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Abstract 

 

Forced alignment provides drastic savings in time when aligning speech recordings and is 

particularly useful for the study of Indigenous languages, which are severely under-resourced 

in corpora and models. Here we compare two forced alignment systems, FAVE-align and 

EasyAlign, to determine which one provides more precision when processing running speech 

in the Chibchan language Bribri. We aligned a segment of a story narrated in Bribri and 

compared the errors in finding the center of the words and the edges of phonemes when 

compared with the manual correction. FAVE-align showed better performance: It has an 

error of 7% compared to 24% with EasyAlign when finding the center of words, and errors 

of 22~24 ms when finding the edges of phonemes, compared to errors of 86~130 ms with 

EasyAlign. In addition to this, EasyAlign failed to detect 7% of phonemes, while also 

inserting 58 spurious phones into the transcription.  Future research includes verifying these 

results for other genres and other Chibchan languages. Finally, these results provide 

additional evidence for the applicability of natural language processing methods to Chibchan 

languages and point to future work such as the construction of corpora and the training of 

automated speech recognition systems. 

 

Keywords: Bribri, natural language processing, forced alignment, phonetics, Chibcha, linguistics 

  

Resumen 

 

El alineamiento forzado provee un ahorro drástico de tiempo al alinear grabaciones del habla, 

y es útil para el estudio de las lenguas indígenas, las cuales cuentan con pocos recursos para 

generar corpus y modelos computacionales. Aquí comparamos dos sistemas de alineamiento, 

FAVE-align e EasyAlign, para determinar cuál provee mayor precisión al alinear habla en la 

lengua chibcha bribri. Alineamos una narración y comparamos el error al tratar de encontrar 

el centro de las palabras y los bordes de los fonemas con sus equivalentes en una corrección 

manual. FAVE-align tuvo mejor rendimiento, con un error de 7% comparado con 24% de 

EasyAlign para el centro de las palabras, y con errores de 22~24 ms para el borde de los 

fonemas, comparado con 86~130 ms con EasyAlign. Además, EasyAlign no pudo detectar 

el 7% de los fonemas, y al mismo tiempo añadió 58 sonidos espurios a la transcripción. 

Como trabajo futuro verificaremos estos resultados con otros géneros hablados y con otras 

lenguas chibchas. Finalmente, estos resultados comprueban la aplicabilidad de los métodos 

de procesamiento de lengua natural a las lenguas chibchas, y apuntan a trabajo futuro en la 

construcción de corpus y el entrenamiento de sistemas de reconocimiento automático del 

habla. 

 

Palabras clave: Bribri, procesamiento de lenguaje natural, alineamiento forzado, fonética, Chibcha, lingüística 
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1 Introduction 

  

Forced alignment is a family of algorithms that take as their input an audio file and its transcription, and calculate 

the time points in the audio file that correspond to each word, and even to each phoneme in the transcription [1,2]. 

Figure 1 shows an example in English, where the alignment is displayed in the visual representation used by the 

Praat program [3]. The first row shows the intervals corresponding to words, while the second row shows intervals 

corresponding the phonemes in each word. These algorithms are trained using Hidden Markov Models (HMM) 

which learn by imposing temporal frames on the recording, extracting the spectral information for each phone, such 

as formants and wave intensity. After training, these frames are used to traverse the signal and determine the 

potential points of transition between two phones [4]. 

 

 
Figure 1. Example of forced alignment for an English recording [5] 

  

Oral corpora segmentation facilitates the use of data in linguistic research ranging from phonetics to 

sociolinguistics, and forced alignment provides drastic saving in time when segmenting and annotation recordings 

[6,7,8]. For example, Labov et al. [9], report that up to 300 vowels can be processed with 40 hours of manual work, 

whereas up to 9000 vowels can be studied in the same time using the FAVE-align alignment system. This family 

of algorithms is particularly useful when studying minority and Indigenous languages, which lack corpora and 

acoustic models, and in general resources for their study from computational linguistics [10,11,12]. This is possible 

because, even though existing systems using acoustic models are trained for languages such as English or Spanish, 

there is a high level of transfer when these models are applied to other languages [10]. For example, acoustic models 

of Hungarian can be used to recognize Czech phonemes because of the similarities in their phonological systems 

[13]. Likewise, many of the phonemes in the Yoloxóchitl Mixtec language are close enough to English that forced 

alignment produces satisfactory results [10]. 

