
CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

A Levels-based Approach for Defining Software
Measurement Architectures

Ciro Xavier Maretto1, Monalessa Perini Barcellos1

1 Ontology and Conceptual Modeling Research Group (NEMO), Department of Computer
Science, Federal University of Espirito Santo, Vitória, Brazil

{ciro.maretto, monalessa}@inf.ufes.br

Abstract. During the execution of software projects, it is necessary to collect,
store and analyze data to support project and organizational decisions. Software
measurement is a fundamental practice for project management and process
improvement. It is present in the main models and standards that address
software process improvement, such as ISO/IEC 12207, CMMI and MR
MPS.BR. In order to effectively perform software measurement, it is necessary
an infrastructure to support data collection, storage and analysis. This
infrastructure can be defined by means of an architecture, which describes the
components necessary to support software measurement. In this paper we
present the main results obtained from a systematic mapping study that
investigated software measurement architectures and an approach proposed
aiming to help organizations define software measurement architectures.

Keywords: Software Measurement, Measurement Architecture, Measurement
Repository, Reference Architecture.

1 Introduction

Software measurement involves defining measures, collecting data for these measures
and analyzing data aiming to support decision making [1]. Throughout projects, data
are collected for the measures and should be stored in a measurement repository in
order to be used in project management and process improvement [2].

There are several standards devoted specifically to software measurement, such as
ISO/IEC 15939 [3] and PSM (Practical Software Measurement) [1]. Besides, there are
several standards and maturity models, such as ISO/IEC 12207 [4], CMMI
(Capability Maturity Model Integration) [2] and MR MPS.BR (Reference Model for
Process Improvement of Brazilian Software) [5], that address software process
improvement and include measurement as an essential process for organizations to
achieve maturity in software development.

In maturity models that address software processes improvement in maturity
levels, such as CMMI [2] and MR MPS.BR [5], measurement starts at initial levels
(CMMI level 2 and MR MPS.BR level F) and evolves as the maturity level increases.
At high maturity levels (CMMI levels 4 and 5 and MR MPS.BR levels A and B)
statistical process control (SPC) must be carried out and it requires extra attention to
some measurement aspects, such as data collection and storage. In other words, as the
maturity levels increases the measurement needs change.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

Although standards and maturity models are very important to help organizations
by indicating what should be done to implement software measurement, due to the
nature of measurement activities, supporting tools are also necessary to successfully
implement software measurement.

In an organization, technological solutions (e.g., tools and technologies) are used
to support process executions. The selection of these solutions should be aligned to
the organizational needs and goals. Technological solutions can support the software
measurement process and can be described with a certain level of abstraction by
means of architectures.

According to Zachman [6], an architecture can be understood as a logical structure
in which the components are organized and integrated. In the software measurement
context, an architecture should consider aspects related to the data collection, storage
and analysis. In a measurement architecture, one of the main components is the
measurement repository. According to Bernstein [7], a repository can be defined as a
database sharing information about engineering artifacts. In a measurement
architecture, the measurement repository stores measurement data (which are not
restricted to data collected for the measures) and acts as a data provider to the
analysis. Due to its importance in a software measurement architecture, the
measurement repository is sometimes seen as the measurement architecture itself.

It is not easy to define a measurement architecture capable of meeting the needs
according to the organization maturity level. Usually, organizations start recording
measurement data in spreadsheets or in some systems with little or no integration
among them [8]. At the initial maturity levels, spreadsheets seem to be enough, but as
the organization’s maturity level increases, the problems of using spreadsheets
become more expressive. Most times, in order to achieve high maturity, organizations
need to discard data stored in spreadsheets, develop a measurement repository by
using appropriate technologies (e. g., database management systems), and restart data
collection and storage. Thus, a good practice is to define an architecture that supports
software measurement and can be used from the beginning of a measurement program
until the high maturity levels (or can be extended to that) [9].

Aiming to identify and analyze proposals for software measurement architectures
recorded in the literature, we carried out a systematic mapping study. As a result, 8
proposals were identified. Only 2 of them address high maturity measurement needs,
which include statistical process control. By analyzing the measurement architectures
identified during the study, we noticed that although they support the measurement
process, they do not guide organizations on how to define their own measurement
architectures. The proposals usually address specific solutions developed to a
particular context. Besides, they do not usually address measurement at high maturity
levels, which includes SPC implementation. Based on this perception, we decided to
develop a measurement architecture that could be used as a basis for organizations to
define their own measurement architectures. For this, we proposed a levels-based
approach in which the third level is a reference architecture, i.e., an architecture
defined aiming at reuse.

Following this introduction, in Section 2, we briefly present software measurement
and statistical process control. In Section 3, we describe the systematic mapping and
its main results. In Section 4, an overview of the proposed approach is presented. In

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

Section 5 we talk about the use of the approach. Finally, in Section 6, we make some
final considerations.

2 Software Measurement and Statistical Process Control

Software measurement is a primary support process for managing projects. It is also a
key discipline in evaluating the quality of software products and the performance and
capability of organizational software processes. The software measurement process
includes the following activities: planning the measurement process, execution of the
measurement process, and measurement evaluation [3].

Initially, for performing software measurement, an organization must plan it.
Based on its goals, the organization has to define which entities (processes, products
and so on) and which of their properties (size, cost, time, etc.) are to be measured. The
organization has also to define which measures are to be used to quantify those
properties. For each measure, an operational definition should be specified,
indicating, among others, how the measure must be collected and analyzed. Once
planned, measurement can start. Measurement execution involves collecting data for
the defined measures, according to their operational definitions. Once data are
collected, they should be analyzed. The data analysis provides information to decision
making and supports identifying appropriate actions. Finally, the measurement
process and its products should be evaluated aiming to identify potential
improvements [10].

Depending on the organization’s maturity level, software measurement is
performed in different ways. At the initial maturity levels, such as the levels 2 and 3
of CMMI, the focus is on developing and sustaining a measurement capability that is
used to support project management information needs. At maturity levels, such as
CMMI levels 4 and 5, measurement is performed for the purpose of statistical process
control (SPC), in order to understand the process behavior and to support software
process improvement efforts [11]. SPC uses a set of statistical techniques to determine
if a process is under control, considering the statistical point of view. A process is
under control if its behavior is stable, i.e., if their variations are within the expected
limits, calculated from historical data. The behavior of a process is described by data
collected for performance measures defined to this process [12].

A process under control is a stable process and, as such, has repeatable behavior.
So, it is possible to predict its performance in future executions and, thus, to prepare
achievable plans and continuously improve the process. On the other hand, a process
that varies beyond the expected limits is an unstable process and the causes of these
variations (said special causes) must be investigated and addressed by improvement
actions in order to stabilize the process. Once the processes are stable, their levels of
variation can be established and sustained, being possible to predict their results.
Thus, it is also possible to identify the processes that are capable of achieving the
established goals and the processes that are failing in meeting the goals. In this case,
actions to change the process and make it capable should be carried out [12].

