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Abstract

This work presents an interactive proof assistant, based on Dijkstra-Scholten logic, aimed
at teaching logic and discrete mathematics in higher education. The assistant interface is
web and easy to use since inferences can be made just with the mouse. The educational
experience is presented showing a correlation between the grades of the assessments in
class and those made with the application web. Additionally, an algorithm proof theory
for the Disjktra-Scholten system are done and the following algorithms are shown: a
versatile printing algorithm that allows the administrator to configure the symbols of a
theory, by assigning the desired presentation with LATEX; an algorithm, based on Broda
and Damas combinators, for generate monotonic or anti monotonic inferences in the
Dijkstra-Scholten logic; an algorithm to generate the proofs of dual theorems in Boolean
Algebra theory.
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1 Introduction

A proof assistant is a program that assists mathematicians in the production of proofs, which are verified
mechanically by the computer. A proof assistant can produce proofs with interactive help of the user or
completely automated.

CalcLogic is an interactive web prover, based on the Dijkstra-Scholten Calculational Logic [1], a formal
system popularized thanks to the book [2]. The user interacts with CalcLogic making one inference at a
time. For each user inference the application notifies an error (if exists), or performs the inference printing
its result. Each inference is printed according to the Dijkstra-Scholten vertical notation (Section 4).

Calculational logic works based on the replacement of an expression or subformula by another equal or
equivalent. Therefore, the decision to implement an assistant based on Calculational Logic is because the
proof process is the same as the way in which algebra exercises are solved, in the first years of secondary edu-
cation. In this way, it is desired that students associate their already existing skills in algebraic manipulation,
with said proof mechanism through the assistant.

CalcLogic was fully implemented at Simón Boĺıvar University during the COVID 19 pandemic as a
solution for online assessments, avoiding cheating between students [3]. The situation forced a fast imple-
mentation, therefore a simple tree data structure was used to represent the proofs, and an applicative untyped
language to represent the formulas. Despite the fact that formulas are being written with an untyped lan-
guage, the variety of theories that this assistant supports were enough to cover some discrete mathematics
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content during pandemic. Instances of CalcLogic for Propositional Logic and Boolean Algebras have been
used in an educational experiment about using a proof assistant in Discrete Math courses at the Florida
International University (FIU). The results of the experiment, up to Spring 22, has been presented in the
2022 XLVIII Latin American Computer Conference (CLEI) [4].

The current version of the application can be adapted to the notation of the courses of different universities
without changing the source code. This is because a configurable printing algorithm was designed that allows
changing the presentation of the formulas. In this work, we explain how CalcLogic was adapted to a course
at FIU and the result of the educational experiments (at this university) are shown. Additionally, new
algorithms are described: 1) a versatile printing algorithm that allows the administrator to configure the
symbols of a theory, by assigning the desired presentation with LATEX; 2) an algorithm, based on Broda and
Damas combinators, for generate monotonic or anti monotonic inferences in the Dijkstra-Scholten logic; and
3) an algorithm to generate the proofs of dual theorems, in Boolean Algebra theory.

2 Contribution

A proof theory was developed for the Dijkstra-Scholten system that explains, based on algorithms, three
proof methods (direct method, starting from one side and weakening-strengthening), three metatheorems
(metatheorem of true, parity metatheorem and duality metatheorem) and the process of printing a proof.
Each user inference and metatheorem corresponds to an algorithm that generates a sequence of elementary
inferences that are correctly combined to generate a more complex inference. Designing and proving that
these algorithms always generate correct inferences is the goal of the Algorithmic Proof Theory field.

The development of these algorithms is a contribution to the area of Algorithmic Proof Theory for the
Dijkstra-Scholten system. In particular, the classic Parity Metatheorem of [1] is presented as an algorithm
that makes use of untyped Broda-Damas Combinators [5]. This is an example of how the untyped theories
can be more useful than expected. All the theories developed in this work were done without a type system.
The application could load untyped equational theories and propositional calculational logic. The untyped
equational theories designed for students were Boolean algebras, Field theory (only terms equalities without
notion of sets, ideals, quotients, homomorphism and isomorphism), Trigonometric, Finite difference and
Summation theory. This variety of theories show an idea of how powerful untyped theories are for college
courses.

On the other hand a configurable algorithm that prints formulas in LATEX format has been implemented.
Said algorithm prints the symbols depending on the configuration of the administrator. This paper explains
the configuration made on this algorithm so that the formulas were printed in notation of the Discrete
Mathematics course using [6] as the textbook. This is a verification that the application is versatile thanks
to the design of this formula printing algorithm.

This paper presents CalcLogic functionalities that did not exist when the first work on this tool was
written [3]. These are: 1) Direct Proof Method for Propositional Logic, 2) weakening-strengthening proof
method, 3) window for show the instantiation introduced by the user, 4) automatic substitution for inferences,
5) auto-generation of proofs of the dual theorems for Boolean Algebra theory, 6) symbol configuration and
7) automatic monotonic or anti monotonic inferences.

CalcLogic’s interface was designed to correct the student, so that when his one-step inference is not
correct, the assistant notifies it, but without explaining the error. This work also studies to what extent this
education system is effective and if it can be used as a form of assessment. In this way, to collect educational
data, CalcLogic was used to teach Propositional Logic and Boolean Algebras to students at FIU.

The experiment that has been done in FIU was oriented to specifically answer the following educational
research questions: 1) To what extent does CalcLogic’s user interface allow the student to improve
their competencies to proof Propositional Logic and Boolean Algebras theorems?. Since the prover doesn’t
construct the proofs, only said if there is an inference error, it is reasonable to ask, 2) to what extent the
stored student proofs can be used for student assessment?.

To answer these questions, students were divided into groups depending on the performance obtained
in CalcLogic. Then, written exams were made on the same content exercised with CalcLogic. Then, the
performance with the application was compared by groups with respect to the written exams. The results
show that those who perform well using the application also perform well in classroom assessments. If this
experiment is repeated, and this correlation is always good, it could be argued that you can assess a large
percentage using CalcLogic, because the expected result could be very similar in a written exam.
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3 Related Jobs

Calculational Logic was first described in the book [1] and later in [2] which popularized it. The book [2] is
used in undergraduate computer logic courses at many universities. However, from a rigorous point of view,
the previous references left open theoretical aspects in the foundation of the system. Later work was done
on the foundations, but they differ from each other, to the point that there have been misunderstandings
that were cleared up in [7].

In this way there is not standard on which lies the rules of inference of the system. For example, [8]
proposes a system with four rules: Transitivity, Substitution, Leibniz and Equanimity. In [9, 10, 11, 12] the
system has several types of Leibniz rules. In [13] there is a discussion on the possible variants of Leibniz’s
rule. Leibniz’s rule using in [14] is slightly different from the other works. Then in the attempt to add
the everywhere operator (see [15, 16]) to the system, [17, 18] conclude that the Substitution rule should be
removed. The inference rules that were chosen in CalcLogic’s design are the ones from [18], because these
rules allow the everywhere operator to be added in the future and are compatible with the untyped fragment
of the logic used.

On the other hand, in the field of Algorithmic Proof Theory there are several algorithms for the Gödel T
inference system, the Hilbert system and the Gentzel system [19, 20, 21]. No results has been found in the
bibliography on this area for the Dijkstra-Scholten system, which justifies the development of the algorithms
in this work. This work is a contribution to the field of Algorithm Proof Theory for the Dijkstra-Scholten
system.

Algorithm Proof Theory is the base to implement proof assistants. However, the study of proof assistants
is classified within another area called Automated Theorem Proving, which in turn is part of an area called
Automated Reasoning. The Automated Reasoning area consists of the use of a computer to carry out
reasoning according to inference rules and syntax of a Formal Logic inference system.

According to Krysia Broda’s Automated Reasoning course at Imperial College London [22], the Auto-
mated Reasoning area is divided into the categories shown in Fig 1. Although Calculational Logic is not
exactly Equational Logic (see section 4), CalcLogic fits best into the Equality Reasoning category.

Figure 1: Sub areas of Automated Reasoning [22]

The application presented in this work is an interactive proof assistant. There are many, but the most
famous interactive proof assistant are Isabelle/HOL [23] with its interactive window PG Tips [24] and Coq
[25]. None of these assistants are based on Calculational Logic.