 

The authors of this paper are developing the first oral corpus of spontaneous speech in the Bribri language. This 

corpus, whose compilation is in progress and which will contain approximately 4 hours of recordings, will 

document speech from a wide range of social situations encountered in Bribri daily life, such as greetings, dialogues, 

forms of politeness, prayers, insults and praise, and storytelling among others. The outcome of this project will 

provide an accurate reflection of Bribri speech, and will contribute to creating resources for acoustic modeling and 

other natural language processing applications. We believe that the method of untrained forced alignment is a rapid 

way to construct this type of materials in under-resourced languages such as Bribri. 

 

The structure of the paper is as follows: Section 2 of this paper will describe the methodology used for alignment, 

including the preparation of the Bribri input, the transformations needed to normalize the output, the procedures to 

measure the error rate for the aligners, and the materials used for the comparison. Section 3 describes the results in 

terms of error rates, and provides evidence that FAVE-align has better performance in a number of conditions. 

Sections 4 and 5 discuss the pros and cons of each alignment system and propose new experiments to study forced-

alignment in Chibchan languages. 

 

2 Methodology 

  

In this work we aligned conversational speech in the Bribri language (Chibchan, Costa Rica) to match their 

transcriptions and their sound waves. This step expands on the methodology of DiCanio et al. [10], who used forced 

transcription with acoustic models of English to process spoken word lists in Yoloxóchitl Mixtec (Otomanguean, 

Mexico). It also expands on the methodology of Coto-Solano & Flores-Solórzano [14], who first applied untrained 
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forced-alignment to running speech in Bribri. In this paper we will compare the performance of two acoustic 

models: (i) The English model in the FAVE-align system [15], a derivate of the Penn Phonetics Lab Forced Aligner 

Toolkit or P2FA [16], trained at the University of Pennsylvania, and (ii) a French acoustic model in EasyAlign [17], 

trained at the University of Geneva.1 These two systems were chosen because they both represent the state of the 

art of the numerous systems trained using the Hidden Markov Models in the HTK toolkit [18], which is the most 

tested alignment toolkit available. Another factor was that these systems have two of the easiest interfaces when 

interacting with users.2 

  

2.1 Data preparation 

 

Following the method in Coto-Solano & Flores-Solórzano [14], we prepared the data for alignment by FAVE-align 

and EasyAlign. For FAVE-align, this involved manually marking the limits of phrases, as shown in figure 2, 

converting standardized Bribri spelling3 to the Arpabet transliteration code, as illustrated in table 1, and preparing 

a file with the list of unique words in the recording and their Arpabet equivalents, as shown in figure 3. These files 

are then processed using Python code [link], or through an online interface [link]. 

 

S01       AG   1       3       Ì kuhéhkih wìm òhr darë`rë` 

S01       AG   4.5    6       Wìm che kë´këpa tö 

S01       AG   6.6    8.3    tö wìm dör pë' wë´m táhih 

Figure 2. List of phrases with start and end times 

 