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

Statistical process control requires some changes in the traditional measurement,
specially related to operational definition of measures, data collection frequency,
measurement granularity, data homogeneity and data grouping to analysis [13].

3 Software Measurement Architectures: A Systematic Mapping

According to Kitchenham and Charters [14], a systematic mapping (also known as
exploratory study) makes a broad study in a topic of a specific theme and aims to
identify available evidence about that topic. In this sense, we carried out a systematic
mapping aiming to identify evidences regarding measurement architectures proposals
recorded in the literature. In order to perform the systematic mapping, we used the
process proposed in [15], which was defined based on [14]. It consists of the
following three activities:
i) Develop Research Protocol: In this step the researcher prospects the topic of

interest, defines the context to be considered in the study, and describes the object
of analysis. Next, he/she defines the research protocol that will be used as a
guideline to perform the research. The protocol must contain all the necessary
information for a researcher to perform the research (research questions, source
selection criteria, publication selection criteria, procedures for storing and
analyzing the results, and so on). The protocol must be tested in order to verify its
feasibility, i.e., if the results obtained are satisfactory and if the protocol execution
is viable in terms of time and effort. The test results allow for improving the
protocol when necessary. If the protocol is viable, an expert must evaluate it and,
once approved, the protocol can be used to guide the research.

ii) Perform Research: In this step the researcher performs the research according to
the research protocol. Publications are selected, and data are extracted, stored, and
quantitatively and qualitatively analyzed.

iii) Provide Results: In this step the research results produced during the execution of
the systematic review process should be packaged and published in a conference,
journal, technical report or other publication vehicle.

3.1 Research Protocol

The research protocol used in the study contains the following information: objective,
research questions, sources selection criteria, publications selection criteria, data
storage and data analysis procedures, and protocol test procedure.

A. Objective
Analyzing the literature in the context of software measurement architectures, with
the main purpose of identifying and analyzing:

(i) Proposals for software measurement architectures;
(ii) The proposals characteristics;
(iii) If the proposals are capable of supporting the statistical process control.

B. Research Questions
Q1. Which proposals for software measurement architecture are recorded in the

literature?
Q2. What are the proposals characteristics?

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

Q3. Which proposals include support to statistical process control?
In Q3, support to statistical process control consists in supporting: data collection,
storage, representation (by using control charts), and process behavior analysis.

C. Sources
The publications sources must be digital libraries and:

(i) Have a search mechanism that allows using logical expressions and
searching in different parts of the publications;

(ii) Be available in the CAPES (Coordination for the Improvement of Higher
Education Personnel) Journals Portal1;

(iii) Include publications in the Physical Science area, in particular Computer
Science.

D. Procedure for Publications Selection
The object of analysis are papers published in conferences and journals. Publications
selection must be done in three steps:

1 st step – Preliminary selection and cataloging : the preliminary selection must be
done by applying the following criteria using the digital library search mechanism:

Scope: title, abstract and keywords.
Language: English.
Search String: ("measurement framework" OR "measurement database" OR
"measurement repository" OR "measurement architecture" OR "metrics
repository" OR "metrics database") AND "software".
Period: from 1990.
Area: Computer Science.

In order to establish the search string, we performed some tests using different
terms, logical connectors, and combinations between them, aiming to obtain a search
string able to return relevant publications to the study and a viable quantity to be
analyzed.

During the informal literature review that preceded the study, we found some
relevant publications addressing measurement repositories. In fact, although these
publications use the term measurement repository, in the context of the study they
address measurement architecture. Thereby, we decided to include in the search string
terms related to repositories.

Also during the informal review we identified two relevant publications ([16] and
[17]) that we used as control publications to evaluate the search strings (the string
must be able to return the control publications). The tests to obtain the search string
were carried out using the digital libraries Scopus (www.scopus.com) e IEEE
(ieeexplore.ieee.org). Scopus was selected because during preliminary tests it
returned the largest number of publications. IEEE, in turn, was selected because the
control publication [17] was only available in IEEE.

Considering the tests results we decided to select a comprehensive string and to
restrict the publications selection in the later steps, since more restrictive strings
excluded one or both the control publications. The selected string returned many
publications that deal with measurement repositories not related to software

1 CAPES Journals Portal (www.periodicos.capes.gov.br/) is sponsored by Brazilian government
and offers access to the publications of many international and national sources, covering all
knowledge areas.

http://www.periodicos.capes.gov.br/

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

measurement, but to scientific experiments from other computer areas. However,
when we tried to restrict the publications by using the term “software measurement”
instead of “software”, the search results were very restricted and one of the control
publications was not returned. Although the selected string is comprehensive, it was
the one which provided better results in terms of number and relevance of selected
publications.

We decided to apply the search string to the title, abstract and keywords, because
some tests carried out by applying the string to the full text resulted in a large number
of publications, being many of them useless. On the other hand, when restricting the
string only to the title, useful publications were eliminated.

2 nd Step – Selection of Relevant Publications – 1st filter : selecting publications by
applying a search string does not ensure that all selected publications are relevant,
because such selection is restricted to syntactic aspects. Thus, the abstract of the
publications selected in the 1st step must be analyzed. Publications that do not satisfy
one of (or both) the following criteria must be eliminated:

SC1: The publication addresses collection, storage, analysis or recovering of
measurement data.
SC2: The publication addresses some kind of software measurement architecture
or measurement repository.

We refer explicitly to measurement repositories in SC2 (and in SC3 presented
forward), because, as it was said before, we noticed that some publications address
measurement repository proposals as an architecture, according to the concept of
architecture used in the study (see Introduction).

To avoid premature exclusions of publications, in case of doubt, the publication
should not be eliminated. Besides, publications without an abstract should not be
eliminated.

3 rd Step - Selection of Relevant Publications – 2 nd filter : the selection of the
publications in the 2nd step considers only the abstract. Consequently, it is possible
that some selected publications do not contain relevant information. Therefore, the
full text of the publications selected in the 2nd step must be read. Publications that do
not satisfy one of (or both) the following criteria must be eliminated:

SC3: The publication describes software measurement architectures or
measurement repositories.
SC4: The full text is accessible.

E. Data Storage Procedure
Each publication selected in the 1st step must be catalogued with the following data:
title, author(s), year, reference data, source (digital library), and a summary. Each
catalogued publication must be examined and submitted to the next two steps. The
publications eliminated on the 2nd step must be identified as “E2: SC[number of the
criteria not satisfied]”. Similarly, publications eliminated on the 3rd step must be
identified as “E3: SC[number of the criteria not satisfied]”.

