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Abstract

Application Programming Interface (API) is a core technology that facilitates develop-
ers’ productivity by enabling the reuse of software components. Understanding APIs
and gaining knowledge about their usage are therefore fundamental needs for developers.
Here, API documentation plays a pivotal role in enabling developers to take full advan-
tage of the benefits brought by APIs. The quality of API documentation has therefore
become an important concern given the celerity and dynamics at which APIs are now
being made available to users. This article aims at exploring existing research in the
area of API documentation in order to identify the associated quality dimensions ad-
dressed by the literature. The research is carried out as a Systematic Mapping Study
(SMS) where 103 research papers selected from the literature were reviewed and a total
of 5 core quality dimensions were identified and analyzed. By focusing on the two most
relevant quality dimensions (understandability and completeness), this article presents
an approach to enable API users to explore, discover and learn about APIs through
API topic issues discussed in Stack Overflow (SO). We demonstrate the feasibility of our
approach through Scout-bot, our tool for exploration and discovery of API topic issues.

Keywords: Quality of API documentation, Systematic Mapping Study, API topic issues, API Indexing,
API Exploration

1 Introduction

Developers rely on several APIs for their day-to-day software development tasks [1] in a wide variety of
scenarios, including cognitive services [2], Internet-Of-Things (IoT) services [3], data services [4], mashups
[5], service-based business processes [6] and more. They also resort to several resources that document APIs.
Examples of such resources include Community Question-Answering (CQAs) such as SO1, API descriptions
[7], code examples [8], among other resources. Yet, the problems of searching and finding API-related
knowledge that satisfies the needs of developers are still open and they are far from being completely

1https://stackoverflow.com
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solved. In this context, there are several studies in the literature on the analysis [9], extraction [10] and
recommendation [8] of API-related knowledge such as usage examples and reference documentation.

One such line of studies includes the improvement of API documentation and learning resources. Works
along this dimension focus on the problems of lack of API usage examples [11], missing descriptions in API
documentation [12] and insufficiency of usage patterns [13]. Other studies include the factors affecting the
usability of APIs [14] and code snippets in software-related documentation (including APIs) [7]. Further
topics of interest in the literature include the production [15, 16, 17, 18, 19], problems/issues [20, 21, 22, 23]
and enrichment [12, 13, 24, 25, 26] of API learning resources.

Despite all the studies and proposed approaches in this context (we elaborate more on this in Section
2), it is still challenging to explore and navigate API knowledge and their related issues through the various
forms of API documentation [27]. This is partly due to the heterogeneous and fragmented information found
across different sources, making it difficult for querying, exploration and understanding purposes. In this
article, we extend our previous work [28] and present a systematic study of the literature that led us to
identify key quality dimensions of API documentation. More specifically, we explored the literature through
an SMS [29] that helped us identify such key dimensions. Armed with and motivated by the findings obtained
from this SMS, we outline our proposal consisting in organizing API community knowledge into API topics
issues to facilitate discovery and understanding. We focused on API topic issues, as opposed to traditional,
plain keyword-based search, because it is more appropriate for discovery and learning purposes, particularly,
in unfamiliar spaces [30]. In concrete, in this article we present:

• a systematic mapping study [29] that allows us to identify key quality dimensions of API documentation
and their coverage by existing literature;

• an API-topic-centric data model for building the foundation for a Knowledge Base (KB) to represent
and store relevant API knowledge and API topic issues;

• an API knowledge indexing technique to support API topic issues exploration, which enables the
various API resources to be accessed conveniently in an API-topic-driven manner;

• an enrichment technique for API topics terminology that leverages word embeddings [31], which helps
provide developers with more flexibility for expressing their API topic issues queries;

• Scout-bot : A query bot that helps querying API topic issues through a simple yet powerful domain-
specific query language. We showcase how such query bot can be implemented and seamlessly inte-
grated into existing productivity tools.

We organize this paper as follows: Section 2 presents the SMS on quality dimension of API documentation.
Section 3 introduces our model and approach to indexing and enrichment of API topic issues through API
community knowledge. Section 4 presents our Domain-Specific Language (DSL) for querying API topic
issues. In this same section, we also propose Scout-bot, a bot for querying the API topic issues enriched
index, including its implementation details and evaluation. We conclude this article with Section 5 presenting
the final discussions and future directions for this research work.

2 Quality Dimensions of API Documentation

APIs have become the cornerstone of business and software integration, and a key enabler for technologies
such as data services [4], robotic process automation (RPA) [32], blockchain [33] and IoT [3]. Developers
typically learn about APIs through API documentation, which is considered a valuable resource that aims
at providing, among other things, descriptions and specifications of programming interfaces, API usage
knowledge and examples, and guidelines and best practices [34, 35, 36, 37]. As such, API documentation
is widely used both as reference for developers while performing their development tasks and as a learning
resource [34, 35].

The Web has substantially changed the way APIs are documented [20]. Q&A websites [14], social media
[20] and even video tutorials [38] are nowadays widely used to document both software in general and APIs in
particular [28, 39]. Regardless of its significant role in the software development process, API documentation
face several quality issues that can drive developers off an API and force them to use a different one [34].
As a response to this problem, researchers have started to explore the issue to provide more insights and
better understanding of the problems [20, 34, 40, 41, 42, 43, 44, 45, 46]. For example, Uddin and Robillard
[20] explored the issues that industry developers face regarding two main areas, namely, the content of API
documentation and the way it is presented to developers. In this section, we focus on exploring the quality
dimensions of API documentation addressed in the literature. More specifically, we aim at addressing the
following two research questions:

2



CLEI electronic journal, Volume 24, Number 2, Paper 5, July 2021

Table 1: Combination of search terms used in our SMS study

Primary terms set Secondary terms set
“API Documentation” “Quality”
“Application Programming Interface Documentation”
“Crowdsourced API Documentation”

• RQ1: What quality dimensions are being addressed in the literature in the context of API documen-
tation?

• RQ2: How is current research mapped to these quality dimensions and to what extent are they being
covered?