There are two proof assistants for Calculational Logic; CalcCheck [26], and CalcCheck web [27]. The
last two applications are basically the same, the difference is that the first one requires installation and the
second one runs with a browser and internet connection. There is an important difference between these
applications and the one presented in this work. The previous ones require that the proof should be written
in LATEX in order to be processed and verified, while a CalcLogic user does not need to know any language
in particular, since that everything is done by means of the mouse.

Calculational Logic additionally has ideal features to verify a proof automatically. For example, in [28], an
application design is proposed, with the ability to verify handwritten calculation proofs, from its photograph.
The authors explain how the theoretical characteristics of Calculational Logic are adequate to be able to
carry out this verification process.

The first time CalcLogic was used in an educational setting was during the time of the COVID19 pan-
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demic. In this period, it was decided to use CalcLogic as a mechanism that allowed Discrete Mathematics
assessments, reducing cheating among students or making it evident. The results of this experiment are
published in [3]. As a complement to [3], this paper studies how effective learning is with CalcLogic. It
seeks to justify that the assistant can be used in the assessments, because it is safe (as indicated by [3]) and
representative of the student’s knowledge.

For avoiding cheating between students during remote assessments, at [29] a review was written about
the secure assessment practices taken by various universities. One practice in [29] is about a software and
services for detecting copies by scanning the answers delivered by students. Instead of images, the answers
of the students delivered by CalcLogic were encoded in the tables of a database as a string. With this, it is
easier to check for copies, with an automatic verbatim comparison of the answers stored in the database.

Other attempts to use proof assistants in education can be reviewed in [30], where the Coq assistant was
used to help the student with the proofs. In that work, the student was exposed to learn a formal language
to work with Coq, and then it was sought to transform the proofs into the language of mathematics books.
Instead, with the CalcLogic interface, students can verify proofs directly in the same language that math
books write their formulas.

In [31] a web interactive theorem prover is shown that assists natural deduction derivations. The users
can proof theorems by means of the mouse like CalcLogic does, but the formulas are not displayed in the
fancy style that is achieved with the CalcLogic interface. For example, in [31] both the predicates and the
functionals are only printed with letters from A to z, whereas in CalcLogic any symbol can be printed with
LATEX style.

On the other hand combinatory logic (defined by Schönfinkel [32] and popularized by [33]) is a formal sys-
tem of inference that uses an applicative language without variables, but with functions called combinators.
Broda and Damas combinators [5] was use to implement the parity metatheorem of weakening-strengthening
proof method using Disjktra-Scholten proof style. The Broda and Damas abstraction algorithm is a version
of the lambda lifting technique [34] but in combinatory logic.

Finally this paper has the following structure: Section 4 shows the notation used in Calculational Logic
proofs, the list of its inference rules, and the proof methods supported by CalcLogic. Section 5 explains the
functionalities of CalcLogic and shows images of how its user interface works. The functionalities explained
are: List Theorems, show saved proofs, symbol configuration, starting for one side method, direct method,
weakening-strengthening method, auto-generating proof of dual statements, one step inference, statement
instantiation, manual entry of formulas. Section 6 explains the printing algorithm for display formulas, and
the algorithms used for the parity metatheorem and dual metatheorem. Section 7 the data resulting from
the educational experiment is shown and a discussion of these is made. Finally, Section 8 contains the
conclusions of the work.

4 Notations and Theoretical Aspects

This section presents the definitions and notations that have been used in selected works on Calculational
Logic. The following rules and notations are valid for equality or for equivalence. Therefore, to generalize,
we will write eq indicating that equality = or equivalence ≡ can be used.

A derivation in Calculational Logic is an inference tree whose root is the conclusion of the inference. The
notation Γ ⊢ P means that there is a derivation assuming the list of premises Γ and concluding P . To build
the derivation trees the following rules of inference are used:

Axiom: If P occurs in list Γ

Ax id
Γ ⊢ P

Leibniz rule

Γ ⊢ P eq Q
L

Γ ⊢ Ez
P eq Ez

Q

Symmetry

Γ ⊢ P eq Q
S

Γ ⊢ Q eq P

Transitivity
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Γ ⊢ P eq Q Γ ⊢ Q eq R
T

Γ ⊢ P eq R

Equanimity

Γ ⊢ P ≡ Q Γ ⊢ P
E

Γ ⊢ Q

The notation Ez denotes a formula scheme in which some of its subformulas or subterms may have been
denoted by placeholder z [13]. The notation Ez

P denotes the result of replacing in Ez all occurrences of its
placeholder z by the formula or term P [13]. Leibniz’s rule, when eq is =, is also called “Replacement of
equals by equals”.

The list of premises Γ is usually infinite and is described by schemes, which are instantiated to pick a
particular premise. The action of instantiating a scheme occurs at a meta level, and is not considered a rule
of inference. The rule for instantiating is as follows:

If R is a scheme then

R[x := Exp] is a premise in Γ

The notation R[x := Exp] denotes the result of substituting in parallel each occurrence in R, of the
variables in the list x, by the respective expression in the list of expressions Exp.

The Equanimity rule is generally used in a method of proof that in [2] was called the “Direct Method”.
The Equanimity rule is what differentiates this formal system from the Equational Logic described in books
of Term Rewriting as [35] (Equational Logic is defined as Calculational Logic, where eq is just =, with the
reflexivity rule and without Equanimity).

Neither [1] nor [2] write proofs in derivation tree notation, but instead use a vertical writing notation
that abbreviates derivation trees. This notation is explained below.

If P eq Q is a premise in Γ and it is labeled with the identifier id, then when we write:
A1

eq ⟨st id⟩
A2

It is referring to the following derivation:

Ax id
Γ ⊢ P eq Q

when A1 is P and A2 is Q. On the other hand, if A1 is Q and A2 is P , then the notation is referring the
derivation:

Ax id
Γ ⊢ P eq Q

S
Γ ⊢ Q eq P

The letters “st” are an abbreviation for the word “statement”. If the statement annotated with the
identifier id is P eq Q and E is a scheme with placeholder z, then the notation

A1

eq ⟨st id with x := Exp and E⟩
A2

is referring the derivation:

Ax id
Γ ⊢ P [x := Exp] eq Q[x := Exp]

L
Γ ⊢ Ez

P [x:=Exp]
eq Ez

Q[x:=Exp]

when A1 is the formula resulting from calculating Ez
P [x:=Exp]

and A2 is the formula resulting from

calculating Ez
Q[x:=Exp]

. If it is not and A1 eq A2 is Ez
Q[x:=Exp]

eq Ez
P [x:=Exp]

, then a symmetry inference is

added at the end, i.e. the notation:
A1

eq ⟨st id with x := Exp and E⟩
A2

would mean:
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Ax id
Γ ⊢ P [x := Exp] eq Q[x := Exp]

L
Γ ⊢ Ez

P [x:=Exp]
eq Ez

Q[x:=Exp]
S

Γ ⊢ Ez
Q[x:=Exp]

eq Ez
P [x:=Exp]

In the same way:
A1

eq ⟨st id and E⟩
A2

is a compact notation of the derivation

Ax id
Γ ⊢ P eq Q

L
Γ ⊢ Ez

P eq Ez
Q

when A1 is the formula resulting from calculating Ez
P and A2 is the formula resulting from calculating Ez

Q.
On the other hand, if A1 eq A2 is the resulting formula of Ez

Q eq Ez
P , then the notation is understood as the

derivation tree described above, to which a symmetry inference (S) is added at the end.
Analogously, it follows that
A1

eq ⟨st id with x := Exp⟩
A2

is a compact notation of the derivation:

Ax id
Γ ⊢ P [x := Exp] eq Q[x := Exp]

when A1 is the formula resulting from calculating P [x := Exp] and A2 is the formula resulting from calcu-
lating Q[x := Exp]. If it is not and A1 eq A2 is Q[x := Exp] eq P [x := Exp], then a symmetry inference is
added at the end, i.e. the notation:

A1

eq ⟨st id with x := Exp⟩
A2

would mean:

Ax id
Γ ⊢ P [x := Exp] eq Q[x := Exp]

S
Γ ⊢ Q[x := Exp] eq P [x := Exp]

We have seen that
A1

eq ⟨hint1⟩
A2

by itself, denotes a derivation Γ ⊢ A1 eq A2 composed of several inferences. This is the kind of derivation
that Dijkstra and Scholten considered to be atomic inference, although by definition it is not. Similarly, in
CalcLogic, for the user point of view, this is the type of inferences that are considered one-step.