F. Data Extraction and Analysis Procedure
For each publication selected in the 3rd step, the following information must be
extracted:

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

(i) Proposal identification. The identification is the proposal name as cited in the
publication. If the proposal has no name, it must be identified as “Proposal
XYZ”, where XYZ are the initial letters of the proposal authors names;

(ii) A brief description of the proposal;
(iii) Proposal characteristics, organized according to the following categories:

Technology, Architecture, Collection, Storage, and Analysis;
(iv) Indication if the proposal supports statistical process control.

Regarding (iv), it must be recorded “Yes” to proposals whose publications make
explicit the support to SPC. It must be recorded “Probably Applicable” to proposals
that do not make explicit the support to SPC, but apparently they are able to support
it. It must be recorded “No” to proposals that do not mention support to SPC and it is
not possible to conclude that they support it.

After data are extracted from publications, quantitative and qualitative analysis
must be done with the main purpose of discussing the findings in relation to the
research questions.

G. Test Protocol Procedure
The research protocol must be tested using a reduced number of sources in order to
verify its viability. The protocol is viable if the procedures are performed as
described, if it is possible to answer the research questions and if the time and effort
necessary are viable.

3.2 The Results

The protocol presented in the previous section was evaluated by an expert. Then, it
was tested using the digital library IEEE. The protocol was considered viable and it
was executed one more time using the digital library Scopus. In this section some
results obtained from these two executions are presented. Publications selected in
both digital libraries were counted only once. In total, 148 publications were selected
in the 1st step, 22 in 2nd the step and 12 in 3rd step.

It is possible to notice a large decrease in the number of publications in the 2nd
step. In fact, this result was expected, since we decided to use a comprehensive search
string, as argued in the previous section.

It is worth mentioning that the focus of the study is on measurement architectures
and, for this reason, publications which described lessons learned and case studies
that mention the use of measurement architecture (not describing the architecture)
were excluded during the selection criteria application (these publications do not
satisfy SC3).

Analyzing the publications by year, from 148 publications selected by the search
string (1st step), 25 (17%) are dating from 1990 to 2000, and 123 (83%) are dating
from 2001 to 2011. From 12 publications selected in 3rd step, a quarter is dating from
2009 on. Besides, although we have limited the selection to publications from 1990
on, the oldest publications are from 1999 and 2000.

From the publications selected in 3rd step, 8 proposals were identified. Table 1
shows a brief description of the proposals and their respective publications. A
summary of the proposals characteristics is presented on Table 2. Publications
describe their proposals with different levels of detail and with different foci.
Consequently, information regarding the characteristics has also heterogeneous levels

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4 DECEMBER 2014

of detail. For instance, some proposals describe in details characteristics of the
adopted architecture, while others only mention the general model in which the
architecture is based on, and others nothing said about their architecture. In Table 2,
when information regarding a category is not shown, it means that it was not possible
to obtain information about it by reading the publications.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

Table 1. Proposals found.

Proposal Description Ref

P01 - Generic
Measurement

Framework Based on
MDA

 Software measurement framework to support the software measurement entities through metamodels and
transformations. For example, given a model of an ER (Entities and Relationships) diagram, measures such as
quantity of tables and relationships can be automatically calculated using the framework. For this, the
framework uses a domain model and a measurement model, which says which entities will be measured and
what methods will be used. These models go through transformation processing QVT (Query View
Transformation), which generates the measurements.

[16,
18, 19,

20]

P02 - WebEv (Web for
the Evaluation)

System that uses a measurement framework based on GQM (Goal Question Metric) [21] to business process
evaluation and gives support to data collection, storage and analysis. It was defined in terms of measures,
mechanisms for data collection and guides to use the collected data.

[22,
23]

P03 - NSDIR (National
Software Data and

Information Repository)

It is an organizational benchmarking repository to software projects from the U.S Air Force. It was operational
from 1994 to 1998. Although its use has ended up in 1998, the industry and academy efforts continued through
CEBASE (Center for Empirically-Based Software Engineering).

[24]

P04 - MRS
(Measurement

Repository System)

It is a measurement repository used by a group of telecommunication companies. One of the main purposes
was the supply and products evaluation through reporting generation which compiled data from all
participating companies. The repository has as the main concern the safety and privacy of the information.

[25]

P05 - MMR Tool
Proposal of a generic and flexible measurement repository for data collection, storage, analysis, and
publication. It was projected to give support to all CMMI levels and it was applied in Ericson Research
Canada.

[17]

P06 - SPDW+
(Software Development

Process Performance
Data Warehousing)

It presents the data warehousing architecture SPDW+ as a repository solution centralized in measurements,
automatic collection and analysis mechanisms. The SPDW+ is an improvement of the SPDW, which was
operational for 3 years in HP Brazil. It was developed aiming at supporting process improvements in mature
organizations.

[26]

P07 - A Universal
Metrics Repository

It proposes a structure to a flexible measurement repository, able to adapt itself to different lifetime models,
methodologies, and software developments process. The proposal uses transformational view concepts of
software development, which considers that the software development process is a series of artifacts
transformation.

[27]

P08 – Proposal PAU It presents a generic framework that incorporates database, a formal set of software tests and evaluation
measures, as well as an advanced set of analytical techniques for information and knowledge extraction. The

[28]

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

approach proposes using this framework and its techniques to extract detailed information and knowledge
from the software measurement repositories.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

Table 2. Overview of the general characteristics of the identified proposals.

Proposal
Features

Technology Architecture Collection Storage Analysis SPC
Support

P01

Use of DSL(Domain-
Specific Language) and
tools based on Eclipse

platform

Based on MDA (Model
Driven Architecture)

Automatic
(through models
transformation)

XML file No

P02
Use of Java (Java JDBC
and Java Servlet API)

Semi-automatic
(via web form)

Database
Quantitative

analysis resources
Probably

Applicable

P03

Use of Sun Solaris Unix,
Oracle and client in Visual
Basic with ODBC (Open
Database Connectivity)

Client-Server (central
repository which stores
data collected by client

software)

Manual and Semi-
automatic

(through physical
or electronics

forms)

Database
Analysis tools in a
benchmark style

No

P04

Client-Server (central
repository which stores
data collected by client

software)

Semi-automatic
(through

electronic form)
Database

Generation of
quarterly reports

No

P05

Use of Technologies and
Microsoft tools (SQL 2000
Server, Analysis Services

Enterprise Edition, Internet
Information Server, Intranet
Share Portal Server, ASP)

Based on data
warehouse environment

Semi-automatic.
Intend to use ETL

(Extraction,
Transformation
and Loading) to

collect
voluminous and
periodic data.

