorporated through the update process. Appointee functions
that rely strictly on relations that satisfy maximal-cut will be called relational appointees.

Relational appointees founded on maximal-cut alone are strong enough to yield splinters that satisfy
postulates (K�6) and (K�8). However, postulate (K�7) is still not enforced. For this, we will need Quasi-
reflection.

11
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Quasi-reflection: if A 66 B and B 66 A but A 6 C then either

(i) B 6 C; or

(ii) if C 6 C ′, then B 6 C ′.

Quasi-reflection behaves similarly to mirroring. For each two elements A andB, there are two possibilities.
If there is no preference between A and B, then A and B can mirror each other preferences, in this case
it behaves exactly like mirroring. For the second condition, instead of making A and B mirror each other
preferences, quasi-reflection allows them to skip the mirroring process one level above. So, for instance, if
B 6 C and C 6 D, then instead of enforcing A 6 C, as condition (i) demands, condition (ii) allows A to
mimic one of the elements immediately above B, that is, mimicking C preferences. Thus, making A 6 D.

If we resort to the class of royal splinters whose appointees satisfy quasi-reflection (a quasi-reflected
appointee), then we capture postulate (K�7). We define then a new class of splinters, the royal splinters: a
splinter �µ is royal iff its appointee µ is relational and each assigned relation satisfies quasi-reflection. We
establish a representation theorem between the class of royal splinter founded on quasi-reflected appointees:

Theorem 17. An update function is fully KM rational iff it is a royal splinter.

3.3 Do We Need Total Relations?

The following postulate was proposed to be used in place of postulates (K�7) and (K�8):

(K�10) if K is complete and ¬ψ 6∈ K � ϕ then
K � ϕ+ ψ ⊆ K � ϕ ∧ ψ.

Postulate (K�10) actually corresponds to postulate (K∗8) of AGM revision. (see Section 2.5), with the
restriction that it applies only to complete theories. Katsuno and Mendelzon [6] have shown that the set of
postulates that results from replacing (K�7) and (K�8) for (K�10) characterises exactly the class of CUP
functions defined over total pre-orders. Use of total pre-orders to represent preference relations on beliefs
has received many criticisms [4], [26]. We show that, actually, we do not need total pre-orders to capture
(K�10). All we need is to restrict to royal splinters whose appointees are founded on relations satisfying
mirroring (introduced in Section 2.4). We shall refer to these royal-splinter as mirrored royal splinters. This
leads us to the following representation result:

Theorem 18. Every mirrored royal splinter satisfies (K�10). Every update function that satisfies (K�6)
and (K�10) is a mirrored royal splinter.

4 Non-Monotonic Reasoning and Belief Change

Portions of texts used in this section were borrowed from [16]. Classical logics are monotonic: accumulation
of new information (in form of additional premises) does not invalidate old conclusions. Commonsense
reasoning, however is non-monotonic: acquisition of new information may “deactivate” some premisses that
conflict with the new piece of information. When viewed from this angle, non-monotonic reasoning appears
to be closely connected to accounts of rational belief change, such as the classic AGM account. Indeed it
has been argued that belief dynamics and non-monotonic reasoning are different perspectives on the same
phenomenon [27]. This idea is concisely captured in the standard notation:

BRNM: x |∼K y if and only if y ∈ K ∗ x

where K represents a fixed background knowledge, |∼K is the non-monotonic inference operation that em-
ploys K in the background, and ∗ is a belief revision operation that yields the new “belief set” K ∗x from the
old belief set K in light of evidential input x. Oftentimes the subscript K from the relation |∼K is dropped
for notational convenience when the intention is clear from the context.

The connection between belief revision and non-monotonic reasoning captured by BRNM comes out
handy in going back and forth between these two systems. Since non-monotonic reasoning and belief revision
are strongly connected, the nature of non-monotonic reasoning is worth enquiring when the background logic
of the corresponding belief revision is not assumed to be compact. We show that the connection from non-
monotonic systems to belief revision cannot be completed in absence of the compactness assumption. We then
devise a new non-monotonc system that reconnects with the AGM revision without assuming compactness.
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4.1 Non-Monotonic Reasoning

In the non-monotonic reasoning system based on expectation orderings there are seven basic axioms and
two supplementary axioms. This separation into two groups, first proposed in [21], makes the alignment of
these axioms with the postulates for AGM belief revision explicit.