The symbol “eq ⟨hint⟩” is metaconjunctive in the sense that the following vertical notation:
A1

eq ⟨hint1⟩
A2

eq ⟨hint2⟩
A3

eq ⟨hint3⟩
A4

denotes the conjunction of the derivations “Γ ⊢ A1 eq A2 and Γ ⊢ A2 eq A3 and Γ ⊢ A3 eq A4” where “and”
is the conjunction of the metalanguage. The intention of this vertical multi-step “eq ⟨hint⟩” notation is to
write derivations of theorems more compactly than the tree.

A proof with the vertical notation of more than one step is not sufficient by itself to reconstruct a formal
derivation in the form of a tree. The vertical notation only provides knowledge of a list of derivations (in
the case of the example the list Γ ⊢ A1 eq A2, Γ ⊢ A2 eq A3, Γ ⊢ A3 eq A4 of derivations). It is necessary
the information of the proof method used to build the derivation tree, based on this list of derivations.

The proof method “Starting from one Side of Equation” will be the aim of the next section.
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4.1 Starting from One Side of the Equation

This proof method is used only when the theorem to be proved is of the form P eq Q. It consists of using
the vertical proof notation starting from P , to arrive at Q with several steps.

For example, a vertical proof declared with the method of starting from one side, has the following form:
P

eq ⟨hint1⟩
A1

eq ⟨hint2⟩
A2

eq ⟨hint3⟩
A3

...
An−1

eq ⟨hintn⟩
Q

and it is interpreted as the following derivation tree

Γ ⊢ P eq A1 Γ ⊢ A1 eq A2
T

Γ ⊢ P eq A2 Γ ⊢ A2 eq A3
T

Γ ⊢ P eq A3

.

.

.
Γ ⊢ P eq An−1

Γ ⊢ An−1 eq Q

T
Γ ⊢ P eq Q

Where each derivation Γ ⊢ Ai−1 eq Ai is the derivation corresponding to
Ai−1

eq ⟨hinti⟩
Ai

according to the notation described above.

4.2 Direct Method

This proof method consists of using the vertical notation starting from the theorem to prove and arriving,
by means of equivalences, at some already proven theorem. It is also valid to start from an already proven
theorem and arrive at the theorem to prove, by means of equivalences.

For example, if P is the theorem to be proved and Q is a proven theorem, then the following vertical
proof using the direct method is

P
≡ ⟨hint1⟩
A1

≡ ⟨hint2⟩
A2

...
≡ ⟨hintn⟩
Q

and it is interpreted as the following derivation tree of P

Γ ⊢ P ≡ A1 Γ ⊢ A1 ≡ A2
T

Γ ⊢ P ≡ A2

.

.

.
T

.

.

.
Γ ⊢ P ≡ An−1 Γ ⊢ An−1 ≡ Q

T
Γ ⊢ P ≡ Q

S
Γ ⊢ Q ≡ P Γ ⊢ Q

E
Γ ⊢ P

Where each derivation Γ ⊢ Ai−1 ≡ Ai is the derivation corresponding to
Ai−1

≡ ⟨hinti⟩
Ai

according to the notation described above.
Also in this method P can be a theorem already proven and Q the theorem to be proved. But in this case

the derivation tree that is abbreviated with the vertical notation, does not have the symmetry rule before
the equanimity.
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4.3 True Metatheorem

In the area of Calculational Logic the following metatheorem is known (Metatheorem 2.2 in [36] or weakened
form of Metatheorem 3.7 in [2]): If P is a theorem, then true ≡ P is a theorem. The proof of the metatheorem
is given by the following derivation tree scheme, where ∇ is the derivation tree of the theorem P .

A
Γ ⊢ (true ≡ p)[p := P ] ≡ p[p := P ]

S
Γ ⊢ P ≡ (true ≡ P )

∇
Γ ⊢ P

Γ ⊢ true ≡ P

For a fixed ∇ with root P , the previous tree will be denoted MT (∇).
The previous scheme can also be understood as an algorithm that receives a concrete theorem T and its

derivation∇′, to then replaces∇ in the previous scheme by∇′ and each occurrence of P by T . This algorithm
generates a concrete derivation tree with root Γ ⊢ true ≡ T . From this point of view, this metatheorem is
an algorithm that always generate correct derivation trees, which is convenient for implementing the proof
assistant. As a design decision, in CalcLogic every metatheorem is an algorithm.

4.4 Modus Pones

In calculational logic the Modus Pones inference rule

∇1

Γ ⊢ A⇒ B

∇2

Γ ⊢ A
Γ ⊢ B

is a derivable rule from the other rules, since B can be proof by direct method as follows (when 3.39 and
3.66 are the identifiers of true ∧ p ≡ p and p ∧ (p⇒ q) ≡ p ∧ q, respectively, i.e.,

B
≡ ⟨st 3.39 with p := B⟩
true ∧B

≡ ⟨true metatheorem and E : z ∧B⟩
A ∧B

≡ ⟨st 3.66 with p, q := A,B⟩
A ∧ (A⇒ B)

≡ ⟨true metatheorem and E : z ∧ (A⇒ B)⟩
true ∧ (A⇒ B)

≡ ⟨st 3.39 with p := A⇒ B⟩
A⇒ B

≡ ⟨true metatheorem⟩
true

It is important to have the modus ponens rule in the inference system, since it is the fundamental piece
of the proof method that is explained in next subsection.

4.5 Weakening-Strengthening Method

The Weakening-Strengthening method emphasizes the use of the transitivity of the ⇒ and ⇐ connectors.
Therefore this method is applicable only to proving statements of the form p op q, where op is either ⇒ or
⇐.

In a proof of p op q statement with the Weakening-Strengthening method, is allowed to place the operator
op instead of ≡, as the line separator in the vertical proof notation. For example, a vertical display consisting
only of the following three lines

A
op ⟨st id⟩
B

it means the following derivation ∇

Ax id⊢ p op q

where id is the identifier of the theorem p op q. In the same way the following derivation tree

Ax id
⊢ p[x := Exp] op q[x := Exp]
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is printed as follows
A

op ⟨st id with x := Exp⟩
B

where A and B are the formulas resulting from calculating p[x := Exp] and q[x := Exp] respectively.
The Leibniz rule only can be applied to an equality or equivalence, however this method allows inferences

in which some implication is used in a subformula. In those cases the same notation E as Leibniz is used for
the hint. For example if formula p⇒ p ∨ q has identifier 2 then we can write

p ∧ q ⇒ p
⇒ ⟨st 2 and E : p ∧ q ⇒ z⟩
p ∧ q ⇒ p ∨ q

However in [1] it is explained that depending on the place of a subformula, denoted by z in E, the
implication can change the direction. For example if z is located in the antecedent of an implication the
inference looks like this:

p ∧ q ⇒ p
⇐ ⟨st 2 and E : z ∧ q ⇒ p⟩
(p ∨ q) ∧ q ⇒ p

According to the terminology used in [1], formula scheme Ez : p ∧ q ⇒ z defines a monotonic predicate
transformer, while formula scheme Ez : z ∧ q ⇒ p defines an anti monotonic one.

The last two vertical notation represent a derivation tree ∇ with root (p ∧ q ⇒ p) ⇒ (p ∧ q ⇒ p ∨ q) or
(p ∧ q ⇒ p) ⇐ ((p ∨ q) ∧ q ⇒ p) respectively. The construction of ∇ is by means of an algorithm that is
described in section 6. The rule that specifies the direction of the main logic connector (⇒ or⇐) depending
of the position of z is a statement called metatheorem of Parity [1]. Our algorithm is another way to find
the right logic connector (⇒ or ⇐), therefore the rule described in the metatheorem of parity according [1]
can be ignored in this work.

In this section the symbol ∇ denote a derivations with the form
A

op ⟨hint⟩
B

regardless of which hint is used. The one-step inference in this proof method is either ∇ or an user point of
view’s one-step inference (according section 4). If the proof had several one-step inferences the construction
of the proof can be described recursively. The base case for a several steps derivation with Weakening-
Strengthening method are of two kind: A derivation MT (∇) or a derivation tree like this:

Ax
Γ ⊢ (e ≡ f ⇒ Ez

f ⇒ (true ≡ Ez
e ))[e, f, E := A1, Am, z op Am+1]

∇′

Γ ⊢ A1 ≡ Am

Γ ⊢ Am op Am+1 ⇒ (true ≡ A1 op Am+1)
∇

Γ ⊢ Am op Am+1

Γ ⊢ true ≡ A1 op Am+1

where ∇′ is a derivation of A1 ≡ A2 with the Starting From One Side method. The previous tree is printed
to the user like this:

A1

≡ ⟨hint1⟩
...