In order to address each of the research questions above, we propose to explore the existing literature
using an SMS [29]. SMS is a research method that helps in characterizing a research area and computing the
extent of the contributions in the literature under each identified category. The main goal of the method is
therefore to provide structuring for an area of research. We examined a total of 103 research papers reporting
on studies related to API documentation and its quality, and identified a total of 5 key quality dimensions
for API documentation, which we explored using thematic analysis [47]. Based on the identified quality
dimensions, we report on the number of publications under each quality dimension, characterize existing
research in terms of the types of venues they were published in, report on the research methods used, and
discuss the main trends that emerge from the selected papers.

2.1 Research Method

We use a systematic mapping study to address the research questions above. The main goal of SMSs is to
categorize a research area of a topic in the existing literature [29]. Other objectives include the definition
of an unknown research area and the summarization of findings. We followed the updated guidelines for
conducting a SMS provided by Peterson et. al [29]. Similar to Systematic Literature Reviews (SLRs) [48],
SMSs also look at surveying the literature using a comprehensive and rigorous methodology, except that an
SMS looks at higher-level research questions. Thus, the SMS aims at creating a structure for a given research
field and focuses on the overall trends [29]. We also followed the steps for thematic analysis [47] to explore
the quality dimension themes. The thematic analysis steps are similar to those of SMS except that it helps
reduce overlaps by creating a model of higher-ordered themes, typically 5 to 7 themes as recommended by
Cruzes and Dyba [47].

2.2 Search Strategy

Our literature search expands from 2009 to 2020. It was carried out mainly on three databases: IEEE
Xplore Digital Library2, ACM Digital Library3 and Google Scholar4. We chose the former two digital
libraries because of their focus on computing literature. The latter is used to complement and improve
coverage of our search [49, 50] (we considered only the first 100 results, because advancing beyond this did
not produce relevant results for our search). We queried each of these databases with combinations of both
the primary and secondary terms as shown in Table 1. We show examples of such combinations in Table 2.
Search terms we used varied according to the search capabilities of the publication database. For instance,
IEEE Xplore Digital Library has an advanced search option that allows users to add a specific keyword to be
searched in the title, abstract and other metadata of the publication, which, when combined with Boolean
expressions, can make the search more effective. In addition to the search mechanisms discussed previously,
we also carried out a manual search for key conferences (e.g., The International Conference on Software
Engineering (ICSE)) and journals (e.g., IEEE Transaction on Software Engineering (TSE)) in the area of
Software Engineering. Backward snowballing [51] was also applied in order to find studies related to API
documentation that were missed through the search strategy above.

2.3 Selection Criteria

The inclusion criteria for selecting a study is based on the following: (1) The study addresses API docu-
mentation production, improvement and problems, and it generally aims at improving software development

2https://ieeexplore.ieee.org
3https://dl.acm.org
4https://scholar.google.com
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Table 2: Examples of queries used in our SMS

Database Search Terms example

IEEE Xplore
Digital Library

((API documentation) AND “Abstract”:quality)
((API documentation) AND “Document Title”:Quality)
((“Abstract”:API
documentation) AND “Document Title”:Quality)

ACM Digital Library (+API +Documentation +Quality)

Google Scholar
intitle: API documentation quality
“API Documentation” AND “quality”

Table 3: Number of included studies from the selected sources

Database Included Studies
IEEE Xplore Digital Library 28
ACM Digital Library 17
Google Scholar 48
Conferences & Manual Search 10
Total 103

tasks by leveraging API documentation resources; (2) the study aims at improving user experience when
using APIs and the corresponding documentation. The exclusion criteria for any given study is as follows:
(3) The study is not written in English; (4) the study was not peer-reviewed; (5) the study is not accessible
in full-text; (6) the study is a duplicate of another study; (7) the study is about mining code, patterns of
usage or code recommendation for purposes other than the improvement of API documentation.

A total of 4,006 papers was obtained as the result of the search. By applying our selection criteria, we
ended up with a filtered list of results consisting of 103 research papers, where a big majority of the filtered-
out papers were out of scope (e.g., medical studies and API product documentations). Table 3 shows the
results obtained from each of the sources we used for our search.

We can see that the majority of the papers were obtained through Google Scholar search, accounting for
a total of 48 unique papers (∼47%). IEEE Xplore, instead, provided a total of 28 papers (∼27%), while
ACM Digital Library contributed with 17 papers (∼17%). The additional manual search provided a total of
10 papers (∼10%) that were not found through the search in the previous sources.

The study types of the research papers, based on the types discussed in Petersen et al. [29], are shown in
Fig 1(a). We can see that a majority of the studies are dedicated to solution with validation (∼59%), followed
by evaluation research (∼28%), philosophical research (∼8%) and proposed solution (∼5%). The number of
papers in the latter two categories is small in comparison with the previous two. Fig 1(b), instead, focuses
on the research methods used in the studies. We can observe that design science represents ∼57% of the
research methods used, followed by ∼16% empirical studies and ∼14% case studies. Here, we can notice that
less research work is conducted using mix methods (∼8%), qualitative studies (∼3%), quantitative studies
(∼2%) and field studies (∼1%). These results also indicate that the main trend lies in research that focuses
on designing solutions (design science) (see Fig. 1(b)) that are then validated and evaluated (see Fig. 1(a)).
Regarding the types of venues in which the papers were published (see Fig. 2), ∼79% of the papers were
published in conference proceedings, ∼14% in journals, ∼7% in symposiums and ∼1% as a technical report.