Data
warehouse.

The
database
model is

generic for
data

flexibility

SQL (Structured
Query Language)

and OLAP (On-line
Analytical

Processing) cubes.
Data is presented
via web portal.
It is possible to
export data to

statistical tools.

Yes

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

Table 2. Overview of the general characteristics of the identified proposals (cont.).

Proposal
Features

Technology Architecture Collection Storage Analysis SPC
Support

P06

Use of Microsoft
technologies and tools.
(SQL Server 2005, BI

Studio, Visual Studio 2005,
SQL Server Integration
Services and IIS 6.0)

Oriented to services
(SOA – Service

Oriented Architecture)
and based on data

warehouse environment
with four components

Semi-automatic
and automatic, by

using ETL.

Data
warehouse

Use of BI (Business
Intelligence) tools
with web interface,

including OLAP
and dashboard.

Yes

P07
Use of MySQL (only the

repository is implemented)

Database.
The

database
model is

generic for
data

flexibility.

No

P08 Semi-automatic Database

Use of statistical
techniques and
others, such as:
multiresolution

analysis,
classification trees,
neural networks,

and influence
diagrams.

No

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

3.3 Discussions

In general, the proposals identified are very different. Unfortunately, based only on
information recorded in the publications, many times it is not possible to compare the
proposals in a substantial way. Regarding the proposals characteristics, some
considerations are presented below:

Technology
The technologies used in the proposals are diverse, varying from free software to

proprietary technologies. This can be a reflex of the variety of technological solutions
available in the market.

Architecture
All the proposals, except the Generic Measurement Framework based on MDA

[16, 18, 19, 20], include in their architecture a central repository to store and retrieve
data, using a client-server architecture. The proposals MRS [25] and NSDIR [24]
have specific client programs for communication with the server. WebEv [22, 23],
MMR Tool [17], and SPDW+ [26], in turn, use web resources. The proposals
SPDW+ [26] e MMR Tool [17] have architectures based on data warehouse
environment, including a component for data collection (ETL), a component to
storage (data warehouse), and a component for analysis with analytical capabilities
(OLAP). The SPDW+ [26] includes a fourth component responsible for the data
integration. It acts as a temporary repository for standardization of the collected data.

The Generic Measurement Framework based on MDA [16, 18, 19, 20] is a
conceptual architecture and it is an adaptation of MDA. It is divided in levels, ranging
from MOF (Meta-Object Facility) to measurement data, also including a measurement
meta-model based on a software measurement ontology.

Collection
In Table 2 it is possible to notice three types of collection: manual, semi-automatic

and automatic. Manual collection refers to the use of physical forms in order for
people to record data collected for the measures. Semi-automatic collection refers to
the use of computational supporting (for instance, electronic forms and information
systems) to record data collected for the measures. In the semi-automatic collection,
although there is computational supporting, data are supplied by people. Automatic
collection refers to the use of computational tools and mechanisms that obtain data for
the measures without human intervention.

Most of the proposals use semi-automatic collection. The publications which
describe the proposals MMR Tool [17] e MRS [25] mention the intention of using
automatic collection mechanisms, but these mechanisms are not described. Only two
proposals implemented the automatic collection: Generic Measurement Based on
MDA, [16, 18, 19, 20], by means of models transformation; and SPDW+ [26], with a
ETL component. It is important to emphasize that these proposals deal with very
specific types of measures (for instance, quantity of tables and relationships in a
certain data model, and number of errors in a portion of source code), which are more
favorable for automatic collection. Therefore, proposals that deal with measures
whose automatic collection is more difficult or not possible adopt semi-automatic
collection. This can be seen as a sign of the difficulty and, in some cases
impossibility, of adopting automatic collection. Only one proposal (NSDIR [24]) uses

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

manual collection and the data collected in physical forms are recorded in electronic
forms a posteriori.

Storage
The proposals use three different solutions to data storage: relational database

(WebEv [22, 23]), XML (eXtensible Markup Language), files (Generic Measurement
Framework Based on MDA [16, 18, 19, 20]), and solutions based on database.
Although most of the proposals adopt solutions based on databases, we noticed that
each proposal support the storage of different measurement data. We believe that this
occurs mainly because the repository structure (the database “model”) is defined
based on the specification of which entities and elements are to be measured and what
information needs are expected to be satisfied by the measurement data.

We also noticed that some proposals provide flexibility regarding which
measurement data can be stored. For instance, MMR Tool [17] uses a measurement
domain meta-level structure as a data model, with the purpose of allowing adaptation
to different measurement contexts. On the other hand, the Universal Metrics
Repository [27] is said to be itself a flexible database that aims to store any data from
any measures related to different entities.

Finally, we observed that the proposals that include support to statistical process
control (SPDW+ [26] e MMR Tool [17]) adopt solutions based on data warehouse.

Analysis
Most of the proposals include mechanisms for data analysis and presentation.

Some proposals, such as SPDW+ [26] and PAU [28], have more complex
mechanisms and tools. The analysis can be purely qualitative, as in WebEv [22, 23],
or have a benchmark type, as in NSDIR [24] and MRS [25], in which general data of
products and projects can be analyzed to support identification of best practices. The
proposals that support statistical processes control (SPDW+ [26] and MMR Tool
[17]) adopt more sophisticated mechanisms to data analysis (both of them use OLAP
tools).

Support to SPC
 Most proposals do not provide support to statistical process control. For instance,

the proposal NSDIR [24] includes a repository which stores general data regarding
products and projects with the main purpose of using them as benchmarking. Data
concerning the process definition or its executions are not stored, what does not allow
for carrying out SPC.

Only two proposals (SPDW+ [26] and MMRTool [17]) include support to SPC.
Both of them were developed in the context of large companies aiming at high
maturity levels. These two proposals use Microsoft technologies and solutions based
on data warehouse.

4 LASMA: A Levels-based Approach for Defining Software
Measurement Architectures

As presented in the previous section, there are some proposals for software
measurement architectures recorded in the literature. After carrying out the study, we
analyzed its results and we concluded that although the proposals found support the

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

measurement process, they do not guide organizations on how to define their own
measurement architectures. In general, the proposals are specific solutions developed
to a particular context and most of them do not address measurement at high maturity
levels, where SPC practices are needed. Thus, aiming to help organizations define
software measurement architectures capable of supporting traditional and high
maturity measurement, we proposed a levels-based approach that provides knowledge
regarding what a measurement architecture should address in order to properly
support software measurement.