≡ ⟨hintm⟩
Am


∇′

op ⟨hintm+1⟩
Am+1

}
∇

Now if ∇′′ is a Weakening-Strengthening derivation tree, we can construct recursively more complex
derivation trees like this:

Ax
Γ ⊢ ((true ≡ p op q) ⇒ q op r ⇒ (true ≡ p op r))[p, q, r := A1, Ak,Ak+1]

∇′′

Γ ⊢ true ≡ A1 op Ak

Γ ⊢ Ak op Ak+1 ⇒ (true ≡ A1 op Ak+1)

∇
Γ ⊢ Ak op Ak+1

Γ ⊢ true ≡ A1 op Ak+1

or like this:

∇′′

Γ ⊢ true ≡ A1 op Ak

∇′′′

Γ ⊢ A1 op Ak ≡ A1 op Ak+1

Γ ⊢ true ≡ A1 op Ak+1

9
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where ∇′′′ is an user point of view’s one-step inference (according to section 4).
The first tree is printed to the user in this way:
...

}
∇′′ in vertical notation

Ak

op ⟨hint⟩
Ak+1

∇
and the second one is printed in this way:

...

}
∇′′ in vertical notation

Ak

≡ ⟨hint⟩
Ak+1

∇′′′

If the statement that has to be proved is A1 op An and the root of the current derivation tree ∇c is
true ≡ A1 op An, then the proof ends adding an equanimity inference in this way:

∇c

Γ ⊢ true ≡ A1 op An
A

Γ ⊢ true

Γ ⊢ A1 op An

A proof is a derivation tree in the CalcLogic Backend and it is stored in the database as string. Derivation
trees are not visible to the user, for greater usability, only the previous vertical notation is visible. To print
a proof in the frontend, the application performs an algorithm that constructs a string with the vertical
notation while traveling on the tree.

In the next section there is a description of CalcLogic’s functionality and how the interface looks like for
each proof method in vertical notation.

5 CalcLogic Description

The application manages a session for each student and teacher, therefore it is necessary to create an account
in it. The main textbook for the Discrete Mathematics course at FIU is [6]. Although the Propositional Logic
chapter of this book uses a different formal system than Calculational Logic, the “Direct” and “Starting
from One Side” proof methods are valid in both systems. In this way CalcLogic was configured so that the
math language displayed and manipulated by the user was exactly the same as the math language of [6].

To display the language as [6] a configuration module was implemented with an algorithm that allows
presentation changes of the symbols, using LATEX codification. For example the symbol used in [6] for
implication is → instead of ⇒. With our algorithm, the application can display → by setting in the
configuration module a LATEX code \rightarrow for the implication symbol.

5.1 Symbols Settings

Application administrators can create the symbols and edit their attributes. The attributes to be edited are:
the number of arguments, the precedence, LATEX notation and the location of the arguments. This allows
the application to be versatile and extended to different mathematical theories with the diversity of symbols
that LATEX allows to write. Figure 2 shows the table of symbols that administrator can edit.

All the symbols of the application are listed in the table, and each one is associated with a unique integer
identifier (id). Formulas are printed to the browser in LATEX and then rendered in the client using MathJax
[37], a translator from LATEX to HTML written in Javascript.

The display depends on the fields that are configured by the administrators for each symbol. This is why
it is important that the administrator understand the printing algorithm explained in section 6.

5.2 My Theorems

The “My Theorems” option on the navigation bar displays a view with the complete list of theorems that
the user needs to prove. This view allows the user to inspect his progress. In the list are all the statements:
the axioms, the proven theorems, and the unproved theorems. The theorems that have already been proved
and the axioms are labeled by an open padlock symbol, indicating that the statement can be used to make
another proof. Theorems that have not yet been proved are labeled by a closed padlock, indicating that the
statement cannot be used in another proof yet. The padlock of a theorem is opened when its proof is done.
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Figure 2: Table with the editable attributes of each symbol of the application

The student’s goal is to open as many locks as possible (prove as many theorems as possible), adding a ludic
component to the learning process.

The statements are classified by categories. For example, in the CalcLogic instance with Propositional
Logic content, the categories are: “primary identities” with 19 identities available on equivalences, “impli-
cation identities” with 5 available and 4 pending to prove, “if and only if identities” with 4 available and 2
pending to prove and “Exercises” with a list of theorems to prove. Analogously, the CalcLogic instance with
Boolean Algebra content contains the categories: “Axioms and Commutative Identities” with 10 axioms and
6 commuted versions of the axioms pending to prove, “Primary Identities” with 4 pending identities to prove
and “Exercises” with a list of theorems to prove.

Figure 3: Inspection the Theorem 2.1 proof made by the user

The student can inspect the proofs already done by selecting an open-padlock theorem. Likewise, the
teacher can see the proofs made of all the students. For example, Figure 3 shows the proof of Theorem 2.1
that the user had done. For the CalcLogic instance with the Boolean Algebras content, each proven theorem
has a ⊕ symbol to the left of it. Clicking on it displays the option to auto-generate the proof of the dual
theorem. For example, Figure 4 shows the auto-generated proof of the dual theorem based on the proof of
Figure 3.
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Figure 4: Auto generated proof of Theorem 2.1 dual

5.3 Prove

The “Prove” option on the navigation bar displays a view to start a proof. In this view there are the
categories of theorems in blue that display the selectable statements. Selecting one of them, its proof starts.

Figure 5: Start of Theorem 2.6 proof with method “starting from one side”

Immediately after starting the proof of a theorem, the proof method to use must be selected. For example,
in Figure 5 the proof of Theorem 2.6 is being started by choosing the “Starting from one side” method.

5.3.1 Performing One-Step Inference

Once a proof is started, a one-step inference can be performed. For this, one of the available statements
must be selected, which are grouped by categories on the right side. When one is selected, the fields of
substitution (A in Figure 6) and Leibniz rule of inference (B in Figure 6) appear. Once the details of the
substitution and Leibniz rule to be performed have been entered correctly the inference is made by pressing
the Infer button.

The forms for indicating the substitution and Leibniz rule can be filled by placing the cursor on them
and using the buttons, to build formulas, (C in Figure 6). However, there are automated mechanisms to
perform this task.

The expression E for the Leibniz rule of inference is automatically calculated by the application if the
subformula to be replaced is underlined on the last line of the proof. For example in Figure 6 the user
performed the following steps to make a one-step inference: 1) selected the identity 2.1. 2) Underlined the
subformula p→ q to have CalcLogic automatically filled in the Leibniz field labeled with B. 3) Pressed the
“infer” button. The result of this inference is found in Figure 7. As it was described above, CalcLogic can
be operated only with the mouse.

If the inference made by the user is not correct, CalcLogic does not allow you to proceed. For example,
Figure 8 shows the error message “No valid inference” after incorrectly attempting to use De Morgan’s Law
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Figure 6: Process and forms for performing one-step inference

Figure 7: Result of the Figure 6 inference

1.13 (¬(p ∧ q) ≡ ¬p ∨ ¬q) in the subformula ¬p ∨ q.

Figure 8: Wrong inference
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5.3.2 Statement Instantiation

The instantiation of a statement is done, as explained in the introduction, by means of the substitution
operator [x := Exp]. The user selects which operator will be used by filling out the forms found in the
substitution field (marked with A in Figure 6). In order for these forms to appear, we must first select the
statement to be instantiated.

Figure 9: Use of the substitution field

For example, to correctly continue the proof of Figure 8, the double negation law 1.19 must be selected
on the proposition q, as indicated in Figure 9. Note that the substitution field in Figure 9 means that the p
of 1.19 is to be replaced by q. The effect of making this inference is visualized in Figure 10.

Figure 10: Second inference from the proof of 2.6

Figure 10 also shows that the button above the substitution forms displays two options: “show instanti-
ation” and “automatic substitution”.

If the “automatic substitution” option is on, after selecting the statement and underlining what you
want to replace, CalcLogic automatically fills in the substitution form. The calculation of the substitution
is done with a first-order unification algorithm internally. For example, in Figure 10 the user selected 1.13
and underlined ¬p∨¬¬p, so the form is automatically filled in the way that the q in 1.13 should be replaced
by ¬q.