2.4 Results

2.4.1 Quality dimensions for API documentation

We first focus on addressing RQ1 - What quality dimensions are being addressed in the literature in the
context of API documentation? In order to answer this question, we followed the steps of thematic analysis
[47] to analyze each of the 103 papers obtained from our search. More specifically, the thematic analysis
steps followed were [52]: (i) Initial reading of the text (papers), (ii) identification of specific segments of
text, (iii) coding of the segment of text, (iv) reduction of overlaps in coding and translation of codes into
themes, and (v) creation of higher-order themes. The results of this analysis helped us identify five quality
dimensions addressed in literature, which we summarize in Fig. 3. The ellipses represent the identified
quality dimension, while the rectangles indicate the main artifacts to which they are applied in the selected
papers.
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Figure 1: Study types and research methods used in the selected papers

Figure 2: Venue types

Completeness. In literature, the term documentation completeness is a desired quality generally required to
mitigate problems of missing resources and descriptions [40]. The inclusion of all descriptions of API elements
in the documentation is necessary so that readers can find information about how to properly use an API.
Thus, an API documentation is incomplete when it misses important information, conditions and knowledge
elements that is required by API users. Several works from the literature focus on the issue of completeness
[10, 25, 37, 44, 46, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]. In our findings, the thematic analysis showed that the
main artifacts to which completeness is applied are resources, directives and summaries. Resources represent
in this context usage examples, tools, tutorials and examples of requests and responses to provide support
for the content of developer and reference documentation. To improve completeness of available resources,
studies investigated tooling and examples of API usage [25, 37, 53, 54, 55, 56, 60, 63, 64, 65, 66, 67, 68, 69].
For example, to help API developers find examples related to specific APIs, Mar et al. [57] designed PropER-
Doc, a system that takes queries from developers and uses code search engines to find related code examples
and apply appropriateness metric to group these examples [57]. In the context of method invocation, the
problem of not keeping the developers aware of the rules related to these methods may lead to errors while
the developers write code. Directives, on the other hand, refer to clear contracts that help understand
what is possible and what is not (i.e., constrains) while using an API method [63]. Dekel and Herbsleb
[60] proposed a tool called eMoose that support the Eclipse IDE5 for the decoration of API methods that
have rules and directives, providing them as tool-tips and by highlighting the related directives from the
original API documentation. Yet, if directives are missing from the documentation, the user still has to find
alternative resources.

Thummalapenta and Xie [92] propose a tool named Alattin that uses mining techniques to detect rules

5https://www.eclipse.org/ide
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API Documentation
Quality Themes

Completeness

Understandability

Maintainability

Correctness

Consistency

• Code examples (e.g., [37, 55, 57, 92])
• API descriptions (e.g., [12])
• Learning resources (e.g., [54, 64, 93, 94])
• API methods knowledge (e.g., [60, 95, 96])
• QAs (e.g., [10, 59])
• Tutorials (e.g., [58])
• Summaries (e.g., [66])

• Naming conventions (e.g., [62, 97, 98])
• Usage patterns (e.g., [11, 99, 100, 101, 102])
• Summaries (e.g., [10, 64, 103])
• API Specification (e.g., [104, 105])

• Authoring tools (e.g., [68, 106])
• Writing & styles quidelines (e.g., [15])
• Evolution analysis (e.g., [21, 41, 43])

• API Specification (e.g., [21, 107])
• Code contracts (e.g., [58])
• Bugs vs. Documentation (e.g., [108])

• Naming conventions (e.g., [41, 97, 98])
• API specification (e.g., [81, 109, 110])
• Code vs. documentation (e.g., [21, 41])

Figure 3: Thematic map for quality dimensions of API Documentation

and conditions that are neglected in documentation. While this method can be considered a detection mech-
anism of directive issues, it can also be applied to check for software defects, code and patterns violations,
and as a support for quality control for documentation completeness [64]. Maleshkova et. al [65] exam-
ined Web APIs to analyze APIs forms and descriptions. The authors reported on completeness of APIs
documentation, showing that more than 75% of APIs has usage examples, while 53.1% include descriptions
of error messages. These results are based on manual analysis of ProgrammableWeb3 (a Web API direc-
tory), where details are usually added manually. The authors questioned the accuracy of the information
added on ProgrammableWeb, highlighting errors such in feature descriptions, URL links, and authentication
information.

In a di↵erent direction, Hou and Li [66] performed an exploratory study on the forum discussions about
API learning obstacles. API usage problems identified in [66] include obstacles related to “Asking for a solu-
tion”, “Using a wrong solution” and “Using a solution incorrectly”. Incompleteness of API documentation
and undocumented API a↵ected mostly the first category (i.e., “Asking for a solution”). This indicates that
such problems stem from APIs that do not have documentation, thus causing di�culties in carrying out the
steps required to e↵ectively use the API. Similarly, Robillard and Deline [67] explored, through surveys and
interviews, the classes of obstacles professionals face in terms of availability and quality of learning resources.
Interestingly, the most severe obstacles found are inadequate documentation and code examples. Even when
documentation was present, it was found that documentation with high-level abstractions is the most severe
barrier that developers face, perhaps as a result of the need for clear descriptions and explanations.

Other aspects such as the structure of APIs, the environment and the background of developers have less
e↵ects [67]. In order to fill the gap of linking resources to API documentation, Degenais and Robillard [68]
proposed a technique that looks at documentation of an open source project to link terms related to code
with code elements. Parning et al. [69], instead, studied the crowd contributions to API documentation by
looking at the discussions of Stack Overflow. They reported that contributions such as a Q&As discussions,
achieved high coverage of API functionality along with usage examples. The contributions have been curated
by the crowd for the purpose of updating the content and correcting error and mistakes. It is notable that
crowd contributions may not cover all aspects of a specific API, but it may help with API documentation
completeness by looking at descriptions, code-like terms linking, usage examples and even summaries. Chen
and Zhang [10] designed a system that uses both visits of developers to API documentation and Q&As,
integrating the corresponding Frequently-Asked-Questions (FAQs) from this system into the API documen-
tation. Petrosyan and Robillard [58] propose an approach to help discover tutorial sections that are related
to the explanation of a specific API types. In the same line, Treude and Robillard [59] also contributed to
the explanation of API types. Their system uses machine learning techniques to automatically leverage on
features from the questions and answers along with their similarity to the corresponding API documentation.

3https://www.programmableweb.com
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tory), where details are usually added manually. The authors questioned the accuracy of the information
added on ProgrammableWeb, highlighting errors such in feature descriptions, URL links, and authentication
information.