Graphemes IPA Arpabet  Graphemes IPA Arpabet 

a /a/ AE1  b /b/ B 

e /ɛ/ EH1  ch /tʃ/ CH 

ë /ɪ/ IH1  d /d/ D 

i /i/ IY1  j /x/ HH 

i /j/ Y  k /k/, [kʰ] K 

o /ɔ/ OW1  l /ɺ/ R 

ö /ʊ/ UH1  m /m/ M 

u /u/ UW1  n /n/ N 

u /w/ W  ñ /ɲ/ N 

    p /p/ P 

    r /ɾ/ R 

    rr /r/ R 

    s /s/ S 

    Sh /ʃ/ SH 

    t /t/ T 

    ts /ʦ/ T S 

    w /w/ W 

    y /ʤ/ JH 

Table 1. Bribri phonemes and their Arpabet equivalents 

 

be'        B EH1 

bë`rie   B IH1 R Y EH0 

bikéitse    B IY0 K EH1 EH0 T S EH0 

bö`k     B UH1 K 

Figure 3.  Examples from a dictionary with words transliterated into Arpabet 

 

Table 1 shows the transliteration decisions for all the Bribri segmental phonemes; the IPA values are taken from 

Constenla [20] and Flores Solórzano [21]. The proposed system lacks a way to represent the phonemic 

                                                 
1 Both systems presuppose that speech can be segmented into discrete elements, and that it is possible to mark the precise 

boundary between two phonemes. This presupposition is reasonable when there is, for example, a voiceless consonant in word-
initial position, but almost impossible to defend when marking the boundary between two vowels, or when there are cases of 

segmental reduction with phonemes sharing features [19]. Despite this obstacle, we will use these tools keeping in mind that we 

are not just studying individual phones, but also the transitions between different types of phones. 
2 Systems like those based on Kaldi [33], for example, have considerable more involved configuration and data-preparation 
processes. 
3 Figure 2, and indeed all the transcriptions, use a Bribri orthography based on Constenla’s [20] standard. The system presented 

here is modified so that nasals are represented by ‘h’ and not by a line underneath the vowel (e.g. a̠ → ah), and that the complex 

diacritics are represented next to the vowel (e.g. ë́ → ë´). These modifications were made because the FAVEalign system does 
not use Unicode characters. 

https://github.com/JoFrhwld/FAVE
http://fave.ling.upenn.edu/FAAValign.html
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suprasegmentals of Bribri, including tones, nasalization and glottalization, so an additional routine was 

programmed to convert the Arpabet symbols back to Bribri orthography (available at: 

http://github.com/rolandocoto/alineacion-lenguas-cr) and recover these suprasegmentals. Collapsing these 

categories in the Arpabet does not degrade the quality of the alignment; this will be discussed in detail in section 

3.3. The graphemes ‘i’ and ‘u’ are used for both the vowels /i/ and /u/ and the semiconsonants /j/ and /w/; this 

difference is captured in the Arpabet transliteration. In addition to the vowel per se, each representation of an 

Arpabet vowel carries a number. This is meant to represent the accentual system of English and it can be set to 

three values: 1 for accented syllables, 2 for syllables with secondary stress, and 0 for non-accented syllables. In 

these tests all of the syllables were set to 1 to avoid keep the system from associated any Indigenous vowels with 

English schwas and reduced vowels.4 

 

Regarding the consonants, three decisions were taken when representing them in Arpabet: (i) to use the Arpabet 

glyph ‘N’ to represent the two Bribri phonemes ‘n’ /n/ and ‘ñ’ /ɲ/, (ii) to use the glyph ‘R’ to represent the phonemes 

‘l’ /ɺ/ and ‘r’ /ɾ/, and (iii) to split the phoneme ‘ts’ /ts/ into two glyphs, ‘T’ and ‘S’ because English lacks /ts/. In 

addition to this, the decision was made to not explicitly represent the glottal stop as a separate phoneme, and it was 

instead treated as a part of the vowel (which it is in most dialects and phonological environments); this did not 

result in any significant degradation of the system’s accuracy (see section 3.4) 5. 