LASMA was inspired by the Model Driven Engineering (MDE) [29] and the
Model Driven Architecture (MDA) approaches [30]. MDE advocates the use of
models with different levels of abstraction and transformations of models from a level
to another. MDA, in turn, uses a Platform Independent Model (PIM) as a basis to
generate Platform Specific Models (PSM), which are used to implement systems.

Following the MDE principles, LASMA comprises levels at which there are
models with different levels of abstraction (from the more to the less abstract). In
addition to that, following the MDA principles, LASMA distinguishes platform
independent models from platform specific models.

It is important to point out that, although LASMA has been inspired by MDE and
MDA, it is not a MDE or MDA approach. Thus, transformations to lead a model into
another are not addressed in LASMA.

An overview of LASMA is shown in Figure 1. LASMA has five levels. The higher
the level in the figure, the higher is the level of abstraction. The arrows indicate that a
model from a level is used as a basis to define a model from the next one. After
Figure 1, the LASMA levels are described.

Figure 1. LASMA overview.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

4.1 Level 1: Metaconceptualization

The first level concerns conceptual models that describe real-world objects that are
domain independent. At this level lies the Unified Foundational Ontology (UFO)
[31], which is a foundational ontology that has been developed on the basis of a
number of theories from Formal Ontology, Philosophical Logics, Philosophy of
Language, Linguistics and Cognitive Psychology.

 UFO is composed by three main parts. UFO-A is an ontology of endurants. A
fundamental distinction in UFO-A is between Particulars (Individuals) and Universals
(Types). Particulars are entities that exist in reality possessing a unique identity, while
Universals are patterns of features, which can be realized in a number of different
particulars [31]. UFO-B is an ontology of perdurants (events). UFO-C is an ontology
of social entities (both endurants and perdurants) built on the top of UFO-A and UFO-
B. One of its main distinctions is between agents and objects. Agents are capable of
performing actions with some intention, while objects only participate in events [32].

UFO has been used as a basis to build and reengineer several domain ontologies
[33, 34, 35, 36]. Its function in LASMA is to provide the generic conceptualization
used as a basis to define the conceptualization of the software measurement domain.
A complete description of UFO falls outside the scope of this paper. In the sequel,
aiming to present some examples of UFO concepts, we give a brief explanation of
some UFO concepts shown in Figure 2. Details regarding UFO concepts can be found
in [31, 33].

Figure 2. UFO fragment.

An entity is something perceivable or conceivable. It is the most general
concept in UFO. Universals are patterns of features that can be realized in a number
of different entities (e.g., Person). Particulars are entities that exist in reality,
possessing a unique identity (e.g., the person Mary). Universals can be first order
universals, i.e., universals whose instances are particulars (e.g., Person), or high order
universals, which are universals whose instances are also universals (e.g., Specie,
whose instances could be Mammal, Reptile, and Bird, among others).

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

Endurant universals are universals that persist in time maintaining their identity.
Endurant universals can be monadic universals or relations. Monadic universals, in
turn, can be further categorized into substantial universals and moment universals
(properties). A moment is an endurant that is existentially dependent of another
endurant, in the way, for example, that the color of an apple depends on the apple in
order to exist. Existential dependence can also be used to differentiate intrinsic and
relational moments. Intrinsic moments are dependent on one single endurant (e.g.,
color). Relators depend on a plurality of endurants (e.g., an employment, a medical
treatment, a marriage) and, for this reason, provide the material connection between
them. In other words, we can say that they are the foundation for material relations
such as “working at”. Thus, material relations require relators in order to be
established. Formal Relations, in contrast, hold directly between individuals (e.g., the
part-of relation).

Regarding substantial universals, while persisting in time, substantial particulars
can instantiate several substantial universals. Some of these types, a substantial
instantiates necessarily (i.e., in every possible situation) and define what the
substantial is. These are the types named kind (e.g., Person). There are, however,
types that a substantial instantiates in some circumstances, but not in others, such as
is the case of roles. A role is a type instantiated in a given context, such as the
context of a given event participation or a given relation (e.g., Student).

4.2 Level 2: Domain Conceptualization

The second level of LASMA refers to models that represent the domain
conceptualization. At this level lies the Reference Software Measurement Ontology
(RSMO) [10, 11, 34, 36, 37]. RSMO is a domain reference ontology, i.e., a domain
ontology that is constructed with the sole objective of making the best possible
description of the domain in reality, with regard to a certain level of granularity and
viewpoint. A domain reference ontology is a special kind of conceptual model
representing a model of consensus within a community. It is a solution-independent
specification with the aim of making a clear and precise description of domain entities
for the purposes of communication, learning and problem-solving [38].

According to Guarino [39], aiming fidelity to reality and conceptual clarity,
ideally domain ontologies should be built based on foundational ontologies. RSMO
was developed based on UFO, the foundational ontology present in the first level of
LASMA. Discussions regarding the use of UFO as a basis to develop RSMO can be
found in [10, 11, 34, 37].

The function of RSMO in LASMA is to provide the domain conceptualization
necessary to define models from the level 3 (Platform Independent).

RSMO addresses the software measurement domain considering traditional and
high maturity aspects. For this, it is composed of six sub-ontologies: the Measurable
Entities & Measures sub-ontology, which is the core of the RSMO, treating the
entities that can be submitted to measurement, their properties that can be measured,
and the measures used to measure them; the Measurement Goals sub-ontology that
deals with the alignment of measurement to organizational goals; the Operational
Definition of Measures sub-ontology, which addresses the detailed definition of
operational aspects of measures, including data collection and analysis; the Software

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

Measurement sub-ontology that refers to the measurement per se, i.e., collecting and
storing data for measures; the Measurement Analysis sub-ontology, handling the
analysis of the collected data for getting information to support decision making; and
finally, the Software Process Behavior sub-ontology, which refers to applying
measurement results in the analysis of the behavior of software processes.

Since the software measurement domain is strongly related to the domains of
software processes and organizations, RSMO reuses some concepts from the software
process ontology described in [33] and the software organization ontology presented
in [34].

Figure 3 shows the RSMO sub-ontologies and the integrated ontologies as UML
packages, and their relationships as dependency relationships. In the figure, the
dependency relationships indicate that concepts and relations from a sub-
ontology/ontology are used by another.

Figure 3. RSMO overview.

RSMO is very extensive and a complete description falls outside the scope of this
paper. As an example, we present some of RSMO basic concepts. Figure 4 presents a
fragment of the Measurable Entities & Measures sub-ontology. The concepts
presented are described below. In the text, the first occurrences of RSMO concepts
are shown in bold and instances of RSMO concepts are shown underlined.

A Measurable Entity is anything that can be measured, such as a process, an
artifact, a project and a resource. Measurable entities can be classified according to
types (Measurable Entity Type). For instance, process is a type of measurable
entity.