In a different direction, Hou and Li [66] performed an exploratory study on the forum discussions about
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tion”, “Using a wrong solution” and “Using a solution incorrectly”. Incompleteness of API documentation
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such problems stem from APIs that do not have documentation, thus causing difficulties in carrying out the
steps required to effectively use the API. Similarly, Robillard and Deline [67] explored, through surveys and
interviews, the classes of obstacles professionals face in terms of availability and quality of learning resources.
Interestingly, the most severe obstacles found are inadequate documentation and code examples. Even when
documentation was present, it was found that documentation with high-level abstractions is the most severe
barrier that developers face, perhaps as a result of the need for clear descriptions and explanations.

Other aspects such as the structure of APIs, the environment and the background of developers have less
effects [67]. In order to fill the gap of linking resources to API documentation, Degenais and Robillard [68]
proposed a technique that looks at documentation of an open source project to link terms related to code
with code elements. Parning et al. [69], instead, studied the crowd contributions to API documentation by
looking at the discussions of Stack Overflow. They reported that contributions such as a Q&As discussions,
achieved high coverage of API functionality along with usage examples. The contributions have been curated
by the crowd for the purpose of updating the content and correcting error and mistakes. It is notable that
crowd contributions may not cover all aspects of a specific API, but it may help with API documentation
completeness by looking at descriptions, code-like terms linking, usage examples and even summaries. Chen
and Zhang [10] designed a system that uses both visits of developers to API documentation and Q&As,
integrating the corresponding Frequently-Asked-Questions (FAQs) from this system into the API documen-
tation. Petrosyan and Robillard [58] propose an approach to help discover tutorial sections that are related

6https://www.programmableweb.com
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to the explanation of a specific API types. In the same line, Treude and Robillard [59] also contributed to
the explanation of API types. Their system uses machine learning techniques to automatically leverage on
features from the questions and answers along with their similarity to the corresponding API documentation.
The results are then embedded into the API documentation to assist developers understand the API type
of interest.

Other studies looked at directives to explore usage conditions [60], contracts [61] and constrains issues
[62]. For example, Gao et. al [61] inferred data contracts out of Web APIs by analyzing error messages and
using decision tree learning method. While Saied et al. [62] proposed automatic methods to detect usage
constraints. One of their findings is that constraints are specifically absent from the documentation of APIs.
Finally, Watson et. al. [44] reviewed 33 API documentation from open source projects. Their survey provides
insights into the design and writing quality used along with elements of a typical API documentation.

Understandability. This dimension is related to the clarity of API documents so that developers can
understand the usage and purpose of an interface [40]. Several studies have addressed this dimension in the
context of API documentation [8, 40, 46, 58, 59, 60, 70, 72, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88,
89, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]. Some of these studies have noted the importance of the need
for enrichment, such as summaries of text around code in CQAs [96] and supporting documentation with
insights [59], observing also that missing good examples affect users who, as a consequence, often look for
alternative resources on the web [95]. Parnin and Treude [94] studied the coverage of API documentation in
the web and found that the highest frequency are for tutorials related to APIs followed by experience blog
posts, code snippet, among other types of documentation spread across Q&As like Stack Overflow, forums,
official documentation and mailing lists. Petrosyan et al. [58] proposed a discovery technique for tutorials
related to API types by using supervised text classification. This approach helps in making developers aware
of related tutorial sections that can explain questions of the type “how-to” with good relevant explanations
about the API type. Similarly, Buse and Weimer [93] propose to synthesize API code usage examples in a
well-typed, readable and representative form with focus on the readability of the generated examples as if
they are written by humans [93].

In a different direction, naming conventions were explored to inform an easy-to-read, consistent API
document [98]. For example, sorted methods names can help authors spot inconsistencies and ambiguities
in such names. Directives is also considered as a mechanism to enhance understandability of API docu-
mentation. Notably, studies [60, 99, 100] addressed such issue using techniques such as mining, providing
knowledge about directives and empirically studying the effects of failures in identifying directives in code
fragments with errors. Wu et al. [103] propose the abstraction of functionality in diagrams reflecting the
semantics of API calls as a way to improve the understandability of APIs. Finally, Montandon et al. [8] uses
static slicing algorithm to summarise code examples extracted from private code repositories to supplement
API documentation.

Maintainability. Maintainability includes studies that are related to the process of correcting errors or
conflicts found in API documentations (e.g., [21, 42, 43, 56, 61, 71, 72, 73, 74, 81, 83, 86, 104, 105, 106,
107]). The improvement of API documentation maintenance has been explored in two areas. The first one
relates to documentation evolution. For example, the case study on Web APIs presented in [21] provide an
understanding on how the content of API documentation changes during events such as versioning. These
changes were observed in manual processes, which expose the maintainability of documentation to human
errors. The second area is about understanding and implementing the tooling required to actually maintain
evolved documentation. In [42], maintainability was considered as an attempt to understand contributions of
developers in open source projects. In this study, Dagenais and Robillard studied 19 documentation revisions
and also explored how developers participate, contribute and read documentation. The study reported that
contributions in public wikis led to increased maintainance, lowered the entry barrier and led to low quality
[42]. Because API documentation can become outdated, Subramanian et al. [56] proposed Baker, a tool
that supplement API documentation with up-to-date code examples based on Q&As and Github Gists7.
Detection of errors [43] about deprecated API methods and usage error messages are also taken into account
for maintaining data contracts [61]. Expanding on this area can be an interesting research direction, especially
as a systematic search of how maintainability is supporting API documentation evolution and correctness.

Consistency. Consistency measures are connected to documentation content and the way it is presented
by means of no conflicts in the descriptions of artifacts and their presentations [40]. That is, an API
documentation is consistent when information given about a specific element of an API is uniform across
all content and versions of the API documentation. Consistency also means that presentation of content
and format follow regular usage of style and visualization across all documentation. From our findings,
we can observe an initial objective aimed at detecting and highlighting API documentation issues and

7https://gist.github.com
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inconsistencies [14, 41, 71, 80, 81, 97, 101, 105, 106, 108, 109]. For instance, Correia et. al [109] highlighted
the main consistency problems of documentation along with proposed solutions. Inconsistency in this case
is a result of evolution of some parts of the documentation away from other parts. In order to keep API
documentation consistent with actual functionalities or data, Zhong and Su [41] introduce a tool called
DOCREF for detecting errors and inconsistencies in documentation. Another objective in the context of
API documentation consistency is the usage of specific styles and guides for authors [15]. These include
understanding the workflow, where incremental contributions in collaborative settings are encouraged to
support documentation changes.