The “show instantiation” option displays the result of applying the user-entered substitution operator
to the selected statement, before making an inference. This is useful for checking if a statement is being
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instantiated as desired. For example, Figure 11 shows the result of instantiating statement 1.13 (¬(p∧ q) ≡
¬p ∧ ¬q) substituting q for ¬q

Figure 11: Showing instantiation of statement 1.13 selected by the user

5.3.3 Manual Entry of Formulas

In every field of a form where it is necessary to enter a formula or mathematical expression, the application
has a table of buttons for assisted entry of them. In Figure 12, you can see a table where each blue button
corresponds to a symbol. These symbols belong the CalcLogic instance for Boolean Algebras: the equality,
the constant 0, the constant 1, the +, the ′·′ and the complement .

Figure 12: Button table with the symbols of the theory of Boolean Algebras

The cursor must be placed in a form and then use the button table to enter a formula in this form. If
the button corresponds to an n-arity operation, when pressing it, the operator is printed on the form and
n forms are generated, located in the position where the operator arguments should be (For example the
Figure 13 shows the effect of pressing the operator button ′·′). To continue entering a desired expression, the
cursor must be placed in one of the forms generated before and repeat the process recursively (For example,
Figure 14 shows the effect of pressing the button + when the cursor was on the second argument of the ′·′
operator).

Figure 13: Effect of using the · button with the cursor on an initial form

To reverse the effect of pressing one of the buttons in the table, you must place the cursor in one of the
forms generated by the button and press Backspace on the keyboard (Alt+Delete in some browsers). The
formula or expression insertion process can be reversed to its initial state by pressing the Clean button.
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Figure 14: Effect of using the + button with the cursor on the second argument of ·

5.3.4 Starting for One Side

This method can be used only if the formula to be proved is of the form Exp1 = Exp2 or Exp1 ≡ Exp2. We
call the formulas Exp1 and Exp2 the left side of the formula and the right side of the formula respectively.
When the method of starting from one side is selected, the application asks you to select which side of the
formula you want to start from. For this, left and right sides of the formula are colored blue and selection
is made by the user by clicking on one of the sides. Figure 15 shows the user selecting the right hand side
of the formula to start the proof from there.

Figure 15: Selecting the right side to start the proof of 2.7

A proof with this proof method ends automatically when, by a sequence of equivalences or equalities, the
other side of the formula is reached.

5.3.5 Direct Method

When the direct method is selected to start a proof, the application asks you to select the first line of the
proof. The statement that is being proved can be selected, or any other theorem already proven (on the
right of the screen). For example, the Figure 16 shows the user selecting the statement 4.1 as the first line
of the proof of statement 4.1.

Figure 16: Selecting 4.1 as the first line of the proof of 4.1

The rest of the proof is done by making several one-step inferences to arrive at a goal. If the proof started
from the theorem to be proved, the goal is any theorem already proven. If the proof starts from any theorem
already proven, the goal is the theorem to be proved. In Figure 17 a proof from the theorem to be proven
reaches to an axiom 1.20, and the proof finished.

5.3.6 Weakening-Strengthening

This proof method is not found in the FIU Discrete Mathematics program or in [6]. Then it was not
available in the CalcLogic version for educational experiments. However, the functionality of proving using
weakening-strengthening is implemented, therefore will be presented below.

Since this method was designed for students who do not follow the book [6], we have preferred to present
this section with the original notation of [1], which is how the subsection 4.5 was written, i. e., ⇒ and ⇐
will be used instead of → and ←. These notation changes can be easily done in CalcLogic using the symbol
configuration module described in Section 5.1.
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Figure 17: Proof of 4.1 reach to the axiom 1.2

Weakening-strengthening can only be used for formulas of the form P ⇒ Q or P ⇐ Q. When the
weakening-strengthening method is selected, the application asks you to select the antecedent or the conse-
quent of the formula, to start the proof from the selected one.

In this proof methods, the ⇒ or ⇐ inferences (monotonic or anti monotonic inferences) is enabled,
that are used by selecting statements of the form P ⇒ Q or P ⇐ Q respectively, and then filling in, the
substitution and Leibniz rule fields in the usual way.

After starting the proof, inferences can be done sequentially as explained in the other methods. Impli-
cations can also be inferred as indicated in the previous paragraph. Figure 18 shows the order in which the
selections must be done on the interface to execute the inference: 1) Select the theorem p⇒ p∨ q by clicking
on the symbol ⇒. 2) Underline q to specify the Leibniz expression to use. 3) Click on the infer button
to run the inference shown in Figure 19. By doing these steps, CalcLogic automatically performs an anti
monotonic inference using the Parity Metatheorem algorithm described in Subsection 6.2.

Figure 18: Process for performing an anti monotonic inference step

By doing the process described above several times, you can make nested inferences until you get to prove
the theorem. For example, Figure 20 shows two nested monotone inferences.

6 Algorithms

In this section, it is explained the printing algorithm for displaying the formulas and the algorithmic versions
of the parity metatheorem and duality metatheorem.
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Figure 19: Result of performing an anti monotonic inference step

Figure 20: Proof of Theorem 3.82.b using weakening

6.1 Printing Algorithm

Formulas in CalcLogic are created from a set of variables and a set of non-variable symbols {Ci}ni=1. The
non-variable symbols are those listed in the table on the Figure 2. The application internally represents
each formula in applicative notation F a1 a2 . . . am with m ≥ 0, where aj could be a lambda term and F
is a symbol Ci or a variable. For each symbol Ci, the administrator must specify the arity m ≥ 0, the
precedence pre(Ci), the LATEX code Li in which the symbol displays and the position in which its arguments
will be printed. The last attribute can be set by writing a phrase Ni in LATEX but with the occurrence of
the placeholders

%(op), %(a1), %(aa1), %(na1), . . . , %(am), %(aam), %(nam).

The above list of placeholders will be abbreviated by a, and by Li, f(a,%a) will be abbreviated the list

Li, f(a1, %(a1)), f(a1, %(aa1)), f(a1, %(na1)), . . . , f(am, %(am)), f(am, %(aam)), f(am, %(nam)),

with f a two arguments function. The notation Ni⟨a := Exp⟩, means the parallel replacement on the
placeholders a of Ni by the list of phrases Exp.

The printing of the formulas in LATEX notation is done recursively. Each variableX is identified by a single
character char in ASCII, so if print(.) is the function to print formulas, and + is the String concatenation,
then:
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� print(X) := char,

� print(X a1 . . . am) := ”char(” + print(a1) + ”, ” + . . .+ ”, ” + print(am) + ”)” when m > 0,

� print(λx.T ) := print(T )

� print(Ci a1 . . . am) := Ni⟨a := Li, pAuxCi
(a,%a)⟩ when m ≥ 0,

where

– pAuxCi(aj ,%(aj)) :=


print(aj) if (∃k, a′1, . . . , a′m| : aj = Ck a′1 · · · a′m∧

pre(Ck) > pre(Ci))∨
aj ∈ V ar∨

(∃k| : aj = Ck ∧ arity(Ck) = 0)
”(” + print(aj) + ”)” otherwise

– pAuxCi
(aj ,%(aaj)) :=



print(aj) if (∃k, a′1, . . . , a′m| : aj = Ck a′1 · · · a′m∧
pre(Ck) > pre(Ci))∨

(∃a′1, . . . , a′m| : aj = Ci a
′
1 · · · a′m)∨

aj ∈ V ar∨
(∃k| : aj = Ck ∧ arity(Ck) = 0)

”(” + print(aj) + ”)” otherwise

– pAuxCi
(aj ,%(naj)) := print(aj)

The idea of the above algorithm is that variables and constants of arity 0 are always printed without
parentheses. The %(aj) and %(naj) notations means that the j-th argument is always printed with paren-
theses, or without parentheses respectively, unless it is an operation with higher precedence than Ci. In other
hand, %(aaj) means that the operation Ci associates in the position of the argument aj , so the parentheses
on aj are not printed when aj is another application of the operation Ci.