 

In the case of EasyAlign [17], we used the French model as it is the primary model in the system and the one that 

provides better performance [17, pp. 4]. It is installed as an add-on module of Praat, and the system’s developers 

invite users to send data to train new acoustic models, but do not provide this methodology as an open-source 

mechanism.6 In order to prepare the data, the user manually provides the phrase boundaries and the transcription in 

a standardized orthography. This step, however, requires the elimination of all diacritics, which have to be 

reestablished manually after the alignment. After the phrase boundaries are set, a Praat script returns a TextGrid 

with the text aligned for words, syllables and phonemes. This TextGrid has phonemes transcribed in the SAMPA 

format, and has to manually be converted to a user-selected transcription system. 

  

2.3 Alignment Results and Error Estimation 
 

Figure 4 shows the results of alignment using FAVE-align, while figure 5 shows the alignment obtained with 

EasyAlign.  

 

 
Figure 4. Praat TextGrid with Bribri text force-aligned by FAVE-align 7 

 

                                                 
4 The authors acknowledge that, as understanding of the prosody of Bribri improves, researchers might be able to use the other 

digits (two and zero) to represent different degrees of accentual marking. 
5 The glottal stop is a problematic phoneme for English acoustic models because this sound does not exist as a phoneme in this 
language [10]. 
6 At the time of writing the developers of EasyAlign are not actively developing other acoustic models. Neither is it possible to 

modify the tool because it is provided as binary files and not as open source code. 
7 In these tests we used transcriptions that didn’t depend on Unicode characters. Therefore, nasals are represented with an ‘h’ 
after the vowel, and the high and low tones on a lax vowel are represented using an accent after the vowel. 

http://github.com/rolandocoto/alineacion-lenguas-cr
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Figure 5. Praat TextGrid with Bribri text force-aligned by EasyAlign 

 

After generating the automatic TextGrids these were manually corrected to determine the accuracy of the forced 

alignment algorithms. We used the root mean squares method [22] to calculate the difference between the center 

of the words in the automatic and the hand-corrected TextGrids. The word òhr (õ̀r ‘it shouts’) in figure 6 provides 

an example. The center of the automatically aligned word is at 1.887 seconds, while the center of the corrected 

word is at 2.039 seconds. Then, the difference of the center is √(2.039 − 1.887)2 = 152 milliseconds. Note that 

we use the square root to calculate the absolute difference, in case one of the corrected intervals is located before 

the automatic one, which would result in a negative difference. In order to provide more clarity about the 

relationship between a time difference and the specific word, we calculated the percentage of the duration of each 

word that corresponds to the difference in the center between the automatic and hand-corrected versions. For 

example, the corrected word òhr is 196 milliseconds long, so the percent difference of the center is 152/196 = 

78% of the duration of the word òhr. 

  

 
Figure 6. Error estimation for the alignment of the center of a word 

  

The root mean squares method was also used to calculate the difference in the beginning and the end of the 

phonemes. As shown in Figure 7, the difference at the beginning of the phoneme ‘uh’ /ũ/ is 19 milliseconds. 

  

 
Figure 7. Error estimation for the alignment of the beginning of a phoneme 

  

2.4 Statistical methods 

  

To determine if there were significant differences in error rates, we used Linear Mixed Effects models (LMER) 

[23] with word as a random variable. The models were calculated using the R program [24]. 

  

2.5 Materials 
  

In this study, we analyzed the first fifty seconds of narration from the story Ì kũẽ́kĩ wìm õ̀r darë̀rë̀ ‘Why does the 

monkey howl so loudly’ [25]. Table 2 provides details of the number of words and segments studied, as well as the 

rate of speech for the recording. 



CLEI ELECTRONIC JOURNAL, VOLUME 20, NUMBER 1, PAPER 2, APRIL 2017 

6 

 

 Recording Words Vowels Consonants Syllables/Second 

Bribri: Monkey 94 154 120 3.1 

Table 2. Items extracted from the recording (same for both aligners) 

  

3 Results 

  

This section compares the error rates of words, vowels and consonants aligned with FAVE-align versus those 

aligned with EasyAlign. It will also report on incongruences between the input and the output text (section 3.2) and 

on the effects of boundaries between segments on system performance. 