Correctness. This quality dimension focuses on the validity of API documentation knowledge elements,
with several works addressing the issue [14, 20, 56, 66, 71, 74, 75, 76, 84, 101, 108, 110, 111, 112]. Incorrect
API documentation has been reported [20, 66] to cause challenges to users while using and learning APIs.
We have identified that incorrect API documentation are either conceptual, which are related to errors in
the descriptions (e.g., natural language description of an API method), or code-related, such as in cases
where bugs are present in code examples provided in API documentations. Errors in descriptions affect
API semantics [56], while code related bugs affect the usability of APIs [14]. Moreover, Zibran et al. [14]
found that 34.9% of the bugs result from incorrect API documentation, including incorrect descriptions of
a specific API functionality. Along this line, Daielsen and Jeffrey [110] propose to support correct API
descriptions using a machine-generated documentation. The so-generated documentation can be validated
with formal representation by embedding a proposed annotation similar to RDF within the documentation’s
HTML page [110]. While Zhong et al. [111] propose a method that combines Natural Language Processing
(NLP) techniques with code parsing in order to detect API documentation errors. The resulting approach
(DOC2REF) can handle API documentation errors with a focus on grammatical errors among other features.

2.5 Quality Dimensions Coverage for API documentation

In this section, we focus on RQ2 - How is current research mapped to these quality dimensions and to what
extent are they being covered? In order to answer this question, we map the papers obtained from our search
to the five quality dimension identified through our thematic analysis, and we associate them to the different
research types of each study (see Fig 4).

Our findings show that most studies focus on solutions with validation. These include tools to support
understandability (∼28%) through directives and methods, conventions and need for enrichment; while stud-
ies on completeness (∼28%) seem equally relevant to researchers making these the two most common quality
dimensions covered by the literature. Next, an important number of works focus on evaluation research.
Again here, completeness (∼20%) is a popular concern where research efforts are put toward understanding
and unveiling problems of missing resources and descriptions and their mitigation mechanisms. A much
lower percentage of the analyzed papers are about proposed solutions without evaluation and philosophical
research.

2.6 Disscussion and Threat to Validity

The results of this study show a clear concentration of studies in the quality dimensions of completeness and
understandability. This comes as no surprise given that developers expect that API documentations provide
a full reference of the interfaces that not only assist them in their day-to-day development tasks related to
API usage but also help them learn about the existing and new APIs [113]. This results in a response from
the research community that tries to provide a more complete and holistic API documentation that empower
developers through code examples (e.g., [103]), Q&As (e.g., [114]), tutorials (e.g., [38]), and other types of
API documentation enrichments (e.g., [58, 115]). Fewer works focus on the remaining quality dimensions,
which however does not make them less important. Works regarding maintainability focus mostly on API
documentation evolution (e.g., [11, 116, 117, 118]), while, to a lower extent, focus is put on documentation
errors (e.g., [119]) and creation (e.g., [120]). When it comes to consistency, researchers focus on patterns for
helping in the creation of consistent documentation (e.g., [121]), making sure consistency of documentation
is kept as APIs evolve (e.g., [116]) and the effects of documentation consistency on API usability (e.g., [122]).
Finally, correctness of API documentation has triggered research in areas related to API specification (e.g.,
[111, 123]), usability (e.g., [124]) and automatic generation of usage examples (e.g., [123]).

Despite the considerable efforts by the research community, there is still much space for improving the
quality of API documentation. As unveiled by Uddin and Robillard [20], there are still major concerns
emerging from practitioners regarding the incorrectness, ambiguity and incompleteness of API documenta-
tion. The recent advances in Artificial Intelligence (AI), NLP and Natural Language Undersdanding (NLU)
are a good fit to address these issues given the unstructured nature of large parts of API documentation.
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Figure 4: Quality dimensions and research types used in the selected papers

Initial attempts along these lines include the use of NLP for Web APIs documentation [125], API embed-
dings for API usage/application [126] and API document embeddings [127]. We argue that further research
is needed to assess API documentation quality, e.g., by leveraging embedding technologies on top of both
structured (API formal specification) and unstructured data (API documentation).

This study has its own limitations. The examination, selection process and the data extraction strategy
were carried out by only one examiner, which may increase the risk of human error and bias. While making
use of regular meetings with the authors to discuss the outcomes may have helped in mitigating this issue,
this threat may still affect the results of this study. The selection of search databases was also limited to two
of the most relevant digital libraries for Software Engineering. This limitation was partly mitigated by also
using Google Scholar, which contributed to finding results beyond what was provided by these two databases
[49, 50]. The set of query terms was also limited by the capabilities offered by the search engines of the
two digital libraries and Google Scholar. In this case, our mitigation strategy consisted in using backward
snowballing and manual inspection of conferences and journals that are relevant to the Software Engineering
community.

3 Modeling, Curation and Indexing of API Community Knowledge

The SMS presented in the previous section shows that completeness and understandability are two of the most
important quality dimensions for API documentation in terms of how much attention they have received by
researchers. In this context, previous research highlights the common practice, by developers, of searching for
alternative resources whenever they face completeness and understandability issues with API documentations
(e.g., [69, 94]). A key challenge related to this search task is that of being able to query, explore and discover
these alternative resources. In this and the following sections we present our approach to facilitate the
exploration and discovery of API learning resources by leveraging API community knowledge.

Several resources can be found nowadays on the Web that can help mitigate existing API documentation
issues. Among these resources, SO is one of the most widely used and indispensable resources for facilitating
the usage and understanding of APIs [128]. It features a vast repository of programming knowledge including
approximately 21 million questions, 32 million anwers, 15 million users and 11 million visitors per day, as
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of April 2021.8 Study [39] has shown that API-related posts in SO can be categorized into topic issues
such as API security, API usage, API Debugging, among other topics issues. In this section, we present our
data model to represent, enrich and index API-related posts in SO based on such topic issues, in order to
support discovery and understanding of API-related knowledge. We discuss next the data model as well as
the extraction/curation and indexing techniques we use to represent and index such resources.

