A Feature-based Trajectory Anomaly Detection

Authors

DOI:

https://doi.org/10.19153/cleiej.25.2.3

Keywords:

Trajectory anomaly detection, trajectory shape descriptor, feature extraction, trajectory clustering

Abstract

The high availability of trajectory data in different fields makes it attractive to analyze and enhance its multiple practical applications. In particular, trajectory anomaly detection has a significant practical value, making it possible identifying trajectories that may indicate illegal and adverse activity in diverse areas such as surveillance, tracking devices, traffic, and people flow. This study presents a methodology to detect anomaly trajectories based on their morphology features. For that, we follow two stages: (1) comparative analysis of the performance of two descriptors to group similar trajectories, and (2) trajectory anomaly detection based on their similarities. We define Wavelet and Fourier transforms as trajectory descriptors to generate characteristics and subsequently detect anomalies. Our experiments emphasize the measure of the performance in the description of the coefficient feature space using unsupervised learning, specifically clustering techniques, to create subsets and identify irregular ones. The study's implications demonstrate that it is possible to use descriptors in trajectories for automatic anomaly detection and the use of unsupervised learning to segment required information. Our study's performance and comparative analysis have been demonstrated throughout multiple experiments. We present some quantitative results using synthetic data sets as well as qualitative analysis throughout two case studies considering real data sets that leave evidence of our contribution. 

References

M. J. Wisdom, N. J. Cimon, B. K. Johnson, E. O. Garton, and J. W. Thomas, “Spatial partitioning by mule deer and elk in relation to traffic.” in In: Transactions of the 69th North American Wildlife and Natural Resources Conference: 509-530, 2004. [Online]. Available: https://www.fs.usda.gov/treesearch/pubs/24837

M. D. Powell and S. D. Aberson, “Accuracy of united states tropical cyclone landfall forecasts in the atlantic basin (1976–2000),” Bulletin of the American Meteorological Society, vol. 82, no. 12, pp. 2749–2768, 2001. [Online]. Available: https://doi.org/10.1175/1520-0477(2001)082?2749:AOUSTC?2.3.CO;2[3] Y. Pang and Y. Liu, “Conditional generative adversarial networks (cgan) for aircraft trajectory prediction considering weather effects,” in AIAA Scitech 2020 Forum, 2020, p. 1853. [Online].Available: https://doi.org/10.2514/6.2020-1853

J. Kim and H. S. Mahmassani, “Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories,” Transportation Research Procedia, vol. 9, pp. 164–184, 2015. [Online]. Available: https://doi.org/10.1016/j.trpro.2015.07.010

B. T. Morris and M. M. Trivedi, “Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 11, pp. 2287–2301, 2011. [Online]. Available: https://doi.org/10.1109/TPAMI.2011.64

F. Turchini, L. Seidenari, and A. Del Bimbo, “Understanding sport activities from correspondences of clustered trajectories,” in Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015, pp. 43–50. [Online]. Available: https://doi.org/10.1109/ICCVW.2015.103

S. Paul, F. Hole, A. Zytek, and C. A. Varela, “Flight trajectory planning for fixed-wing aircraft in loss of thrust emergencies,” arXiv preprint arXiv:1711.00716, 2017. [Online]. Available: https://doi.org/10.1109/DASC.2018.8569842

R. Laxhammar and G. Falkman, “Online learning and sequential anomaly detection in trajectories,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 6, pp. 1158–1173, 2014. [Online]. Available: https://doi.org/10.1109/TPAMI.2013.172

C. Parent, S. Spaccapietra, C. Renso, G. Andrienko, N. Andrienko, V. Bogorny, M. L. Damiani, A. Gkoulalas-Divanis, J. Macedo, N. Pelekis et al., “Semantic trajectories modeling and analysis,” ACM Computing Surveys (CSUR), vol. 45, no. 4, pp. 1–32, 2013. [Online]. Available: https://doi.org/10.1145/2501654.2501656

S. Khalid and A. Naftel, “Automatic motion learning in the presence of anomalies using coefficient feature space representation of trajectories,” Acta Automatica Sinica, vol. 36, no. 5, pp. 655–666, 2010. [Online]. Available: https://doi.org/10.1016/S1874-1029(09)60028-8