We will assume that a non-monotonic inference relation, denoted |∼, builds upon an underlying logic Cn.
We will only assume that Cn is Tarskian and closed under classical negation and disjunction. We require
no other assumptions for the results of this section. The postulates (or axioms) for non-monotonic inference
relation |∼ are:

N1 If ψ ∈ Cn(ϕ), then ϕ |∼ ψ
N2 If Cn(ϕ) = Cn(ψ) and ϕ |∼ α then ψ |∼ α
N3 If ϕ |∼ ψ and α ∈ Cn(ψ) then ϕ |∼ α
N4 If ϕ |∼ ψ and ϕ |∼ α then ϕ |∼ ψ ∧ α
N5 If ϕ |∼ ψ then |∼ ϕ→ ψ
N6 If 6|∼ ¬ϕ and |∼ ϕ→ ψ, then ϕ |∼ ψ
N7 If ϕ |∼⊥ then Cn(ϕ) = Cn(⊥)
N8 If ϕ ∧ ψ |∼ φ then ϕ |∼ ψ → φ
N9 If ϕ 6|∼ ¬ψ and ϕ |∼ φ then ϕ ∧ ψ |∼ φ

Postulates N1 to N7 are dubbed the basic postulates, while N8 and N9 are dubbed the supplementary
postulates. For simplicity, we will call any inference relation that satisfies the basic postulates a non-
monotonic inference relation.

When the underlying logic Cn satisfies compactness, axioms N3 and N4 jointly imply:

Closurenm If ϕ |∼ ψ for all ψ ∈ A, then ϕ |∼ α for all α ∈ Cn(A),

named after the closure postulate (K∗1) of belief revision that it corresponds to [21]. On the other hand,
postulates N5 through N7 respectively correspond to the AGM revision postulates (K∗3) through (K∗5).
Furthermore, postulate N2 corresponds to (K∗6). Similarly, postulates N8 and N9 correspond respectively
to the revision postulates (K∗7) and (K∗8) - see Section 2.5 for a complete list of the postulates.

This nice-correspondence between revision and non-monotonic inference relation |∼ breaks down in the
absence of compactness in many points. We start by stressing that without compactness Closurenm no
longer follows from N3 and N4:

Theorem 19. If the underlying logic Cn is not compact, then N3 and N4 do not imply Closurenm.

Let us at this point make the following observation, that if we start with a revision operator ∗, obtain
the inference |∼ induced by it, and then again obtain the revision operator induced by this inference relation
in turn, we will get back the revision operator ∗ we started with. Similarly, if we started with an inference
operation |∼ and obtain another inference via a revision operation induced by it, we will go back to our
original inference operation |∼.

The first observation that we make is that even that in the absence of compactness, as long as ∗ satisfies
the six basic (respectively the supplementary) AGM revision postulates, the induced |∼ relation satisfies the
seven basic (respectively the supplementary) axioms of non-monotonicity.

Theorem 20. If a belief change operator ∗ is (basic) AGM rational then its induced inference relation |∼ is
a non-monotonic inference relation. Additionally,

(i) if ∗ satisfies (K∗7), then |∼ satisfies N8;

(ii) if ∗ satisfies (K∗8), then |∼ satisfies N9.

Although AGM rational function yelds non-monotonic inference relations satisfying the basic (respectively
supplementary) axioms, the converse path breaks in many points. We exploit, in the remaining of this section,
these issues; and in the next section we show how to restore the bridge between NMR and AGM revision.

Let us first show that the basic non-monotonic axioms do not correspond to the basic AGM revision
postulates. For this purpose we need to construct a non-monotonic inference relation |∼ such that the
revision function ∗ induced by it violates some of the basic AGM postulates. We will conveniently take a
revision function ∗ which violates one of the AGM postulates (namely, (K∗3)), and then we show that the
non-monotonic inference relation |∼ induced by it satisfies all the basic non-monotonic axioms. We construct
such a belief revision operator in Example 2.