3.1 Data Model

Given the relevance of SO in the programming community, we developed a SO- and API-topic-centric
data model to capture knowledge about APIs. Leveraging on our experience and results from previous
research [129], we introduce the model in Figure 5. Here, API is a software released in a current version
represented by API version. An API version is typically accompanied by an API documentation, where the
API documentation can be a reference documentation, getting-started guide or an open API specification
(e.g., a Swagger API Documentation9). An API version contains several API methods represented by the
Method entity of our model. Insights, in turn, are obtained from our information sources and include metrics
about posts and developers using the API.

Figure 5: Data model used for the representation of API learning resources

Next, an API Topic represents a topic issue, as identified in [39]. SO Code Example represents code
examples that contain a method from a specific API version. These code examples can be either obtained
automatically or from a human-curated list of examples. An API, may contain several other learning
resources such as getting-started videos from Youtube10, code examples from Github11, among other types
of resources. Finally, and, most importantly, our data model includes Stack Overflow posts. This entity
represents a question, answer or a Wiki12 posted on SO.

8https://stackexchange.com/sites
9https://swagger.io

10https://youtube.com
11https://github.com
12https://meta.stackexchange.com/questions/11740/what-are-community-wiki-posts
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Notice that, in addition to including entities and attributes from SO’s dataset in our model (see Figure
5), a key characteristic lies in the API-topic-centric approach we followed in the model. Such modelling
decision is key to building a solution that enables the indexing, exploration and discovery of API-related
knowledge based on API topic issues as we will be discussing in the next sections.

3.2 API Community Knowledge Extraction and Curation

We leverage on the API community knowledge in SO and the data model introduced in the previous section
in order to build our API KB. The first step toward extracting such API-related knowledge consists in
identifying SO resources (e.g., posts) that relate to known APIs. Curated lists of known APIs can be
obtained from existing directories of APIs such as ProgrammableWeb13. By leveraging SO’s search APIs14

we can construct keyword-based queries that can help us retrieve posts that relate to specific APIs. For
instance, in order to search for posts related to Windows API15 (or WinAPI for short), we can build a query
containing the keyword “WinAPI” as tag, as shown in Figure 6. More complex queries can be built using
SO’s APIs, e.g., to include posts that contain specific keywords in the body of posts (see footnote 14 for
more details).

1

2 {"mappings":
3 {"_stackoverflow":
4 {"properties":
5 {
6 "title":{"type":"text"},
7 "body": {"type":"text"},
8 "tags": {"type":"keyword"},
9 "api": {"type":"keyword"},

10 "topic": {"type":"keyword"},
11 "question_id":{"type": "integer"}
12 }
13 }
14 }
15 }

Listing 2: Elasticsearch mapping for indexing SO posts along with the api
and topic mentions they relate to.

1 GET /2.2/search?pagesize=100&order=desc&sort=activity&tagged=
winapi&site=stackoverflow

Listing 1: Example of SO’s search API to query for posts related to WinAPI.

1

Figure 6: Example of SO’s search API to query for posts related to WinAPI

In SO, not all posts are properly tagged and curators from the community may add tags over time as
needed. This can lead to missing the extraction of relevant content simply because posts were not tagged
properly with the corresponding API name. We therefore resort to queries that retrieve posts based on APIs
mentioned not only within tags but also title and body of posts. As explained before, such list of mentions
can be obtained from existing list of APIs available on the Web (see footnote 13). Additionally, in order to
assign topics to each post extracted from SO, we use a list API-topic-issues seed keywords, e.g., based on
the topics listed in [39]. Such list of seed keywords are expanded with alternative mentions obtained from a
pre-trained word embedding based on SO [130]. This way, whenever we identify mentions from our list of
API-topic-issues in a post, we associate the post to the corresponding topic issue.

In addition to SO posts, we further curate our API KB by enriching it with additional resources such
insights, code examples, API documentation, among other resources (see our model in Figure 5). Such
enrichments can be sourced from other sites such as Github (e.g., for code examples) and Youtube (e.g.,
for video-tutorials). Github and Youtube also provide search APIs16 17 that can help retrieve API-related
resources, which we leverage in our work.

3.3 Indexing

When an API consumer, programmer or practitioner is interested, e.g., in learning about “security” issues
related to “Facebook Graph API”, they typically need to make several assumptions and keyword-based
guesses in order to find relevant information. This, in turn, may not bring all posts that tackle the target
API issues, limiting search results only to exact keyword-based matches. While this type of search is
popular in many platforms (e.g., SO) to look for information that help them solve issues related to specific
programming tasks, it is not suitable for a topic-driven search of posts related to APIs. In this section, we
report on how we leverage Elasticsearch18 and the data model introduced before for indexing APIs on a
topic-centric basis.

Elasticsearch is an open-source search engine that provides near real-time search services. It is built upon
an open-source information retrieval and indexing library: Apache Lucene19. Elasticsearch provides REST
APIs and supports the distributed aspects that Apache Lucene lacks. In Elasticsearch’s terminology, an index
is a container that stores JSON documents (e.g., posts in SO). The schema of an index is defined through
so-called mappings20. Elasticsearch uses Apache Lucene to generate an inverted list [131] of keywords where
each keyword is associated to documents that contain such keyword.

13https://www.programmableweb.com
14https://api.stackexchange.com/docs/search
15https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
16https://developer.github.com/v3/search
17https://developers.google.com/youtube/v3/docs/search
18https://www.elastic.co
19http://lucene.apache.org
20https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
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1

2 {"mappings":
3 {"_stackoverflow":
4 {"properties":
5 {
6 "title":{"type":"text"},
7 "body": {"type":"text"},
8 "tags": {"type":"keyword"},
9 "api": {"type":"keyword"},

10 "topic": {"type":"keyword"},
11 "question_id":{"type": "integer"}
12 }
13 }
14 }
15 }

Listing 2: Elasticsearch mapping for indexing SO posts along with the api
and topic mentions they relate to.

1 GET /2.2/search?pagesize=100&order=desc&sort=activity&tagged=
winapi&site=stackoverflow

Listing 1: Example of SO’s search API to query for posts related to WinAPI.