For example if the arity of C4 is 2, its LATEX code L4 is + and N4 is %(aa2) %(op) %(a1), then the
symbol + is a left-associating infix binary operator. This can be shown by calculating,

print(C4 y x) = (%(aa2) %(op) %(a1))⟨a := L4, pAuxC4
(a,%a)⟩

where the operator ⟨a := L4, pAuxC4
(a,%a)⟩ replace %(op), %(a1) and %(aa2) for +, pAuxC4

(y, %(a1))
and pAuxC4

(x, %(aa2)) respectively, and as

pAuxC4
(y, %(a1)) = print(y) = y,

pAuxC4
(x, %(aa2)) = print(x) = x

then
print(C4 y x) = x+ y.

The associativity of + can be seen by nesting the previous term with another C4 operator and calculating,

print(C4 z (C4 y x)) = (%(aa2) %(op) %(a1))⟨a := L4, pAux(a,%a)⟩.

In this case the operator ⟨a := L4, pAux(a,%a)⟩ replace %(op), %(a1) and %(aa2) for +, pAuxC4
(z, %(a1))

and pAuxC4
(C4 y x, %(aa2)) respectively, and as

pAuxC4
(z, %(a1)) = print(z) = z,

pAuxC4
(C4 y x, %(aa2)) = print(C4 y x) = x+ y

then
print(C4 z (C4 y x)) = x+ y + z.

The display contains parentesis if the nested operation is at the first argument. For example

print(C4 (C4 z y) x) = (%(aa2) %(op) %(a1))⟨a := L4, pAux(a,%a)⟩ = x+ (y + z)

because at %(a1) placeholder the algorithm replace pAuxC4
(C4 z y, %(a1)) = ”(” + print(C4 z y) + ”)” =

”(y + z)”.
These examples have shown that a symbol in CalcLogic can be set to be left or right associative by

placing in its Ni notation the string %(aa2) %(op) %(a1) or %(a2) %(op) %(aa1) respectively.
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As a second example, suppose that C5 is a operator of arity 2 with N5 as %(aa2) %(op) %(a1), L5 as ∗
and pre(C5) > pre(C4). The term C5 z y would be printed as y ∗ z and the term C4 (C5 z y) x would be
printed as

print(C4 (C5 z y) x) = (%(aa2) %(op) %(a1))⟨a := L4, pAux(a,%a)⟩ = x+ y ∗ z

because at %(a1) placeholder the algorithm replaces pAuxC4
(C5 z y, %(a1))

pre(C5)>pre(C4)
= print(C5 z y) =

y ∗ z.
As a third example, suppose that we have the constant symbols C1, C2 and C3 of arity 2, 2 and 0

respectively, with L1, L2 and L3 as \displaystyle\lim, \frac and 1 respectively and N1, N2 and N3 as
%(op)_{x\to %(na1)} %(na2), %(op){%(na1)}{%(na2)} and %(op), respectively. The term C3 would be
printed as 1, the term C2 x y would be printed as \frac{x}{y}, and the term C1 C3 (λx.C2 x y) would be

printed as \displaystyle\lim_{x\to 1} \frac{x}{y}. The display with MathJax would look like lim
x→1

x

y
.

As shown in the previous example, the abstraction λx is not printed to the user, but is useful for binding
the variable x in some operators. The operators that bound the variable x with λx are lim

x→a
, ∆ (finite

difference) and Σ (Summation). In this way, the user cannot instantiate the variable x of a theorem, if it
occurs inside these operators.

The variables of type function can be displayed in CalcLogic. For example the aplicative term f x is
printed in this way

print(f x) = ”f(” + print(x) + ”)” = ”f(x)”

and f (C4 C3 x) is printed in this form

print(f (C4 C3 x)) = ”f(” + print(C4 C3 x) + ”)” = ”f(x+ 1)”.

With this algorithm the finite difference theory could be displayed in the same style of several books like
Figure 21.

Figure 21: Display of formulas in finite difference theory

CalcLogic configuration is such that all binary operators have as Ni notation the string
%(a2) %(op) %(a1), %(aa2) %(op) %(a1) or %(a2) %(op) %(aa1). With this configuration a term in
applicative notation Ci a1 a2 is always printed infix by placing the first argument to the right of the op-
erator and the second to the left. This means that when the formula p ⇒ q is displayed on the screen,
then CalcLogic internally handles it in applicative notation as ⇒ q p (with the arguments swapped). The
reason for this decision comes from the fact that by abstracting the variable x into an expression with a
non commutative operator like x − 3, the resulting anonymous function λx.x − 3, can be given the name
subtractThree(x) (subtract 3 to x). The currying expression for subtractThree(x) is − 3 and when it re-
ceives the argument x the resulting expression is − 3 x. With this reasoning the arguments of − 3 x occur
swapped with respect to the original expression x − 3. It was decided that CalcLogic displays formulas
consistently with this reasoning.

6.2 Parity Metatheorem

Every metatheorem in CalcLogic is implemented as an algorithm that generates correct derivation trees.
The parity metatheorem algorithm runs automatically when the Leibniz field is filled in a proof using
the weakening-strengthening method. The algorithm generates derivation trees that are combined with the
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current proof, generating a new proof that uses monoticity or anti monoticity. All this happens automatically
and transparently to the user.

According to [1] some logical connectors are monotonic with respect to one of their arguments and anti
monotonic with respect to others. For this reason, depending on where the z is in Leibniz’s expression E,

when an op inference is made, it can be of the form

P

⇒⟨hint⟩
q or

P

⇐⟨hint⟩
q regardless of whether op is ⇒ or ⇐.

However, CalcLogic calculates and displays automatically the correct choice.
This subsection explains the algorithm that the application uses to build the correct derivation tree.

For this, the following trees are defined, where op1 is any of the operators ∧, ∨, ⇒, ⇐. It is taken that
op ∈ {⇒,⇐} and op′ is ⇐ if op is ⇒ or op′ is ⇒ if op is ⇐:

WSLP,Q,op,R,op1

1 with op1 any operator between ∧, ∨ and ⇐

Ax id
Γ ⊢ ((p op q)⇒ ((p op1 r) op (q op1 r)))[p, q, r := P,Q,R]

WSRP,Q,op,R,op1

1 with op1 any operator between ∧, ∨ and ⇒

Ax id
Γ ⊢ ((p op q)⇒ ((r op1 p) op (r op1 q)))[p, q, r := P,Q,R]

WSRP,Q,op,R
2

Ax id
Γ ⊢ ((p op q)⇒ ((r ⇐ p) op′ (r ⇐ q)))[p, q, r := P,Q,R]

WSLP,Q,op,R
2

Ax id
Γ ⊢ ((p op q)⇒ (p⇒ r op′ q ⇒ r))[p, q, r := P,Q,R]

NegP,Q,op

Ax id
Γ ⊢ ((p op q) ≡ (¬p op′ ¬q))[p, q := P,Q]

If ∇ is a derivation where the root is of the form P op Q, then instead of placing the arguments P,Q, op
in the abbreviations of the above trees, we can place ∇ directly to simplify the notation. For example
WSL∇,R,op1

1 , WSR∇,R,op1

1 , WSR∇,R
2 , WSL∇,R

2 and Neg∇ will denote WSLP,Q,op,R,op1

1 , WSRP,Q,op,R,op1

1 ,

WSRP,Q,op,R
2 , WSLP,Q,op,R

2 and NegP,Q,op respectively.
If ∇′ and ∇ are derivation trees where the root of ∇′ is of the form P ≡ Q or P ⇒ Q, then (∇′∇) is

denoted to a new derivation, where equanimity or modus ponens is applied between the two derivations ∇′

and ∇. Additionally, it is denoted as [z] the bracket abstraction to abstract the variable z in applicative
languages, which in [38] is denoted as [z]BD−η (Definition 3.10 of [38]). The bracket abstraction [z] imple-
ments the operator λz within combinatory logic. That is, given an expression Exp, the result of [z]Exp is an
anonymous function that depends on z. This function is implemented with combinators and the functional
application with terms rewriting.