Measurable Entities are characterized by Measurable Elements. A Measurable
Element is a property of a Measurable Entity that can be distinguished, and thus
measured. Size and productivity are examples of measurable elements. Measurable
Elements can be directly (e.g., size) or indirectly (e.g., productivity) measured.
Indirectly Measurable Elements are measured by means of other measurable
elements, said their sub-elements. Measurable Entities that are instance of the same
Measurable Entity Type are characterized by the same Measurable Elements.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

A Measure is an instrument that allows associating Measurable Elements with
Scale Values of a Scale. For instance, the measure number of requirements can be
used to associate a value to the measurable element size that characterizes the
measurable entity type project. Thus, a Measure quantifies a Measurable Element and
has a Scale composed by Scale Values. Moreover, a Scale is of a Scale Type (e.g.,
interval, ratio).

A Measure can be correlated to other measures, said its correlated measures,
indicating, for instance, that they have a cause-effect relationship. Finally, Measures
can be classified into Base Measures, which are functionally independent of other
measures (e.g., number of requirements) and used to quantify Directly Measurable
Elements, and Derived Measures (e.g., requirements changing rate, given by the
ratio of the number of changed requirements to the number of requirements), which
are defined as a function of other measures and used to quantify Indirectly
Measurable Elements.

A Measure can be expressed in a Measure Unit (e.g., hour). Derived Measures
are calculated by Measure Calculation Formulas, which, in turn, use other measures
as measures for calculation.

Figure 4. Fragment of the Measurable Entities & Measures sub-ontology.

4.3 Level 3: Platform Independent

The third level of LASMA concerns models that describe a software measurement
conceptual architecture, i.e., an architecture that does not take technological aspects
into account. In an analogy with the software development process, a model of this
level can be compared to models produced during the requirement analysis phase, in
which technological aspects are not considered. The purpose of models from this level
is to represent the aspects that a technological solution (e.g., tools, integrated systems,
etc.) for supporting software measurement should address. The representation is made
by means of requirements that should be satisfied by software measurement
technological solutions, as well as by conceptual models that describe the structure for
data storage that these solutions should be able to provide. At this level lies the
Reference Architecture for Software Measurement (RASM).

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

A reference architecture captures the essence of a set of systems. Its purpose is to
guide the development of architectures for new systems [40]. Different from the
generalist concept of architecture (a logical structure in which components are
organized and integrated), reference architectures are conceived mainly aiming at
reuse. In this sense, Nakagawa [41] highlights that the use of domain ontologies as a
basis to develop reference architectures contributes to understand the domain and
identify the requirements to be addressed.

RASM was developed based on the RSMO conceptualization. It is made up of
three components, as shown in Figure 5. According to RASM, data related to the
organization, projects and their artifacts are captured and stored in a measurement
repository. Then, collected data are analyzed and the results are provided to the
stakeholders. RASM components are described after Figure 5. Since in this paper the
focus is on presenting LASMA as a whole, details regarding the components
definitions are not presented.

Figure 5. RASM overview.

(a) Input Utilities
This component is responsible for capturing measurement data. It is described
by functional requirements related to traditional and high maturity software
measurement. Each requirement has a detailed description. In a technological
solution for supporting software measurement, the input utilities should provide
a set of functionalities able to satisfy these requirements. As an example, there is
the requirement “It must be possible to record entities to be measured, its types
and their elements (properties) that can be measured”.

(b) Measurement Repository
This component is responsible for storing measurement data. It is described by
means of UML (Unified Modeling Language) package diagram, class diagrams,
detailed descriptions and constraints. Figure 6 shows the package diagram of the
measurement repository.

(c) Output Utilities
This component is responsible for data analysis and analysis results presentation,
aiming to help the stakeholders make decisions. Analogous to the Input
Utilities, this component is described by functional requirements.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

Figure 6. Package diagram of the measurement repository.

The decision on which components would be addressed by RASM took the results
from the systematic mapping into account. We noticed that, independently of the used
technologies, most of the proposals include functionalities for data capture, storage
and analysis. In fact, that was expected, since these are the measurement basic
activities. We also noticed that in several proposals data are provided by different
sources and captured by different tools. Similarly, in some proposals storage data are
used by different tools that support data analysis and provide results. Thus, we
decided to define three components and name utilities those responsible for data
capture and presentation, to make explicit the possibility of implementing them either
as one or several tools.

4.4 Level 4: Platform Specific

The fourth level of LASMA refers to models developed on the basis of the platform
independent model (RASM) and taking technological issues into account. It is
important to point out that in this level it is possible to use only parts of RASM. For
instance, if an organization is not interested in high maturity software measurement,
the requirements and packages that address high maturity aspects can be disregarded.

In an analogy with the software development process, a model of this level can be
compared to models produced during the design phase, in which technological aspects
are considered.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

In LASMA, the models lied in levels 1, 2 and 3 are predetermined (UFO, RSMO
and RASM, respectively). Thus, the users of LASMA use the models from these
levels to define platform specific measurement architectures. In fact, users of LASMA
use directly RASM to define their own architectures. RASM requirements and
measurement repository structure are used as a basis to the definition of platform
specific architectures for organizations.

4.5 Level 5: Applications

The last level of LASMA concerns software applications developed based on the
specific architectures defined in the previous levels. Although software applications
are not models, they were included in a level of LASMA because they can be used as
a means to evaluate the architectures defined in levels 2 and 3 [40].

5 Using the Proposed Approach

Aiming to verify if LASMA is practicable, it was used to define a platform specific
architecture and a tool. For this, the model defined in the level 3 of LASMA, i.e., the
Reference Architecture for Software Measurement (RASM), was used to define a
specific architecture.

The input and output utilities defined in RASM were implemented as a tool
(M&SPC) and the measurement repository was implemented as a database. Figure 7
presents an overview of the specific architecture defined.

Figure 7. Specific architecture overview.

The specific architecture defined is simple and it is similar to the WebEv proposal
[22, 23] found during the systematic mapping, since in that proposal data collection,
storage and analysis are supported by a web application.

The technologies used were: OpenXava2, which is a Java framework with AJAX
(Asynchronous Javascript e XML), some Javascript libraries (e.g., RGraph3), the
LifeRay Portal4 and Postgres SQL5. In order to define the specific architecture, the
input and output utilities requirements were used as functional requirements that
defined which functionalities should be provided by the tool. The measurement
repository conceptual models were used as a basis to define the database schemas.
The conceptual models were changed resulting in class models suitable to the
technology used. The measurement repository constraints were used to identify

2 http://openxava.org
3 http://www.rgraph.net
4 http://www.liferay.com
5 http://www.postgresql.org

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

restrictions that should be addressed by the tool and database. Figure 8 depicts the
technologies used in the specific architecture defined.