1

Figure 7: Elasticsearch mapping for indexing SO posts along with the api and topic mentions they relate to

We leverage on Elasticsearch indexing and searching capabilities to support exploration and discovery of
API topic issues. In concrete, we index SO posts related to APIs and use the resulting index as a gateway
to get access to our KB represented by the model in Figure 5. The index follows the mapping (i.e., schema)
shown in Figure 7. In this mapping, the title, body, tags and question id correspond to standard attributes
from SO’s dataset. Whereas the attributes api and topic are extended attributes that characterize each post
based on the API (e.g., “WinAPI”) and topic (e.g., “API Security”) the post relates to.

APIs may be referred to using different mentions across different posts. For instance, “Windows API”
can be referred to also as “WinAPI” and “Windows 32 API”. The same rationale applies to API topic issues.
In order to be able to account for different mentions of APIs and API topic issues, we propose to extend
the values within the attributes api and topic (see Figure 7) to include different mentions thereof. We do
such enrichment using word embeddings techniques [31], where words (from a given corpus) are mapped to
a vector space. A key property here is that words that are semantically similar appear close to each other
in the vector space. Several pre-trained models exist today [31, 130, 132, 133], including general-purpose
embeddings (e.g., based on Wikipedia corpus) and domain-specific ones (e.g., programming corpora). We
focus on the latter and leverage on a word embedding pre-trained model based on SO [130]. Furthermore, we
leverage on previous work on building software engineering thesaurus [134] and API recognition in SO [135]
in order to identify API-relevant terms from SO posts. Table 4 shows examples of SO posts enriched with
additional mentions for APIs and API topic issues after the application of the aforementioned techniques.

The resulting index can thus be used to perform searches based on APIs and their associated topic issues.
The corresponding queries can be written with terminology flexibility thanks to the enrichments discussed
before (e.g., users can write queries related to Windows API by using the terms “WinAPI”, “Windows API”,
etc). In the next section, we elaborate more on how to leverage this index to build a query bot that allows
for querying API knowledge based on API topic issues and using our own domain-specific query language.

4 Scout-bot: API Topics Discovery and Exploration Bot

In this section we introduce Scout-bot, a query bot system that enables users to explore and discover APIs
through API topic issues. With Scout-bot (see Figure 8), a user writes a query based on a DSL (we will
present our API-Topics DSL next) and the bot returns the corresponding results containing related API
resources.

In order to do so, Scout-bot first parses the user expression to identify query elements such as API
names, API Topics or both, and the boolean operators that may be present in the expression. Then, results
from the parser are passed on to a query generator to translate queries written in our API-Topics DSL
into Elasticsearch’s own DSL. Finally, the translated query is sent to Elasticsearch’s search services and the
results are presented back to the user. The overall query bot system is depicted in Figure 8. Next, we
describe the API-topics DSL we use for writing queries in Scout-bot.

4.1 API-Topics DSL: A Domain-specific Query Language for APIs

We provide a simple yet powerful API-topics DSL that allows users to write queries based on the key entities
involved in our approach: API names and API topics. We show next the queries allowed by our API-Topics
DSL:
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Table 4: Examples of Elasticsearch’s index entries including SO questions (identified by QID) along with
the api and topic mentions they relate to

SO QID title body tags api topic

9484998 Simple
FTP Client
authentica-
tion?

I have written
a simple FTP
Client-Server
code using
WinSocs ...

c++, windows,
winapi, authen-
tication, ftp

winapi {win-
api, win32-api,
windows-api}

authentication
{oauth, au-
thorization,
auth}

25885369 Windows
API func-
tion Cre-
dUIPrompt-
ForWin-
dowsCre-
dentials also
returns an
error of 31

When I use
the function
CredUIPrompt-
ForWindows-
Credentials
to display a
windows ...

c++, winapi winapi {win-
api, win32-api,
windows-api}

security {safety,
policies}, au-
thentication
{oauth, au-
thorization,
auth}

7725464 Windows se-
curity center
API

I would like to
access the Win-
dows Security
Center...

c++, windows,
security, winapi

winapi {win-
api, win32-api,
windows-api}

security {safety,
policies}

Scout-bot API user

API-topics-issue query parser

Named-entity
recognition

(NER) KB

 API entities = 
 [Facebook Graph API] 
 Topics Named-entities = 
 [API Constraint]

Elasticsearch DSL
query generation

Elasticsearch 
search service

Query
results

Parsed query

Facebook Graph API . API Constraint

Query UI

Facebook Graph API . API Constraint

Query UI

Show more...

Figure 8: Overall architecture of Scout-bot

API-Name.Topic-Name This query allows users to explore a topic in the context of a given API. It
suffices to provide an API and topic name separated by a “dot” (.) operator. For example, “WinAPI”.“API
Security” allows users to explore the topic of API Security in the context of Windows API.

API-Name.Topic-Name contains ‘keywords’ In this case, the query allows users to explore APIs and
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topics based on a set of keywords. For example, a user that wants to explore authentication mechanisms
in the context of API Security topic for Windows API can write a query like “WinAPI”.“API Security”
contains ‘Authentication’.

API-Name.Topic-Name AND API-Name.Topic-Name This expression allows users to explore APIs
using a conjunctive query. For example, if a user wants to inquire about overlapping issues of secu-
rity and debugging under WinAPI, the following query can be used: “WinAPI”.“API Security” AND
“WinAPI”.“Debugging” (notice that a post can be categorized under more than one topic issue).

API-Name.Topic-Name OR API-Name.Topic-Name A user can also write disjunctive queries to
explore APIs and topic issues. For instance, a user exploring security issues in the context of Github API
or GitLab API can write the query “Github-API”.“API Security” OR “GitLab-API”.“API Security”.

Thus, the possibility to express simple queries in terms of API names and topics (with the option to
refine queries using the contains operator) as well as the possibility of combining them using disjunctive and
conjunctive Boolean operators results in a simple query language that enables the construction of arbitrarily
complex queries to support exploration and discovery of API knowledge.