The combinators used for [z] are those of [5]. These combinators are functions whose purpose will be
explained in the paragraph below. The combinators of [5] are syntactically of the form Φα, where α is a list
of symbols. These symbols are b, c and ordered pairs (α1, α2) with α1, α2 lists built recursively in the same
way that α. The definition of [z] is the following:

� [z]p = Φ if z = p,

� [z]p = ΦKp if z ̸∈ p

� [z]pq = t1(q, [z]p) if z ∈ p ∧ z ̸∈ q,

� [z]pq = t2(p, [z]q) if z ̸∈ p ∧ z ∈ q,

� [z]pq = t3([z]p, [z]q) if z ∈ p ∧ z ∈ q.
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where

t1(q, r1) =

{
Φcαqw1 . . . w#α if r1 = Φαw1 . . . w#α

Φ otherwise

t2(p, r2) =

{
Φbαpw1 . . . w#α if r2 = Φαw1 . . . w#α

Φ otherwise

t3(r1, r2) =

{
Φ(α1,α2)w1 . . . w#α1

w′
1 . . . w

′
#α2

if r1 = Φα1
w1 . . . w#α1

and r2 = Φα2
w′

1 . . . w
′
#α2

Φ otherwise
The previous bracket abstraction [z] is the same as in [5], but without the recursive rule η and defined with

Bunder’s algorithm [39], which is more efficient than [5]. The [z] operator converts an expression or formula
into a function, for example applying [z] to the formula ∧ z T results in [z](∧ z T) = t1(T, [z](∧ z)) =
t1(T, t2(∧, [z]z)) = t1(T, t2(∧,Φ)) = t1(T,Φb ∧) = Φcb T ∧, where the combinator Φcb represents the
function λx, y, z.y z x. In Johnsson’s technique [34], the action of converting the formula ∧ z T into the
functional version (λx, y, z.y z x) T ∧ is called Lifting and the function (λx, y, z.y z x) Lifter. The bracket
abstraction [z] of [5] applied to an expression or formula Exp, performs a lambda lifting but in combinatory
logic, i.e. [z]Exp = Φαt1 · · · tn where t1, . . . , tn are subterms of Exp and Φα is a Lifter (but in combinatory
logic).

The term rewriting system that describes the behavior of the functional application to a combinator Φα,
is defined in [5]. With this nomenclature the following theorem determines the algorithm used to implement
the parity metatheorem.

Theorem 1. Let op be ⇒ or ⇐, let ∇ be a derivation tree of Γ ⊢ P op Q and a term E, with z a variable
occurring in E only once, without it being in the scope of a ≡’s arguments. Then a derivation tree f([z]E,∇)
is recursively constructed whose root is E[z := P ] op2 E[z := Q] with op2 some operator between ⇒ and ⇐,
as follows:

f(t,∇) = ∇ if t is atomic
f(t ¬,∇) = f(t,Neg∇∇)
f(t (⇒ R),∇) = f(t,WSL∇,R

2 ∇)
f(t (o R),∇) = f(t,WSL∇,R,o

1 ∇)
f((t R)⇐,∇) = f(t,WSR∇,R

2 ∇)
f((t R) o,∇) = f(t,WSR∇,R,o

1 ∇) where t and R are formulas written in applicative language and
o ∈ {⇒,⇐,∧,∨}

For example, if ∇ derives the axiom p ⇒ p ∨ q, and E : z ∧ q ⇒ p which in the CalcLogic back-
end is written as ⇒ p (∧ q z), then f([z]E,∇) = f([z](⇒ p (∧ q z)),∇) = f(Φbb(⇒ p)(∧ q),∇) =

f(Φbb(⇒ p),WSL∇,q,∧
1 ∇) = f(Φbb,WSL

WSL∇,q,∧
1 ∇,p

2 (WSL∇,q,∧
1 ∇)) = WSL

WSL∇,q,∧
1 ∇,p

2 (WSL∇,q,∧
1 ∇).

In tree notation the previous result is the following:

WSL
WSL∇,q,∧

1 ∇,p
2

WSL∇,q,∧
1Γ ⊢ (p⇒ p ∨ q)⇒ (p ∧ q ⇒ (p ∨ q) ∧ q)

∇
Γ ⊢ p⇒ p ∨ q

Γ ⊢ p ∧ q ⇒ (p ∨ q) ∧ q

Γ ⊢ (p ∧ q ⇒ p)⇐ ((p ∨ q) ∧ q ⇒ p)

where WSL
WSL∇,q,∧

1 ∇,p
2 is the tree

Ax
Γ ⊢ ((p⇒ q)⇒ ((p⇒ r)⇐ (q ⇒ r)))[p, q, r := p ∧ q, (p ∨ q) ∧ q, p]

A derivation like the previous one is considered as an atomic inference from the user’s point of view,
when doing a weakening-strengthening proof. The above derivation tree was named ∇ in the 4.5 section and
is printed to the user with the following vertical notation:

p ∧ q ⇒ p
⇐ ⟨st 2 and E : z ∧ q ⇒ p⟩
(p ∨ q) ∧ q ⇒ p

when the user selects theorem p⇒ p∨q with identifier 2 and Leibniz expression E : z∧q ⇒ p. If the user
enters an E that does not fulfill the hypothesis of the Theorem 1, the application returns an error message.

In the proof of Theorem 1, the notation |p|q from Definition 2.4 of [38] is used, which is defined recursively
as |p|(qt) := |pq|t, |p|q := pq and |p|ϵ := p. Also the notation z ∈ E will denote “z occurs in E”.

Proof. If E is an atom then E = z because z ∈ E, in this case t = Φ = [z]z and therefore f(t,∇) = ∇, so
that the root of f(t,∇) is P op Q = E[z := P ] op E[z := Q].

On the other hand, if E ̸= z, then the smallest well-formed expressions E where z occur only once without
being under the scope of a ≡’s arguments, are the following: ¬z, o R z and o z R where o ∈ {⇒,⇐,∧,∨}
and R is a formula. Let’s split by cases.
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� If E = ¬z.
t = [z]E = Φb¬ so that f(t,∇) = f(Φb, Neg∇∇) = Neg∇∇ and this derivation by equanimity has
root ¬P op′ ¬Q = E[z := P ] op′ E[z := Q]

� If E = o R z let’s split by cases: o is ⇒ or o ∈ {⇐,∧,∨}

– If o is ⇒ then t = [z](⇒ R z) = Φb(⇒ R), so that f(t,∇) = f(Φb,WSL∇,R
2 ∇) = WSL∇,R

2 ∇ and
this derivation by modus ponens has root (P ⇒ R) op′ (Q ⇒ R), that in applicative notation is
equals to (⇒ R P ) op′ (⇒ R Q) = (⇒ R z)[z := P ] op′ (⇒ R z)[z := Q] = E[z := P ] op′ E[z := Q]

– If o ∈ {⇐,∧,∨} then t = [z](o R z) = Φb(o R), so that f(t,∇) = f(Φb,WSL∇,R,o
1 ∇) =

WSL∇,R,o
1 ∇ and this derivation by modus ponens has root (P o R) op (Q o R), that in ap-

plicative notation is equals to (o R P ) op (o R Q) = E[z := P ] op E[z := Q]

� If E = o z R let’s split in two cases: o is ⇐ or o ∈ {⇒,∧,∨}

– If o is ⇐ then t = [z](⇐ z R) = ΦcbR ⇐, so that f(t,∇) = f(Φcb,WSR∇,R
2 ∇) = WSR∇,R

2 ∇,
and this derivation by modus ponens has root (R⇐ P ) op′ (R⇐ Q) that in applicative notation
is equals to (⇐ P R) op′ (⇐ Q R) = E[z := P ] op′ E[z := Q].

– If o ∈ {⇒,∧,∨} then t = [z](o z R) = ΦcbR o, so that f(t,∇) = f(Φcb,WSR∇,R,o
1 ∇) =

WSR∇,R,o
1 ∇, and this derivation by modus ponens has root (R o P ) op (R o Q) that in ap-

plicative notation is equals to (o P R) op (o Q R) = E[z := P ] op E[z := Q]

Any other term E ̸= z can be decomposed in the form E = t1[z := t2] with t2 any of the forms ¬z, o R z
and o z R and z occurring in t1 only once. The proof is concluded by doing structural induction on t1.

� If t1 is atomic.

Then z = t1 because z ∈ t1, therefore E = t2 and the proof consists of the verification made previously.

� If t1 is not atomic.

Is easy to proof that t = [z]E = ||Φαα′ |w|w′ where [z]t1 = |Φα|w and [z]t2 = |Φα′ |w′, where [z]t2 is
one of the expressions t previously calculated, for which it has already been shown that f constructs a
derivation ∇′ such that the root is t2[z := P ] op2 t2[z := Q]. In this way f(t,∇) = f(||Φαα′ |w|w′,∇) =
f(|Φαα′ |w,∇′)

f not depend of Φαα′
= f(|Φα|w,∇′) and the latter by inductive hypothesis is a derivation

whose root is t1[z := t2[z := P ]] op2 t1[z := t2[z := Q]] = t1[z := t2][z := P ] op2 t1[z := t2][z := Q] =
E[z := P ] op2 E[z := Q].