 

 

3.1 Words 

 

Words in this story have an average length of 287±149 milliseconds long8. The FAVE-align system had an average 

error of 19 ms when aligning the center of the words, which is equivalent to 7% of the average duration of words. 

This is significantly more precise than EasyAlign, which has an error of 50 ms (24% of duration) when aligning 

the center of words (χ2(109)=-3.3, p<0.005). The model with aligner as an independent variable is significantly 

different from the null model (χ2(1)=8.2, p<0.005). 

  

  FAVE-align EasyAlign LMER 

Error (ms) 19 ± 27 50 ± 102 χ2(109)=-3.3, p<0.005 

% Error 7% ± 12% 24 ± 49%   

Table 3. Difference in the center of words between automatic and hand-corrected 

Intervals (error), in milliseconds and in percentage of the duration of the word 

  

3.2 Missing phonemes 

 

One of the main obstacles in using EasyAlign is the lack of consistency between the number of input units (the 

number of phonemes represented in the user’s transcription system) and the number of intervals generated. Figure 

8 shows such a problem in an EasyAlign generated TextGrid. In the first and second tiers the Bribri syllables í+se 

are transcribed as iz. Both a syllable and a phoneme are lost, making it necessary to add these again the manual 

correction. Figure 9 shows the opposite case, where EasyAlign has added a phoneme ‘E’ to the word sö ‘they (are)’, 

which would need to be deleted in a manual correction stage prior to converting the SAMPA back to the user’s 

chosen phonological representation. 

 

In the sample studied, the EasyAlign output was missing 21 out of 274 segments: 7 consonants out of 120 (6%) and 

14 vowels out of 154 (9%). In addition to this, there were 58 spuriously added segments, 33 vowels and 25 

consonants. Only segments that were detected by both aligners were included in the error comparisons.  

 

 
Figure 8. Bribri TextGrid where EasyAlign has deleted a vowel (íse -> iz) 

 

                                                 
8 The numbers reported next to the results (after the plus-minus sign) are the standard deviations. 
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Figure 9. Bribri TextGrid where EasyAlign has inserted a vowel (sö -> Eso) 

 

FAVE-align preserves all of the segments that the user specified in the initial transcription (see section 2.1), 

which allows for the study of segments even when they present severe reductions [19]. This is an advantage when 

studying phonetic details, but it comes at a price at the preprocessing stage: Preparing a file for alignment with 

FAVE-align implies preparing phrase boundaries and making the dictionary, which takes longer than merely 

marking the phrases as is done in EasyAlign. 

 

3.3 Vowels 

 

Vowels are, on average, 105±46 milliseconds long. As shown in table 4, FAVE-align has significantly smaller error 

rates, between 22 and 26 ms at the edges, compared to the 86~102 ms of EasyAlign. The model with aligner as an 

independent variable is significantly different from the null model for both the beginning (χ2(1)=22.3, p<0.0001) 

and the end of the vowels (χ2(1)=31.6, p<0.0001). 

 

 FAVE-align (ms) EasyAlign (ms) LMER 

Beginning 22 ± 44 86 ± 159 χ2(258)=-4.8, p<0.000001 

End 26 ± 48 102 ± 156 χ2(258)=-5.7, p<0.000001 

Table 4. Average error for vowels 

 