Example 2. Let ⊗ be a fully AGM rational revision function, and p an arbitrary formula. The belief revision
operation ∗ is constructed as: (i) K ∗ ϕ = (K + ϕ) + p, if ϕ→ ¬p 6∈ K; and (ii) K ⊗ ϕ, otherwise.
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The revision operation from Example 2 behaves in a simple way. It adds both p and a formula ϕ to K,
if both ϕ and p are jointly consistent with K. On the other hand, if K is inconsistent with ϕ or p, it resorts
to the rational AGM function ⊗. It is trivial to show that although it violates postulate (K∗3), the inference
relation |∼ induced by it satisfies N1 to N9. This example lead us to the following result:

Theorem 21. There is a non-monotonic inference relation that satisfies all the non-monotonic axioms, but
violate some of the basic AGM revision postulates.

4.2 Bridging the Gap

In this section, we restore the bridge between NMR and AGM revision by introducing a new Non-Monotonic
system.

There are precisely three AGM postulates which are not captured by the NMR axioms alone: (K∗1),
(K∗3) and (K∗4). The first one we address is (K∗1) (the closure).

As we discussed in Section 4.1, when the underlying logic Cn is compact, axioms N3 and N4 trivially
imply Closurenm. However, when Cn is not assumed to be compact, N3 and N4 may no longer guarantee
Closurenm (Theorem 19). Consequently, a non-monotonic inference may fail to induce a belief change
operator ∗ that satisfies (K∗1). Thus, satisfaction of (K∗1) necessitates the presence of the Closurenm axiom,
while N3 and N4 can be replaced by Closurenm :

Proposition 22. An inference relation satisfies Closurenm if and only if its induced belief change operator
satisfies (K∗1). Moreover, Closurenm implies N3 and N4.

We still have two postulates to address: (K∗3) and (K∗4). We showed in Example 2 that non-monotonic
inference relations may not capture postulate (K∗3). The example explored the fact that a tautological
evidence allowed the inference of new information not previously believed: recall that Cn(>) ∗ > entailed
the formula p which is clearly not in Cn(>).

This is inconsistent with postulate (K∗3), which imposes that in reasoning in the light of a tautology, no
new information shall be acquired. To workaround this problem, we introduce the following condition that
guarantees postulate (K∗3):

(Keeper) if K is consistent and |∼K ϕ then ϕ ∈ K.

Proposition 23. If an inference relation |∼ satisfies both N5 and the Keeper, then its induced belief change
operator ∗ satisfies (K∗3).

Though Keeper guarantees satisfaction of (K∗3), it does not capture postulate (K∗4). This is because the
role of Keeper is to forbid the insertion of spurious information, but it does not prevent the loss of relevant
information, which is exactly the role of postulate (K∗4).

Proposition 24. There is one non-monotonic inference relation |∼ that satisfies all the basic axioms of
non-monotonicity and the Keeper, but its induced belief change operator does not satisfy (K∗4).

To avoid the loss of relevant information, we introduce the following condition:

(Rooting) if K is consistent and ϕ ∈ K then |∼K ϕ.

The Rooting axiom is the converse of the Keeper and enforces that the formulae present in a theory K
should remain in the non-monotonic inferences by a tautology. The Rooting together with the Keeper and
N6 captures (K∗4).

Proposition 25. If an inference relation satisfies Keeper, Rooting and N6, then its induced belief change
operator satisfies (K∗4).

Now we have all the pieces of the puzzle to show the first result of the representation theorem:

Theorem 26. Let |∼ be a non-monotonic inference relation, if it satisfies the Keeper, Rooting and Closurenm
then its induced belief revision operator ∗ is AGM rational. Moreover, an AGM rational belief revision
operator induces a non-monotonic inference that satisfies Keeper, Rooting and Closurenm.

We reach our representation theorem, in the form of Corollary 27 below, which follows from Theorems
26 and Proposition 22. This result establishes a bridge between the basic AGM belief revision postulates
with a new non-monotonic system that comprises the following axioms: N1, N2, N5-N7, Keeper, Rooting
and Closurenm .