The specific architecture was used to implement a tool. M&SPC contains a set of
functionalities implemented aiming to meet the requirements described in RASM and
addressed by the specific architecture defined. Figure 9 shows, as an example, a
M&SPC screen used to elaborate the project measurement plan.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

Figure 9. Elaborate Project Measurement Plan screen.

The definition of the specific architecture and the implementation of the M&SPC
tool served as a proof of concept of LASMA (particularly of RASM), showing that
the proposal is feasible [42]. However, this was only a preliminary result, since it is
necessary to evaluate if the proposal works in a real context. After the definition of
the specific architecture and tool, an expert in traditional and high maturity software

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

measurement used the M&SPC tool and made some considerations that helped us to
make some adjustments in RASM and, consequently, in the specific architecture and
tool. After that, an experimental study was carried out. The participants were
computer science MA and PhD students with knowledge and practical experience in
software measurement. Details regarding the experimental study fall outside the scope
of this paper. The results obtained from the experiment showed that the tool
developed using the approach is able to properly support software measurement.
According to [40], tools developed in the basis of a reference architecture can be used
as a means to evaluate the architecture. However, since the experimental study was
carried out in the academic context, the results are not conclusive and new
experiments in the industrial context are being planned.

6 Final Considerations

In this paper we presented the main results from a systematic mapping carried out
aiming to investigate proposals for software measurement architectures recorded in
the literature. Since the results of the study showed us that the proposals recorded in
the literature do not guide organizations on the definition of their own measurement
architectures, we defined an approach (LASMA) with that purpose. An overview of
LASMA was presented in this paper.

Regarding the systematic mapping, altogether, 148 selected publications from the
digital libraries IEEE and Scopus were analyzed and 8 software measurement
architectures proposals were found. The proposals have some similarities (for
instance, the use of solutions based on database for data storage by most of the
proposals), but they also present many differences (for example, the technologies
adopted).

As limitations of the study, we highlight the use of only two digital libraries as
sources of publications and the unavailability of the full text of some publications.
Concerning the use of only two sources, although it is a limitation, initial tests showed
that the selected publications from some other libraries were similar than the selected
publications from the digital libraries used until this moment. Concerning publications
whose full text was not available, we contacted the authors and some of them made
their publications available. However, four publications were eliminated due to the
unavailability of the full text.

The systematic mapping results showed that although there are some proposals for
measurement architectures, they do not guide organizations on how to define
measurement architectures. Thus, we defined LASMA, an approach made up of five
levels. Each level contains models with different levels of abstraction. A model from
a level is used as a basis to develop the model from the next one. At the top 3 levels
lie UFO (Unified Foundational Ontology), RSMO (Reference Software Measurement
Ontology) and RASM (Reference Architecture for Software Measurement). Based on
RASM it is possible to define software measurement architectures considering the use
of specific technologies.

The proposal made by Mora and colleagues [16, 18, 19, 20] (the P01 proposal in
Table 1) also defines a measurement architecture by using a strategy in levels.

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

However, the proposal is limited to some measures that can be automatically collected
and does not support SPC, i.e., high maturity software measurement. Besides, the
proposal does not aim to help organizations define new architectures. LASMA, in
turn, aims to support the definition of measurement architectures, does not restrict the
measures to be used, and, since it is based on the RSMO, it addresses both, traditional
and high maturity software measurement.

LASMA was used to define a specific measurement architecture and a tool
(M&SPC), which showed us that the proposed approach is viable.

It is worthy pointing out that although LASMA is proposed to the software
measurement domain, it can be applied to other domains. For instance, using UFO as
a basis, a reference ontology could be defined for the software testing domain. This
ontology would be used as a basis to define a reference architecture for the software
testing domain that, in turn, would be used for defining specific architectures and
tools.

Currently, considering the results of the mapping study, we are working on the use
of RSMA for defining a specific measurement architecture using technologies such as
data warehouse, ETL (Extract, transform, load) and OLAP (Online Analytic
Processing) cubes. By doing this we intend to analyze the difficulties and facilities of
using RSMA to define an architecture using more complex technologies. In addition
to that, as said before, we are planned new experimental studies aiming to verify if the
tool M&SPC is capable of properly supporting the measurement process. By
evaluating the tool we are also evaluating the reference architecture defined and the
use of LASMA for defining measurement architectures [40].

Acknowledges

This research is funded by the Brazilian Research Funding Agencies FAPES (Process
Number 52272362/11) and CNPq (Process Number 485368/2013-7).

References

[1] Mcgarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., Hall, F.:
Practical Software Measurement: Objective Information for Decision Makers.
Addison Wesley, Boston, USA (2002).

[2] CMMI Product Team: CMMI for Development, Version 1.3.,
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm, (2010).

[3] ISO/IEC: ISO/IEC 15939, Systems and Software Engineering – Measurement
Process (2007).

[4] ISO/IEC: ISO/IEC 12207, Systems and Software Engineering – Software Life
Cycle Processes, Second edition (2008).

[5] SOFTEX: MPS.BR: Melhoria de Processo do Software Brasileiro - Guia Geral,
http://www.softex.br/mpsbr, (2012).

[6] Zachman, J.: A framework for information systems architecture. IBM Systems
Journal. 276–292 (1987).

[7] Bernstein, P. A.: Repositories and Object-Oriented Databases, Proceedings of the
BTW Conference, pp 34–46 (1997).

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

[8] Dumke, R., Ebert, C.: Software Measurement: Establish – Extract – Evaluate –
Execute. Springer-Verlag (2010).

[9] Maretto, C. X., Barcellos, M. P.: Software Measurement Architectures: A
Mapping Study, In Proceedings of the 10th ESELAW: Experimental Software
Engineering Latin American Workshop, Montevideo, pp 20-33 (2013).

[10] Barcellos, M., Falbo, R. A., Rocha, A. R.: Establishing a Well-Founded
Conceptualization about Software Measurement in High Maturity Levels. In
Proceedings of the 7th International Conference on the Quality of Information
and Communications Technology (QUATIC 2010), Oporto, Portugal, pp 467–
472 (2010).

[11] Barcellos, M. P., Falbo, R. A., Rocha, A. R. A.: A Well-Founded Software
Process Behavior Ontology to Support Business Goals Monitoring in High
Maturity Software Organizations. In Proceedings of the IEEE 5th Joint VORTE-
MOST Workshop, Vitória, Brazil, pp 253–262 (2010).

[12] Florac, W. A., Carleton, A. D.: Measuring the Software Process: Statistical
Process Control for Software Process Improvement. Addison Wesley, Boston,
USA (1999).