The averages, however, hide the fact that the convergence rate onto the correct alignment is very different between 

the two systems. Figure 10 shows the cumulative percentage of items below a difference time. For the beginning 

of vowels, 80% of the items of FAVE-align have an alignment error of 31 ms or less, whereas 80% of the EasyAlign 

items have an alignment error of 150 ms or less. As for the end of the vowels, 80% of FAVE-align items have an 

error of 44 ms or less, whereas 80% of EasyAlign items have an error of 190 ms or less. The convergence rates also 

show differences in the starting accuracy for both systems: 57% of the FAVE-align items had an error of 1 ms or 

less at the beginning of the vowels, compared to 42% of the EasyAlign items. When we look at the end of the 

vowels, we see that 49% of the FAVE-align items had an error of 1 ms or less, compared to 43% for the EasyAlign 

items. In summary, FAVE-align vowels have more items with negligible error rates (1 ms or less), and more of the 

items have smaller error rates compared to the EasyAlign vowels. Finally, figure 11 illustrates the complete spread 

of responses for the vowel alignment. The distribution of EasyAlign errors shows more variability and outliers than 

that for FAVE-align. 
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Figure 10. Difference between FAVE-align and EasyAlign in the alignment of vowels 

 

 
Figure 11. Difference in the distribution of error rates for vowels 

 

We will now turn to specific phonological features of Bribri vowels, including glottalization, nasality, tone and 

vocalic quality. We found no interaction between aligner and the marking of glottalized vowels. We did find a 

significant interaction between aligner and nasality (χ2(257)=-2.5, p<0.02): In FAVE-align nasal vowels perform 

better, whereas in EasyAlign oral (non-nasal) vowels perform better. This is an outcome completely opposite to 

what we expected, because the EasyAlign model would have nasal vowels as part of its French input9. The 

difference between null and non-null models in this comparison is χ2(3)=39.8, p<0.0001. 

 

 FAVE-align (ms) EasyAlign (ms) 

End of nasal vowel 19 ± 34 155 ± 196 

End of non-nasal vowel 29 ± 51 87 ± 141 

Table 5. Differences in the alignment error depending on nasality 

 

We also found an interaction between aligner and the error at the end of the vowels depending on the tone. The 

difference in precision between the two aligners is much less with the low and neutral tones, where FAVE-align is 

approximately twice as precise as EasyAlign, than with the other tones, where FAVE-align is between 5 and 10 

times more precise. The difference between null and non-null models in this comparison is χ2(9)=43.1, p<0.0001. 

 

 

 

 

                                                 
9 One possibility is that there is a mismatch in the repertoire of nasal vowels between the two languages. French has four nasal 
vowels (/ã/, /ɛ̃/, /õ/ and /œ̃/), while Bribri a somwhat different set of five nasals (/ã/, /ɛ̃/, /ĩ/, /ɔ/̃ and /ũ/). 
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 FAVE-align (ms) EasyAlign (ms) LMER Interaction Aligner*Tone 

High 29 ± 64 147 ± 194 - 10 

Falling 20 ± 35 138 ± 151 χ2(252)=0.0, p=1.0 

Rising / Glottal 14 ± 17 120 ± 173 χ2(252)=0.3, p=0.8 

Low 40 ± 56 75 ± 79 χ2(252)=1.5, p=0.13 

Neutral 11 27 ± 47 72 ± 138  * χ2(252)=2.1, p<0.04 

Table 6. Differences in the alignment error at the end of the vowel depending on its tone 

 

Finally, there is a main effect for vocalic quality. Both aligners perform better with i /i/ and ö /ʊ/. This warrants 

further investigation of the exact phonetic distribution of Bribri vowels, and why would these two be a good match 

to categories in English and French. 

 

 

 FAVE-align (ms) EasyAlign (ms) LMER 

[a] 35 ± 63 154 ± 174 - 

[i] 19 ± 24 67 ± 112 χ2(28)=-2.3, p<0.03 

[ö] 20 ± 27 60 ± 140 χ2(250)=-2.1, p<0.04 

Table 7. Differences in the alignment error at the end of the vowel depending on vocalic quality 

 

In this section we have compared the performance of the two aligners when aligning vowels, and FAVE-align 

produces results with smaller error rates. In the next section we will compare the performance of both aligners when 

processing consonants.  