Corollary 27. A belief change operator ∗ is AGM rational iff its induced inference relation |∼ satisfies N1,
N2, (N5 - N7), Keeper, Rooting, Closurenm. If ∗ is fully AGM rational iff it satisfies N1, N2, (N5 -
N9), Keeper, Rooting, Closurenm.
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5 Concluding Remarks

AGM Paradigm sans Compactness

We have identified a huge class of AGM-compliant logics that do not depend on compactness: those closed
under classical negation and disjunction. We then, provided novel constructions for AGM contraction and
revision in these logics. Our constructions require only two conditions: mirroring and maximal-cut. Besides
being more general than the standard constructions, as it assume very little about the underlying logic, these
conditions allow the specification of preference relation that are not total. Totality has been highly criticized
in the literature. Moreover, we also showed that the interdefinibility between contraction and revision in
these logics via Levi’s and Harper’s identities do not depend on compactness.

KM Update in Non-Finitary Logics

We have considered the KM paradigm of belief update form of belief change, and showed that the connection
between the standard constructions and the rationality postulates also breaks down in the absence of com-
pactness. We have identified that the culprit behind this break-down is non-finitereness, a property present
in logics without compactness. As a remedial measure, we devised a novel class of belief update constructions
that reconnects with the KM rationality postulates without assuming neither compactness nor finitereness.
We only require the underlying logic to be closed under classical negation and disjunction. Our approach
is based on binary relations that satisfy two properties: maximal-cut and quasi-reflection. We then turn to
the issue of total relations to represent the epistemic preferences of an agent over its beliefs, which has been
highly criticized in the Belief Change literature. We show that, in the KM update, totality can be avoid by
using mirroring instead.

AGM Paradigm and Non-monotonic Reasoning

Makinson and Gärdenfors [27] has shown that when the underlying logic is classical, non-monotonic systems
based on expectation (NME, for short) and AGM revision are equivalent. This correspondence, however,
depends on the standard AGM constructions which are not AGM rational in the absence of compactness.
On the negative side, we showed that the connection between the NME and the AGM revision breaks down
in the absence of compactness. On the positive side, we were able to restore this bridge by defining a new
non-monotonic system. In particular, we have introduced two new axioms to NME. An interesting aspect of
our result is that it does not depend on a specific class of AGM rational constructions. Instead, our proofs
make a direct connection between the AGM revision postulates and the new non-monotonic system axioms.
This is important, since it helps to understand how these two systems behave independently of extra-logical
constructions.

5.1 Impact and Future Works

We discuss some directly impact of this thesis, as well as some immediate questions worth to address in a
near future.

5.1.1 Automatic System Repair

Belief change mechanisms could be used to guide automatic system repair via its rationality postulates and
semantic constructions. Repairing a system specification to satisfy an imposed constraint can be seen as
the belief revision/update process of accommodating a new piece of information (imposed constraint) to the
agent epistemic state (system specification). Many logics used to specify system behaviours formally are
not compact (e.g. LTL, CTL and µ-calculus [1]). As we extended Belief Change to non-compact logics,
automatic system repair guided by rational change becomes possible. The semantic constructions provided
in this thesis can be used to give support in the development of repairing formal system specification.

5.1.2 Multiple Belief Change in Non-Finitary Languages

The case when an agent has to change its own beliefs in light of a set of sentences is known as Multiple
Belief Change (MBC), see [28], [29]. This generalization is not so straightforward, and it might be even
more difficult when the input set of sentences is infinite, known as Infinitary Belief Change [29].

In the case of non-compact and non-finitary logics, MBC and the special case of Infinitary Belief Change
emerge as big challenges. Investigating how BCF can be extended to both non-compact logics and non-
finitary logics emerges as an important future line of research. The constructions and results we presented
here shall underpin the investigations for MBF in such logics.
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5.1.3 Non-Compact Dynamic Logics

Dynamic logics such as Dynamic Epistemic Logics (DEL) and Dynamic Doxastic Logics (DDL) are used
to reason about the dynamics involved in changing an agent’s belief/knowledge. Whereas AGM and KM
paradigms conceptualise the dynamism as an extra logical feature; DDL and DEL capture these dynamics
in the object language via modal operators rationalized by the AGM/KM postulates. These Dynamic
Logics conceptualise Knowledge/Beliefs as information expressed in compact logics. This represents a severe
limitation when we look at some sub-disciplines in AI, such as planning, where conceptualising and modelling
temporal knowledge is fundamental. The results of this thesis can be used to provide a new semantics for
Dynamic logics in the context of non-compact logics.
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