[13] Tarhan, A., Demirors, O.: Apply Quantitative Management Now. IEEE Software.
29, 77–85 (2012).

[14] Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical Report EBSE-2007-01. Keele,
Departament of Computer Science Keele University (2007).

[15] Montoni, M.: Investigation Regarding Critical Success Factors in Software
Process Improvement Initiatives, Computation and Systems Engineering
Program, Doctorate Thesis, Federal University of Rio de Janeiro, COPPE/UFRJ,
Rio de Janeiro, Brazil. (2010) (in Portuguese only)

[16] M Mora, B., García, F., Ruiz, F., Piattini, M., Boronat, A., Gómez, A., Carsí,
J.Á., Ramos, I.: Software generic measurement framework based on MDA. IEEE
Latin America Transactions. 9, 130–137 (2011).

[17] Palza, E., Fuhrman, C., Abran, A., Ouest, N., Québec, H.C.M.: Establishing a
Generic and Multidimensional Measurement Repository in CMMI context. In
Proceedings of the 28th Annual NASA Goddard Software Engineering
Workshop (2003).

[18] Mora, B., García, F., Ruiz, F., Piattini, M., Boronat, A., Gómez, A., Carsí, J.Á.,
Ramos, I.: Software generic measurement framework based on MDA. IEEE
Latin America Transactions. 6, 363–370 (2008).

[19] Mora, B., García, F., Ruiz, F., Piattini, M., Boronat, A., Gómez, A., Carsí, J.Á.,
Ramos, I.: Software generic measurement framework based on MDA. Latin
America Transactions IEEE. 8, 605–613 (2010).

[20] Mora, B., Garcia, F., Ruiz, F., Piattini, M.: Model-Driven Software Measurement
Framework: A Case Study. In Proceedings of the Ninth International Conference
on Quality Software, pp 239–248 (2009).

[21] Basili, V. R., Caldeira, G., Rombach, H. D.: The goal question metric approach,
Encyclopedia of Software Engineering, Wiley. (1994).

[22] Aversano, L., Bodhuin, T., Canfora, G., Tortorella, M.: WebEv - a Collaborative
Environment for Supporting Measurement Frameworks. In Proceedings of the
37th Annual Hawaii International Conference, pp 1–10 (2004).

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

[23] Aversano, L., Bodhuin, T., Canfora, G., Tortorella, M.: A Framework for
Measuring Business Processes based on GQM. In Proceedings of the 37th
Annual Hawaii International Conference, pp 1–10 (2004).

[24] Goth, G.: focus NSDIR: A Legacy beyond Failure. IEEE Software. 18, 53–56
(2001).

[25] Bastani, F. B., Ntafos, S., Harris, D. E., Morrow, R. R., Paul, R.: A high-
assurance measurement repository system. In Proceedings of the Fifth IEEE
International Symposium on High Assurance Systems Engineering (HASE
2000), pp 265–272 (2000).

[26] Silveira, P. S., Becker, K., Ruiz, D. D.: SPDW+: a seamless approach for
capturing quality metrics in software development environments. Software
Quality Journal. 18, 227–268 (2010).

[27] Harrison, W.: A flexible method for maintaining software metrics data: a
universal metrics repository. Journal of Systems and Software. 72, 225–234
(2004).

[28] Paul, R.A., Kunii, T.L., Shinagawa, Y., Khan, M.F.: Software Metrics
Knowledge and Databases for Project Management. IEEE Transactions on
Knowledge and Data Engineering, 11, 255–264 (1999).

[29] Fondement, F., Silaghi, R.: Defining Model Driven Engineering Processes. In:
Proceedings of the Third International Workshop in Software Model Engineering
(WiSME), Lisbon, Portugal, pp 1–11 (2004).

[30] OMG, 2003, MDA Guide Version 1.0.1. Available: http://www.enterprise-
architecture.info. Access: 3 jun. 2012.

[31] Guizzardi, G.: Ontological Foundations for Structural Conceptual Models.
Universal Press, The Netherlands, ISBN 90-75176-81-3 (2005).

[32] Guizzardi, G., Falbo, R. A., Guizzardi, R. S. S.: Grounding Software Domain
Ontologies in the Unified Foundational Ontology (UFO): The case of the ODE
Software Process Ontology. In Proceedings of the XI Iberoamerican Workshop
on Requirements Engineering and Software Environments, pp 244-251 (2008).

[33] Bringuente, A., Falbo, R. A., Guizzardi, G.: Using a Foundational Ontology for
Reengineering a Software Process Ontology. In Proceedings of the XXVI
Brazilian Symposium on Data Base, Florianópolis, Brazil, pp 1-16 (2011).

[34] Barcellos, M. P., Falbo, R. A.: Using a foundational ontology for reengineering a
software enterprise ontology. In Joint International Workshop on Metamodels,
5833, pp 179-188 (2009).

[35] Falbo, R. A., Nardi, J. C.: Evolving a Software Requirements Ontology. In
Proceedings of the XXXIV Conferencia Latinoamericana de Informática, Santa
Fe, Argentina, pp 300-309 (2008).

[36] Barcellos, M. P., Falbo, R. A., Rocha, A. R.: A strategy for preparing software
organizations for statistical process control. Journal of the Brazilian Computer
Society, DOI 10.1007/s13173-013-0106-x. (2013).

[37] Barcellos, M. P., Falbo, R. A., Dalmoro, R.: A well-founded software
measurement ontology. In Proceedings of the 6th International Conference on
Formal Ontology in Information Systems (FOIS 2010), Toronto, Canada, 209, pp
213-226 (2010).

[38] Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling
Languages and (Meta)Models, In Proceedings of the conference on Databases

CLEI ELECTRONIC JOURNAL VOLUME 17 NUMBER 3 PAPER 4

and Information Systems IV: Selected Papers from the Seventh International
Baltic Conference, Amsterdam, Netherlands, pp 18-39 (2007).

[39] Guarino, N.: Formal Ontology and Information Systems. In Proceedings of
International Conference in Formal Ontology and Information Systems, pp 3-15
(1998).

[40] Muller, G.: A reference architecture primer. Gaudí Project (white paper).
Buskerud University College, Kongsberg, Noruega, pp 1-21 (2013).

[41] Nakagawa, E. Y., Barbosa, E. F., Maldonado, J. C.: Exploring ontologies to
support the establishment of reference architectures: An example on software
testing. In: Proceedings of the Joint Working IEEE/IFIP Conference on Software
Architecture 2009 & European Conference on Software Architecture 2009,
Cambridge, United Kingdom, pp 249-252 (2009).

[42] Oates, B. J.: Researching Information Systems and Computing, SAGE
Publications (2006).