X. Kong, M. Li, K. Ma, K. Tian, M. Wang, Z. Ning, and F. Xia, “Big trajectory data: A survey of applications and services,” IEEE Access, vol. 6, pp. 58 295–58 306, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2873779

J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: A partition-and-group framework, ”in Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’07. New York, NY, USA: Association for Computing Machinery, 2007. [Online]. Available: https://doi.org/10.1145/1247480.1247546

G.-P. Roh and S.-w. Hwang, “Nncluster: An efficient clustering algorithm for road network trajectories,” in International Conference on Database Systems for Advanced Applications. Springer, 2010, pp. 47–61. [Online]. Available: https://doi.org/10.1007/978-3-642-12098-5 4

B. Han, L. Liu, and E. Omiecinski, “Neat: Road network aware trajectory clustering,” in 2012 IEEE 32nd International Conference on Distributed Computing Systems. IEEE, 2012, pp. 142–151. [Online]. Available: https://doi.org/10.1109/ICDCS.2012.31

A. Naftel and S. Khalid, “Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space,” Multimedia Systems, vol. 12, no. 3, pp. 227–238, 2006. [Online]. Available: https://doi.org/10.1007/s00530-006-0058-5

R. Annoni and C. H. Forster, “Analysis of aircraft trajectories using fourier descriptors and kernel density estimation,” in 2012 15th International IEEE Conference on Intelligent Transportation Systems. IEEE, 2012, pp. 1441–1446. [Online]. Available: https://doi.org/10.1109/ITSC.2012.6338863

H. Zhang, Y. Luo, Q. Yu, L. Sun, X. Li, and Z. Sun, “A framework of abnormal behavior detection and classification based on big trajectory data for mobile networks,” Security and Communication Networks, vol. 2020, 2020. [Online]. Available: https://doi.org/10.1155/2020/8858444

C. Piciarelli, C. Micheloni, and G. L. Foresti, “Trajectory-based anomalous event detection,” IEEE Transactions on Circuits and Systems for video Technology, vol. 18, no. 11, pp. 1544–1554, 2008. [Online]. Available: https://doi.org/10.1109/TCSVT.2008.2005599

H. Ergezer and K. Leblebicio?glu, “Anomaly detection and activity perception using covariance descriptor for trajectories,” in European Conference on Computer Vision. Springer, 2016, pp. 728–742. [Online]. Available: https://doi.org/10.1007/978-3-319-48881-3 51

X. Wang, K. T. Ma, G.-W. Ng, and W. E. L. Grimson, “Trajectory analysis and semantic region modeling using nonparametric hierarchical bayesian models,” International journal of computer vision, vol. 95, no. 3, pp. 287–312, 2011. [Online]. Available: https://doi.org/10.1007/s11263-011-0459-6

R. R. Sillito and R. B. Fisher, “Semi-supervised learning for anomalous trajectory detection.” in BMVC, vol. 1, 2008, pp. 035–1. [Online]. Available: https://doi.org/10.5244/C.22.103

I. Labs. (2004) Caviar “INRIA” dataset. [Online]. Available: https://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

H. M. Dee and D. C. Hogg, “Detecting inexplicable behaviour,” in Proceedings of the British Machine Vision Conference. BMVA Press, 2004, pp. 50.1–50.10, doi:10.5244/C.18.50.

J. Wang, Z. Wang, J. Li, and J. Wu, “Multilevel wavelet decomposition network for interpretable time series analysis,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2437–2446. [Online]. Available: https://doi.org/10.1145/3219819.3220060

R. Colque., E. Cayllahua., V. C. de Melo., G. Chavez., and W. Schwartz., “Anomaly event detection based on people trajectories for surveillance videos,” in Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,, INSTICC. SciTePress, 2020, pp. 107–116, doi:10.5220/0008952401070116.

E. Alvarez Mamani, “Sistema de transporte inteligente (sti), para el control y monitoreo del servicio urbano en la ciudad del cusco.” Universidad Nacional de San Antonio Abad del Cusco, 2018.

K. Wang, J. Zhang, D. Li, X. Zhang, and T. Guo, “Adaptive affinity propagation clustering,” CoRR, vol. abs/0805.1096, 2008. [Online]. Available: http://arxiv.org/abs/0805.1096

Downloads

Published

2022-05-27