 

3.4 Consonants 

 

Consonants are, on average, 82±38 milliseconds long. As shown in table 8, FAVE-align has smaller error rates, 

23~24 ms at the edges, compared to the 112~130 ms of EasyAlign. The model with aligner as an independent 

variable is significantly different from the null model for both the beginning (χ2(1)=29.5, p<0.0001) and the end of 

the vowels (χ2(1)=25.1, p<0.0001). 

 

 FAVE-align (ms) EasyAlign (ms) LMER 

Beginning 23 ± 52 130 ± 204 χ2(214)=-5.6, p<0.000001 

End 24 ± 54 112 ± 180 χ2(214)=-5.1, p<0.000001 

Table 8. Average error for consonants 

 

As was the case with the vowels, the convergence rate for the consonants is shown in figure 12. In general, the error 

rates for consonants are again smaller in the FAVE-align TextGrids. For the beginning of consonants, 80% of the 

FAVE-align items have an alignment error of 29 ms or less, whereas 80% of the EasyAlign items have an alignment 

error of 251 ms or less. As for the end of the consonants, 80% of FAVE-align items have an error of 31 ms or less, 

whereas 80% of EasyAlign items have an error of 225 ms or less. Regarding the starting accuracy of the aligners, 

52% of the FAVE-align items had an error of 1 ms or less at the beginning of the consonants, compared to 46% of 

the EasyAlign items. The end of the consonants is the only case where EasyAlign shows a better performance than 

FAVE-align: 52% of EasyAlign items had an error of 1 ms or less, compared to 50% of FAVE-align items. Finally, 

figure 13 illustrated the spread of responses for consonant alignment. The error distribution of the EasyAlign output 

shows more variability and outliers than the FAVE-align one. 

 

                                                 
10 The Linear Mixed-Effects Model in R compares the levels of each variable with the first level in alphabetical order. A dash 

in the LMER column indicates that this was the level the others were compared against. 
11 Bribri has two tonal phonemes that have been traditionally described as a single “low” tone: A phonetically low tone, and a 
tone with an underspecified register which can surface as either low or mid depending on the register of the following tone [26]. 
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Figure 12. Difference between FAVE-align and EasyAlign in the alignment of consonants 

 

 
Figure 13. Difference in the distribution of error rates for consonants 

 

We examined several phonological features of consonants, namely voicing, manner and place of articulation. There 

were no effects of voicing dependent on the aligner. There was an interaction between aligner and manner of 

articulation: FAVE-align has better performance overall, but the fricatives perform much better in that aligner, with 

almost no error (average 2 ms). The difference between the null and full models was significant (χ2(5)=34.2, 

p<0.0001). 

 

 FAVE-align (ms) EasyAlign (ms) LMER aligner*manner 

Stops 24 ± 48 80 ± 154 * χ2(212)=2.1, p<0.04 

Fricatives 2 ± 7 181 ± 256 - 

Sonorants 31 ± 67 140 ± 187 χ2(212)=1.2, p<0.2 

Table 9. Error at the end of consonants depending on manner of articulation 

 

There was also a significant interaction between aligner and place of articulation. Performance is better for FAVE-

align in almost all categories except for velar sounds. For velars, the error rates are practically equal for the two 

aligners (28 vs. 31 ms). The full model was significantly different from the null model (χ2(9)=36.7, p<0.0001). 
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 FAVE-align (ms) EasyAlign (ms) LMER aligner*manner 

Labial 18 ± 26 129 ± 179 χ2(210)=-0.1, p=0.9 

Alveolar 27 ± 66 134 ± 196 - 

Post-alveolar 11 ± 14 138 ± 208 χ2(210)=-0.3, p=0.8 

Velar 28 ± 55 31 ± 96 χ2(210)=2.2, p<0.03 

Table 10. Error at the end of consonants depending on place of articulation 

 

Finally, we found no effects on the boundaries of vowels or consonants that correlate to the difference in aligners. 