4.2 Implementing and Evaluating Scout-bot

We implemented Scout-bot as a Slack21 app. Slack is a cloud-based collaboration platform that enables
users and developers to interact and communicate with each other as well as with third-party apps. We
implemented both the DSL-query parser and the API Topics DSL described previously as microservices using
Python Flask22. This serves as the webhook that connects our query bot app to our query parser and API-
Topics DSL. The query bot interface app and the micro-services are deployed on an Ubuntu virtual machine
hosted on Google Cloud Compute23 service. Figure 9 shows a screenshot of Scout-bot in action where, for
illustration purposes, we show only SO’s main attributes (in practice, Scout-bot can show other elements
from our KB model presented in Figure 5 including insights, learning resources, API documentation, among
other resources).

Figure 9: Implementation of Scout-bot in Slack

In order to evaluate Scout-bot, we measured its ability to retrieve relevant posts when given a query
using our API-Topic DSL. To do so, we extracted, enriched and indexed a sample of approximately 62K
API-related posts collected from SO. The rationale of our evaluation consists in sampling posts from these
initial 62K posts, building queries that capture the essence of the API and topic being discussed in the post,
and manually inspecting the returned results. The recommended minimum number of posts to be sampled
was 96, considering a margin of error of 10% and a 95% confidence interval [136]. The actual number of
posts sampled were 109, which allowed us to cover a number of API topic issues for at least three different

21https://slack.com
22https://flask.pocoo.org
23https://cloud.google.com/compute
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Table 5: API-topic DSL queries based on actual questions (QID) from SO

SO QID Formulated API-topic DSL query

13115608 facebook.usage contains ‘authentication services’
2478391 youtube.usage contains ‘get video title jquery’
21329250 facebook.debugging contains ‘FB og image pulling’
3566018 winapi.debugging contains ‘compile fatal error’
23417356 facebook.usage contains ‘permanent login page access token info’
6218325 winapi.usage contains ‘check if directory windows exists’
1037595 winapi.usage contains ‘user interaction time’
167414 winapi.usage contains ‘POSIX system file rename’
940707 winapi.usage contains ‘get Win32 native APIs version’

APIs (Windows, Facebook and Youtube APIs). In order to build queries based on our API-Topic DSL we
considered the posts’ title and question body. Table 5 shows examples of queries built based on the sampled
posts.

We evaluate the performance of Scout-bot in terms of precision [131]. We focus on how the system
performs at returning relevant documents to the query in the exploration search. In this case, we follow
the common information retrieval evaluation metrics Precision@K (or P@K) and R-Precision [131]. P@K
helps measure the returned results at the top K number of documents. When considering the possibility of
exploring more results (beyond the top K ones), it is also useful to report on the R-precision metric, which
is calculated as R-Precision = r/|rel| . This metric measures the number of relevant documents returned by
the system (r) out of the total number relevant documents (|rel|).

After computing the values of P@1, P@3, P@10 and R-Precision for each of the 109 formulated queries
(see examples in Table 5), we proceeded with computing the mean values for these metrics across all 109
queries. The results show a performance of P@1 = 0.99, P@3 = 0.96, P@10 = 0.52 and R-Precision = 0.98.
The value 0.99 for P@1 is important because users interacting with Scout-bot can have the most relevant
result right in the first returned result in almost all cases. Both P@3 and R-Precision also report relatively
high values. In terms of P@10, however, Scout-bot’s performance is rather low. This shortcoming is inherent
to the metric P@K when the number of relevant results is (much) lower than K [131]. For example, when
the number of relevant results is 1, then the maximum value for P@10 is 0.1 (this is why R-Precision is also
reported, i.e., to provide a more comprehensive view on performance).

5 Discussion and Future Work

This article presented a systematic mapping study that helped us identify key quality dimensions of API
documentation and their coverage by existing literature. The study unveiled that completeness and un-
derstandability are two of the most researched quality dimensions within this context, where the governing
concerns include incorrectness, ambiguity and incompleteness [20]. In response to these findings and chal-
lenges, this article presented an approach for indexing, exploring and discovery API community knowledge
in a topic-driven manner. Our approach stems from the needs of the programming community to learn
and understand APIs in an increasingly interconnected technology landscape, where APIs are considered
first-class citizens. We combine our integrated KB, enriched index and simple yet powerful domain-specific
query language into a useful tool, Scout-bot, that showcases how our solution can be seamlessly integrated
into popular productivity tools such as Slack. Besides the technical advantage of integrating Scout-bot into
such productivity tool, our aim was also to showcase that API community knowledge can be brought close
to the toolset programmers rely on in their daily tasks, doing it in a manner that facilitates access to such
knowledge without the need of switching context (e.g., opening a browser to look for online API documen-
tations or SO Q&As). This helps bring the power of and community knowledge about APIs right into the
working environment of API consumers, programmers and practitioners.

This work has its own limitations. Firstly, the API community knowledge used to build our KB is based
(and mainly driven by) SO. Yet, the rationale we followed is that of relying on a reputable CQA site (SO)
that converges common issues developers face when programming, in general, and, using API, in particular.
Thus, by leveraging on SO, we are also leveraging both the wisdom of the crowd and the resulting curated
API knowledge. Secondly, the evaluation presented in this article is focused only on the performance of

15



CLEI electronic journal, Volume 24, Number 2, Paper 5, July 2021

our approach in terms of (information retrieval) precision. Further and deeper studies are needed where
end-users are involved to better understand the implications of our solution in learning and using APIs.

Future directions include leveraging embedding techniques for representing elements of our KB in a vector
space (e.g., topics, APIs, Q&As) and the development of novel indexing and querying techniques on top of
such embeddings to support semantically richer exploration and discovery. We also plan to expand our KB
using Github as an additional datasource and validate our approach through extensive user studies that
involve API users in realistic, production environments.
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[5] F. Daniel, C. Rodŕıguez, S. Roy Chowdhury, H. R. Motahari Nezhad, and F. Casati, “Discovery
and reuse of composition knowledge for assisted mashup development,” in Proceedings of the 21st
International Conference on World Wide Web, 2012. doi: 10.1145/2187980.2188093 pp. 493–494.
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