6.3 Duality Metatheorem

The duality metatheorem of Boolean Algebra theory says that if P is a theorem of Boolean Algebra then
P [·,+ := +, ·] is also a theorem. The notation P [·,+ := +, ·] refers to the statement of the theorem P in
which all occurrences of the operators “·” and “+” are replaced to “+” and “·” respectively.

The statement P [·,+ := +, ·] is called the dual theorem of P . The dual theorem of P is always an axiom
or a theorem that can be proved by generating a derivation tree with the following recursive algorithm f :

Input: a derivation tree ∇ with root P
Output: a derivation tree with root P [·,+ := +, ·]

� For each leaf AE of ∇ do:

– If E[·,+ := +, ·] is an axiom or theorem already proven then ∇ := ∇[AE := AE[·,+:=+,·]]

– If not, and ∇′ is the derivation tree of E, then ∇ := ∇[AE := f(∇′)]

Where AE denotes the inference rule “Axiom” selecting the premise E and ∇[AE := AE′
] denotes the

tree resulting from replacing in ∇ all the occurrences of the inference rule AE by the inference rule AE′
.

The proof that f(∇) is a derivation tree with root P [·,+ := +, ·] can be done by induction on the
structure of the tree ∇.
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Group CalcLogic Average Passing Rate
score

All any 65.69 51.7%
open x = 1 72.79 55.3%
try x = 2 74.38 58.6%

a chain 3 ≤ x ≤ 5 78.60 70.0%
solve a few 6 ≤ x ≤ 7 81.00 81.3%

good performance x > 7 82.90 90.0%

Table 1: Average and Passing Rate of exam 1

Group CalcLogic Average Passing Rate
score

All any 66.17 53.4%
open x = 1 68.92 60.5%
try x = 2 70.97 65.5%

a chain 3 ≤ x ≤ 5 77.15 75.0%
solve a few 6 ≤ x ≤ 7 81.63 87.5%

good performance x > 7 85.10 90.0%

Table 2: Average and Passing Rate of exam 2

7 Assessment Experience

The homework that was sent through CalcLogic represented an extra credit of 10 points out of 100. The
score was as follows:

� 0 points: Never registered in CalcLogic

� 1 point: Only registered and did not go beyond selecting the proof method to use.

� 2 points: Only one line of the proof appeared in some of the exercises.

� 3-5 points: Made a chain of inferences but did not solve any exercises.

� 6-8 points: Solved more than one exercise.

� 9 points: Solved all but the most difficult.

� 10 points: Solved all the problems.

From a total of 58 students, the average of the grades of the written exams was taken by groups, depending
on how much their CalcLogic score was. These groups are the students such that: only opened CalcLogic
(1 point), tried to prove (2 points), made a chain of inferences (3 to 5 points), solved some exercises (6 to 7
points), performed well ( greater than 7 points) and all students.

The first exam was about Propositional Logic and the second about Boolean Algebras, with exercises
similar to those found in CalcLogic. The average and Passing Rate for the first exam can be found in Table
1.

The average and Passing Rate for the second exam can be found in Table 2.
The “Group” column shows the description of each group of students based on their performance in

CalcLogic. The “CalcLogic score” column shows the score obtained by each group in CalcLogic. The
“Average” column shows the average of the exam scores by groups. The “Passing Rate” column shows the
percentage of students in the group whose exam score was 70 or higher (passing).

The results show a high correlation between the performance in CalcLogic and the written exams. The
better the performance in CalcLogic, the better the average in the written exams.

Calculating the line of best fit using the root mean square, it can be seen that the correlation is linear.
Figures 22a and 22b show the correlation graph of the score obtained in CalcLogic vs. the average of exam
1 and 2, respectively. In both figures the line of best fit is drawn.
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(a) CalcLogic score vs average of exam 1 (b) CalcLogic score vs average of exam 2

8 Conclusions

CalcLogic started as an experiment with students of courses at the Simon Bolivar University [3]. The
experiments could be exported to other institutions such as FIU, thanks to the adaptability of the application.
By editing configurations, CalcLogic can be presented with distinct notations according to the corresponding
literature. Classroom experience has shown that students adapt quickly. Surely this is due to the fact that
the formulas are being shown with identical notation to that of the university course books.

For example, in the experiments carried out in [3], a field theory was loaded with division and exponen-
tiation symbols that allowed the use of properties such as: double C, addition and subtraction of exponents,
notable products, etc. The formulas for this theory were familiar to the students because they looked iden-
tical to the high school textbook [40]. In the same experiment, the axioms of the trigonometric functions
were loaded and the formulas looked identical to the high school book [41]. The formulas of the theory of
finite differences were identical to the book [42] and those of Boolean Algebra to the book [6]. Two versions
of the propositional logic were set up, one using the notation of [6] (used at FIU) and one using the notation
of [2] (for a future experiment). Students have become familiar with the notation in these books in high
school and college, so CalcLogic is often received with familiarity due to its interface.

On the other hand, the theoretical development that has been exposed here has an algorithmic approach.
The translation of formulas in applicative notation to infix notation is an algorithm (Subsection 6.1), the
translation of a derivation tree to the vertical notation of a proof is an algorithm, which depends on the
method, described in Section 4. In Subsection 4.3 it was explained that the True metatheorem can be
understood as an algorithm. The duality metatheorem in Boolean algebra is an algorithm. The parity
metatheorem is an algorithm described in Subsection 6.2.

Each classical metatheorem in the Dijkstra-Scholten bibliography has been understood as an algorithm
that generates correct derivation trees. With this approach, proving a metatheorem consists in proving that
the associated algorithm is correct. Said proof is done in the metalanguage and therefore it is impossible to
verify it using CalcLogic.

In other deductive systems there are two inference rules useful for proofs with quantifiers, these are
the rules called ∃ elimination and ∀ introduction. In [2] there are two metatheorems (metatheorem 9.16
and 9.30) that show that both rules are derivable from the direct method. We assert without proof that
these metatheorems can also be understood as algorithms. It is proposed for future work to develop these
algorithms and implement them on CalcLogic.

The Dijkstra-Scholten system is defined on a typed language. This is because without a type system you
cannot distinguish between a predicate and a term. For this reason CalcLogic should have a type system,
however the simplest viable product does not need this.

Untyped theories cover the contents of college courses more than expected. Most of the high school math
is within field theory (adding some symbols) which is equational. Trigonometry was loaded in CalcLogic
as an equational theory without the need to check types. We could write without doing type checking,
the theory of finite differences and summations as an equational theory. Boolean Algebra is an equational
theory that does not require type checking. Although the design of limit theory in CalcLogic is not yet
complete, preliminar experimentation has shown that some theorems can be written within an equational
theory without type checking. Finally, the formulas of Propositional Logic can be written without type
checking.

With the limitations explained, a large amount of content has been successfully covered. It is hoped that
more content will be covered when CalcLogic has a type system. This is because formulas may combine
predicates and logical connectors. This work is expected to be carried out in the future and thus cover the
contents of Set Theory, Arithmetic, Hoare’s Logic, etc.
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On the educational side, the results suggest that training using CalcLogic becomes an improvement in
the skills to prove Propositional Logic and Boolean Algebra theorems. The results suggest that the answer
to research question 1 is: there is an apparent improvement directly proportional to the effort made by the
student in the application.

Responding to research question 2. Since the described linear correlation exists, written exams could
be reduced and more assessments could be done using CalcLogic. This is because if a student has already
performed well in CalcLogic, it can be inferred (because of the correlation) that its performance will be
proportional in the written exams, so the need to take them would be reduced. This argument is another
reason to keep what was studied in [3], where CalcLogic was recommended as a tool to make remote
assessments.

CalcLogic can be understood as a repository of student-done exercises that was automatically checked.
This repository is a certificate of the number of correct exercises that the student has done during their
studies, which at the same time certifies that the student has been studying correctly. That is why a
successful written exam is expected from him.

There is a difference with respect to the traditional learning process and what is said in the previous
paragraph. The exercises that the student does at home to study in a traditional way, were invisible to the
teacher’s eyes. With CalcLogic they become visible to the teacher, with guarantees of correctness, without
the need for the teacher to correct them.
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