  

4 Discussion 

 

Previous experiments [14] compared the two systems when aligning songs, but found that both had equally 

unreliable performances, with errors of up to 190 ms when finding the center of words. The results in this paper 

provide evidence that FAVE-align achieves better performance than EasyAlign when aligning Bribri running 

speech. Both systems provide output where 43% to 52% of segments have an error of 1 ms or less, but FAVE-align 

items have smaller average errors (22~26 ms) than those of EasyAlign (86~130 ms). The relatively small error rates 

of FAVE-align mean that it can provide a usable tool for aligning Bribri text, demonstrating that these systems can 

be used for the initial alignment of Indigenous speech. These error rates permit much faster alignment than would 

be possible with completely manual alignment. 

  

Given the better performance of FAVE-align when aligning phonemes and words, we infer that there was a higher 

transfer from the English acoustic model to Bribri that there was from the French model. The experiment also 

continues to provide evidence in favor of using automatic alignment to work with the Indigenous languages of 

Costa Rica. Table 11 provides some of the advantages and disadvantages of each of the systems used, which should 

be evaluated by the user before implementing an alignment system. In general, EasyAlign makes it quicker to pre-

process the data, but FAVE-align provides greater control over the resulting TextGrids. 

 

 

System Advantages Disadvantages 

FAVE-align Greater control of the 

transcription: The system aligns 

exactly the number of units that the 

user provides as input, and it uses 

the transliteration units that the 

user provides. 

There is a greater workload when preparing the document 

for processing. 

EasyAlign Initial alignment is quicker 

because the system attempts to 

automatically generate the 

phonological transcription. 

The system can erase or add phonological units when 

generating the transcription. These units might be 

unrelated to the actual units in the Indigenous language. 

The system is not consistent in its use of SAMPA, and this 

has to be corrected manually (e.g. the SAMPA letter ‘O’ is 

mapped to the Bribri phonemes /ɔ/ and /ʊ/) 

The lack of SAMPA consistency makes it difficult to 

retrieve phonetic features (e.g. nasality, tone, etc). 

Table 11. Comparison of the FAVE-align and EasyAlign systems in the pre and post-processing of data 

  

Even with their disadvantages, both systems contribute important savings in time and effort when generating 

aligned transcriptions of Indigenous languages. These procedures will help bring computational linguistics 

techniques to the study of these languages, particularly in three areas. First, it would allow for better studies of their 

phonetics and of features such as voicing, prosodic realization and speech reduction. Second, it would help in the 

creation of speech corpora to train acoustic models specific to these languages. Third, these corpora can also be 

used for the training of automatic speech recognition systems, which would automate transcription and allow access 

to a larger volume of data, including data in legacy media such as audio cassettes and other older recordings. 

  

Finally, these advances in the computational linguistics of Indigenous languages have the potential of generating a 

positive impact in the revitalization of these languages. According to UNESCO’s vitality measures [27,28], Bribri 

is a vulnerable language. Enhancing the digital visibility of Bribri, in particular through means where speakers 
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could interact with interfaces in their own languages, would greatly contribute to the efforts done by activists and 

linguists to improve the status of these languages and create additional environments for their learning and use 

[29,30,31,32]. 

  

5 Conclusions 

  

We used English and French language acoustic models to align running speech in the Indigenous language Bribri. 

The results show that FAVE-align has better performance than EasyAlign when aligning Bribri, both in finding the 

center of words (7% versus 24% of error) and when finding the edges of phonemes (22~26 ms versus 86~130 ms). 

At this time we recommend the use of the FAVE-align system when marking Bribri text, but we also recommend 

that further testing is necessary, for example comparing the English language model in both systems, and 

determining if the FAVE-align advantage remains in other Costa Rica Chibchan languages such as Cabécar and 

Malecu. Regarding the use of forced aligners, we still strongly believe that they can aid in the study of the 

Indigenous languages of Costa Rica by accelerating the alignment of speech corpora, which can be later used in 

phonetic studies, and in the training of language-specific acoustic models and automated speech recognition 

systems. 
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